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Abstract: Background: There is great interest in the search for new alternatives to antimicrobial
drugs, and the use of synbiotics is a promising approach to this problem. This study evaluated the
growth inhibition and antibiofilm activity of the short-chain fatty acids produced by Lacticaseibacillus
rhamnosus and Pediococcus acidilactici in combination with inulin-type fructans against Candida albicans.
Methods: The growth inhibition of Candida was evaluated using microdilution analysis in 96-well
microtiter plates; different concentrations of cell-free supernatants of Lacticaseibacillus rhamnosus
and Pediococcus acidilactici were exposed to Candida albicans. The antibiofilm assessment was car-
ried out using the crystal violet staining assay. The short-chain fatty acids were analyzed by gas
chromatography. Results: The clinically isolated Candida albicans interacted with supernatants from
Lacticaseibacillus rhamnosus and Pediococcus acidilactici and showed significant growth inhibition and
antibiofilm formation versus the controls. Lactate and acetic acid were elevated in the supernatants.
The results suggest that the supernatants obtained from the synbiotic combinations of Lacticaseibacillus
rhamnosus and Pediococcus acidilactici with inulin-type fructans can inhibit the growth and biofilm
formation against a clinically isolated Candida albicans strain. Conclusions: These results suggest that
synbiotic formulations could be a promising alternative to antifungal drugs in candidiasis therapy.

Keywords: biofilms; Candida; probiotics; inulin-type fructans; antimicrobial activity; antibiofilm
effect; prebiotics

1. Introduction

The World Health Organization (WHO) defines probiotics as live microorganisms that
confer benefits on the health host [1]. Probiotics can prevent and treat infectious diseases
and inflammation and can reduce the development of harmful pathogens [2–4]. Prebiotics
are used to enhance probiotic properties [5,6]. Lactobacillus and Bifidobacterium are the most
commonly used genera as probiotics [7,8]. Lacticaseibacillus rhamnosus [9] and Pediococcus
acidilactici [10] have shown antimicrobial properties.

Candida spp. are opportunistic fungal pathogens that can cause mycosis in humans [11].
The clinical manifestations of Candida spp. range from localized to invasive and systemic
disease. The disease varies depending on the patient’s immune status [12]. Candida
albicans is the species most commonly associated with human fungal infections with a high
mortality rate [13]. Candida albicans is part of the normal human microbiota on the mucous
surfaces of the oral cavity, the gastrointestinal tract [14], and the vagina [15]. Several factors
intervene in the transition of Candida albicans from a commensal to a pathogenic fungus: the
expression of several virulence factors of Candida albicans leading to filament and biofilm
formation as well as the synthesis of adhesin factors and related enzymes [16].
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Furthermore, one of the great challenges to the use of conventional antimicrobials is
the multifactorial nature of biofilm development, as it indicates the need for multi-targeted
or combinatorial treatment. While azoles, polyenes, and echinocandins are common anti-
fungal drugs, they have some adverse effects, such as mutation and drug resistance with
Candida albicans [17]. Several studies have focused on the development of antimicrobials
against bacteria [18] and have shown better results when the antimicrobial compounds
have been functionalized into nanoparticles that mimic extracellular structures as release
vectors for antibacterial agents [19]. Moreover, Hong et al., 2019 [20] reported that pullulan
nanoparticles enhanced the antibacterial properties of Lactobacillus plantarum because this
probiotic produced more plantaricin, a natural antibacterial peptide. In the literature, sub-
stances with growth inhibition activity have also been reported for fungal microorganisms.
A previous study suggested that Lacticaseibacillus rhamnosus can alter the susceptibility of
Candida albicans to antifungal drugs [12]. Another study demonstrated that cell-free super-
natants (CFS) obtained from Pediococcus acidilactici inhibited Candida albicans [21]. Moreover,
Fatty acids exerted through various physical, chemical, or biological mechanisms possess
anti-infective activities; recently, several researchers have directed their interests towards
the study of antimicrobial lipids and have demonstrated that fatty acids inhibit or kill
a wide spectrum of pathogens, suppress the expression of Quorum Sensing-regulated
genes, reduce swarming motility, adhesion, and virulence, and directly induce biofilm
dispersion [22].

Inulin-type fructans are a prebiotic that can enhance the properties of beneficial in-
testinal bacteria [23,24]. However, there is a lack of studies focusing on the enhancement of
fructans on the antifungal effect against Candida albicans. This study assessed the growth
inhibition and antibiofilm effect of cell-free supernatants obtained from a synbiotic combina-
tion of Lacticaseibacillus rhamnosus and Pediococcus acidilactici supplemented with inulin-type
fructans.

2. Results

Table 1 shows all of the CFS obtained from the probiotics. CFS from Lacticaseibacillus
rhamnosus and Pediococcus acidilactici were exposed to Candida spp. to assess their growth
inhibitory effect. Figure 1a,b shows the kinetic growth of Candida spp. in the presence of
different CFS. The CFS-50%-W-D-rhamnosus (O.D. 0.71 ± 0.007) inhibited the growth of
Candida albicans ATCC 10231 versus the control (O.D. 1.217 ± 0.06) (p < 0.005). The presence
of CFS-25%-W-D-rhamnosus, CFS-50%-W-D-rhamnosus, and CFS-50%-W-I-rhamnosus inhib-
ited growth against clinical C. albicans (O.D. 0.081 ± 0.003, 0.804 ± 0.03 and 0.870 ± 0.016,
respectively) (p < 0.05). This inhibitory effect diminished when these supernatants were
neutralized, as shown in Figure 1c,d. The inhibition effect persisted when the L. rhamnosus
supernatants were submitted to thermal treatment. The 12.5, 25, and 50% concentrations of
dextrose and inulin supernatants inhibited the growth of clinical C. albicans (Figure 1f), sug-
gesting that minimal amounts of supernatants showed inhibition, thus showing a statistical
difference (p < 0.05) versus controls.

Figure 2 shows the inhibitory effect of the Pediococcus acidilactici CFS. CFS-50%-W-D-
P. acidilactici (O.D. 0.078 ± 0.008) inhibited C. albicans ATTC 10231 (p < 0.05) versus the
controls. The presence of 12.5, 25, and 50% concentrations of dextrose CFS supernatants
inhibited the growth of clinical C. albicans: CFS-12.5%-W-D-P. acidilactici, CFS-25%-W-D-P.
acidilactici, and CFS-12.5%-W-D-P. acidilactici had an O.D. of 1.008 ± 0.002, 0.812 ± 0.015,
and 0.141 ± 0.064, respectively.

The presence of CFS-25%-W-I-P. acidilactici and CFS-50%-W-I-P. acidilactici also inhib-
ited the growth of clinical C. albicans. The CFS-25%-W-I-P. acidilactici and CFS-50%-W-I-P.
acidilactici changed the O.D. (1.035 ± 0.022 and 0.784 ± 0.035, respectively) versus (O.D.
1.217 ± 0.064) (p < 0.05). The inhibitory effect of CFS-50%-N-I-P. acidilactici against C.
albicans (O.D. 1.045 ± 0.008) remained even when subjected to neutralization (Figure 2d).

The thermally-treated CFSs inhibited the growth against C. albicans ATCC 10231: 0.063
± 0.006 and 0.836 ± 0.056 optical densities for CFS-50%-T-I-P. acidilactici and CFS-50%-T-D-
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P. acidilactici, respectively (Figure 2e). All CFSs treated thermally inhibited clinical C. albicans
(Figure 2f). The dextrose CFSs 12.5%-T-D-P. acidilactici, CFS-25%-T-D-P. acidilactici, and
CFS-50%-T-D-P. acidilactici inhibited clinical C. albicans: O.D. 0.941 ± 0.026, 0.753 ± 0.003,
and 0.070 ± 0.003. The inulin supernatants CFS-12.5%-T-I-P. acidilactici, CFS-25%-T-I-P.
acidilactici, and CFS-50%-T-I-P. acidilactici inhibited clinical C. albicans: O.D. 0.073 ± 0.006,
0.916 ± 0.62, and 0.731 ± 0.003.

Concentrations of 50%, 25%, and 12.5% of CFS were exposed to fresh YPD medium
with Candida spp. Treatment: without (CFS did not receive any treatment), neutralized
(CFS suspensions were adjusted to pH 6.5). Verification code: first, cell-free supernatants.
Second, the concentrations of supernatants. Third, the treatment. Fourth, the carbon source,
and fifth, probiotic.

Figure 3 shows the antibiofilm activity of the supernatants obtained from L. rhamnosus
and P. acidilactici. CFS-25%-D-rhamnosus (77.10%) and CFS-50%-D-rhamnosus (88.25%)
showed the highest percentages of antibiofilm inhibition against C. albicans ATCC 10231
(Figure 3a), while CFS-50%-D-rhamnosus (90.83%), CFS-25%-I-rhamnosus (89.13%), and
CFS-50%-I-rhamnosus (91.60%) had the greatest antibiofilm effect against clinical C. albicans;
no statistical difference was found between them (p < 0.05) (Figure 3b). Dextrose and inulin
CFSs obtained from P. acidilactici showed antibiofilm effects against C. albicans ATCC 10231.
The percent inhibition ranged from 80.17 to 91.25% for dextrose CFSs and from 75.25 to
85.26% for inulin CFSs (Figure 3c). CFS-25%-D-P. acidilactici, CFS-50%-D-P. acidilactici, and
CFS-50%-I-P. acidilactici inhibited biofilm formation against clinical C. albicans as follows:
87.99%, 91.17%, and 92.59%, respectively; there was no statistical difference between them
(p < 0.05) (Figure 3d).

Table 1. Description of the supernatants obtained from probiotic bacteria.

Probiotic: L. rhamnosus P. acidilactici

Cell Free
Supernatant

Concentration
Percentage (%)

Postbiotics
Treatment

Carbon
Source Verification Code

CFS 50

Without

Inulin
CFS-50%-W-I-rhamnosus CFS-50%-W-I-P. acidilactici

25 CFS-25%-W-I-rhamnosus CFS-25%-W-I-P. acidilactici
12.5 CFS-12.5%-W-I-rhamnosus CFS-12.5%-W-I-P. acidilactici
50

Dextrose
CFS-50%-W-D-rhamnosus CFS-50%-W-D-P. acidilactici

25 CFS-25%-W-D-rhamnosus CFS-25%-W-D-P. acidilactici
12.5 CFS-12.5%-W-D-rhamnosus CFS-12.5%-W-D-P. acidilactici

50

Neutralized

Inulin
CFS-50%-N-I-rhamnosus CFS-50%-N-I-P. acidilactici

25 CFS-25%-N-I-rhamnosus CFS-25%-N-I-P. acidilactici
12.5 CFS-12.5%-N-I-rhamnosus CFS-12.5%-N-I-P. acidilactici
50

Dextrose
CFS-50%-N-D-rhamnosus CFS-50%-N-D-P. acidilactici

25 CFS-25%-N-D-rhamnosus CFS-25%-N-D-P. acidilactici
12.5 CFS-12.5%-N-D-rhamnosus CFS-12.5%-N-D-P. acidilactici

50

Thermal

Inulin
CFS-50%-T-I-rhamnosus CFS-50%-T-I-P. acidilactici

25 CFS-25%-T-I-rhamnosus CFS-25%-T-I-P. acidilactici
12.5 CFS-12.5%-T-I-rhamnosus CFS-12.5%-T-I-P. acidilactici
50

Dextrose
CFS-50%-T-D-rhamnosus CFS-50%-T-D-P. acidilactici

25 CFS-25%-T-D-rhamnosus CFS-25%-T-D-P. acidilactici
12.5 CFS-12.5%-T-D-rhamnosus CFS-12.5%-T-D-P. acidilactici
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Figure 1. Candida spp. growth kinetics in the presence of different cell-free supernatant concentra-
tions obtained from Lacticaseibacillus rhamnosus: (a,b) supernatants without treatment, (c,d) 

Figure 1. Candida spp. growth kinetics in the presence of different cell-free supernatant concentrations
obtained from Lacticaseibacillus rhamnosus: (a,b) supernatants without treatment, (c,d) neutralized
supernatants, and (e,f) supernatants at 121 ◦C. The values are reported in optical density (O.D.) as
mean ± SD of three replicates. (*) means statistical difference compared to control (p < 0.05).
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Figure 2. Candida spp. growth kinetics in the presence of different cell-free supernatant concentra-
tions obtained from Pediococcus acidilactici: (a,b) Supernatants without treatment, (c,d) neutralized
supernatants, and (e,f) supernatants at 121 ◦C. The values are reported in optical density (O.D.) as
mean ± SD of three replicates. (*) means statistical difference versus control (p < 0.05).
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Figure 3. Biofilm inhibition of Candida spp. in the presence of different concentrations of cell-
free supernatants: (a,b) are the inhibition of cell-free supernatants obtained from Lacticaseibacillus
rhamnosus. (c,d) are the inhibition of cell-free supernatants obtained from Pediococcus acidilactici. The
values are reported in optical density (O.D.) as mean ± SD of three replicates. Different lowercase
letters indicate significant differences between treatments (p < 0.05).
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The short-chain fatty acids concentrations are shown in Table 2. Lactate was the domi-
nating metabolite produced by L. rhamnosus when supplemented with either dextrose or
inulin as a carbon source (8.24 ± 1.36 and 5.87 ± 0.70 mM, respectively) (p < 0.05). However,
L. rhamnosus secreted a greater amount of acetic acid (p < 0.05) when supplemented with
inulin (7.00 ± 1.26 mM) as a carbon source than dextrose (1.66 ± 0.37 mM). Acetic acid was
the dominant SCFA in the P. acidilactici CFSs, but dextrose CFS had the highest concentra-
tion (17.6 ± 2.54 mM) versus inulin CFS (6.92 ± 0.76 mM) with a statistically significant
difference (p < 0.05). The lactate concentrations were 9.02 ± 0.40 mM and 5.48 ± 0.17 mM
for dextrose and inulin CFSs, respectively; these were statistically different (p < 0.05). No
statistical difference was found between propionic and butyric acids when comparing the
CFSs of L. rhamnosus and P. acidilactici produced upon supplementation of dextrose or
inulin. Propionic and butyric acids were the SCFAs with the lowest concentration in the
CFSs.

Table 2. Short-chain fatty acid produced by probiotics on dextrose and inulin fermentation.

L. rhamnosus P. acidilactici

Lactate and
SCFAs Dextrose Inulin Dextrose Inulin

Lactate 8.24 ± 1.36 a 5.87 ± 0.70 b 9.02 ± 0.40 a 5.48 ± 0.17 b
Acetic acid 1.66 ± 0.37 b 7.00 ± 1.26 a 17.6 ± 2.54 a 6.92 ± 0.76 b
Propionic acid 0.21 ± 0.04 a 0.23 ± 0.06 a 0.66 ± 0.067 a 0.20 ± 0.03 a
Butyric acid 1.83 ± 0.23 a 1.89 ± 0.20 a 1.80 ± 0.04 a 1.67 ±0.02 a

SCFAs: Short-chain fatty acids. Different lowercase letters indicate significant differences between the carbon
sources used by each microorganism for metabolite content. The values are reported in mM as mean ± SD of
three replicates (p < 0.05).

3. Discussion

There are about 200 species in the Candida genus, of which 20 species are related to
candidiasis in humans; therefore, Candida has an important role in public health. Candida
albicans is the main species related to infections, and this opportunistic pathogen is highly
adaptable to human hosts [21]. Studies have demonstrated that C. albicans can alter the gut
microbiota composition in intestinal bowel disease patients. For which the symbiotic com-
binations herein presented would be a potential treatment. [25]. The beneficial properties
of probiotics are usually evaluated by their effect on human pathogens such as Candida
albicans. Probiotics are often administrated as living microorganisms due to their benefits,
and postbiotics include any substance or product released by or produced through the
metabolic activity of probiotics that may exert multiple beneficial effects on the health host
directly or indirectly [26]. Antimicrobial activity is a key feature of probiotics, but most
research has focused on antimicrobial activity against bacteria. Here, we demonstrated
the inhibitory effect against Candida albicans of postbiotics produced by Lacticaseibacillus
rhamnosus and Pediococcus acidilactici in combination with inulin-type fructans. The super-
natants obtained from the synbiotic combination of L. rhamnosus with inulin-type fructans
showed growth and biofilm inhibition against Candida albicans.

Similarly, Dausset et al., 2020 [27] demonstrated that the supernatant of Lacticaseibacil-
lus rhamnosus Lcr35 inhibited the growth of Candida albicans ATCC 10231, thus reducing the
viability by 3 log10 (CFU/mL). This suggests that the presence of metabolites produced by
this probiotic exerts an antimicrobial effect. Some of this inhibition is due to the production
of secondary metabolites by L. rhamnosus such, as hydrogen peroxide or lactate, that can
lyse the fungal cell. However, other mechanisms may be involved in this antimicrobial
effect. L. rhamnosus GG may produce exopolysaccharides or chitinase to interfere with the
hyphal formation of Candida spp. [28,29].

The antimicrobial activity of P. acidilactici has been demonstrated against bacterial
pathogens such as Listeria monocytogenes, Staphylococcus aureus, and Salmonella typhimurium [30].
There is limited literature on the antifungal effect of Pediococcus acidilactici and the mech-
anisms involved. The anticandidal effect of the P. acidilactici supernatants demonstrated
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here is similar to that shown by Crowley et al., 2013: These authors showed that the super-
natants from P. acidilactici HW01 hindered the growth and biofilm formation of Candida
albicans [31]. Our results are similar to other studies reporting the antimicrobial effect of
different Lactobacillus strains that secreted antimicrobial metabolites such as organic acids,
hydrogen peroxide, fat metabolites, and bacteriocins. Similarly, the antimicrobial effect of
Pediococcus spp. against pathogens is due to the secretion of protein-like compounds [32].

Lactic acid bacteria can produce bacteriocins that can modulate pathogens’ growth. In
this study, lactate and acetic acid were the dominant metabolites produced by L. rhamnosus
and P. acidilactici. These organic acids can indirectly inhibit pathogens’ growth by decreasing
the media’s pH [33]. Furthermore, L. rhamnosus produced a higher concentration of acetic
acid in the presence of inulin as a carbon source than in the presence of dextrose. Acetic
acid-producing bacteria in the intestinal environment can improve colonic health [19].
Therefore, probiotics can modulate gut health in the presence of prebiotics.

The lower antimicrobial effect of the neutralized supernatants of L. rhamnosus and P.
acidilactici in this study may be due to the presence of non-bacteriocin compounds secreted
by these probiotics [21]. Only the CFS-50%-N-I-P. acidilactici supernatant maintained
its growth inhibition effect after being neutralized: This was significantly higher than
supernatants without neutralization and suggested that inulin-type fructans may stimulate
P. acidilactici to secrete a greater quantity of bacteriocin-type compounds. This is consistent
with a previous study showing that the combination of prebiotics with probiotic bacteria
improves the secretion of bacteriocins [34]. One limitation of the present study was the
use of one clinical isolate and one ATCC strain of C. albicans only. However, C. albicans
has displayed a wide range of intraspecies variations and phenotypic properties [35],
which may impact the susceptibility to cell-free supernatants obtained from the culture of
probiotics.

4. Materials and Methods
4.1. Candida albicans Culture Conditions

Candida albicans was obtained from a patient stool sample and identified by matrix-
assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Can-
dida albicans ATCC 10231 was acquired from the American Type Culture Collections and
was used as a control. Yeast-peptone-dextrose (YPD) (SIGMA-Aldrich®, St. Louis, MO,
USA) was the culture medium for Candida at 37 ◦C.

4.2. Probiotics Cultivations and Cell-Free Supernatants Obtention

Lacticaseibacillus rhamnosus NH001 and Pediococcus acidilactici MA18/5M, previously
identified by MALDI-TOF, were used as probiotics and were cultured for cell-free super-
natants. These probiotics were cultured in Man–Rogosa–Sharpe (MRS) culture medium
(DIFCOTM, Le Pont de Claix, France) at 37 ◦C. Cell-free supernatants were obtained fol-
lowing the methodology reported by García-Gamboa et al., 2022 [36]. L. rhamnosus and
P. acidilactici were incubated in MRS broth at 37 ◦C for 24 h. In addition, a modified MRS
culture medium was prepared by replacing dextrose with inulin-type fructans as a carbon
source. After incubation, the culture medium was centrifugated at 2800× g for 10 min
and 4 ◦C to obtain cell-free supernatants. The cell-free supernatants were filtered using a
0.45 µm pore size sterile filter (Corning®, Corning, NY, USA). The additional supernatant
samples were neutralized to pH 6.5 with a sterile solution of 1 N NaOH (pH 6.5) to de-
termine if the inhibitory effect was due to the acidity of the cultured medium. Other
supernatant samples were heated at 121 ◦C for 15 min to assess the resistance of the
metabolites to heat [21].

4.3. Growth Inhibition of Candida albicans

Cell-free supernatants from L. rhamnosus and P. acidilactici were exposed to Candida
albicans to evaluate their inhibitory effect. The broth microdilution analysis in 96-well
microtiter plates was implemented as reported by the Clinical and Laboratory Standards
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Institute (CLSI, 2012). Candida spp. was grown in YPD broth at 37 ◦C for 24 h. Next,
100 µL of this sample with 1 × 105 UFC/mL (0.2 at a 600 nm optical density) of Candida
spp. was then placed in 5 mL of fresh YPD broth. The L. rhamnosus and P. acidilactici cell-
free supernatants were serially diluted with two-fold dilutions in YPD broth in a 96-well
microtiter plate. Additionally, 100 µL of C. albicans ATCC 10231 and clinical C. albicans were
placed in the presence of different concentrations of cell-free supernatants. The growth
inhibition of Candida albicans was analyzed through spectrophotometry (600 nm optical
density), and measurements were taken every hour for 18 h.

4.4. Antibiofilm Activity against Candida albicans

Samples of a 16-h culture medium of clinical C. albicans and C. albicans ATCC (100 µL
(1 × 105 CFU/mL)) were added to a 5 mL of fresh YPD medium. After 18 h of incubation,
150 µL was added in triplicate to a 96-well microplate in the presence of 25 µL, 50 µL, and
100 µL of the L. rhamnosus and P. acidilactici cell-free supernatants. The 96-well microplate
was incubated at 37 ◦C for 24 h. Wells containing only Candida spp. with YPD medium were
used as a control, and chloramphenicol was used as a negative control. After incubation,
the well contents were removed, and the wells were washed with a phosphate-buffered
saline solution (pH 7.0). In addition, 100 µL of methanol (99% v/v) was placed in the wells
for 15 min, and the methanol was removed. The wells were then dried under sterile air
for 5 min, and 100 µL of crystal violet was added to the wells for 15 min. The stain was
then removed, and the wells were gently washed with water. The wells were allowed to
dry for 5 min, and the absorbance at 620 nm was measured with a microplate spectropho-
tometer [36]. The biofilm inhibition of Candida spp. was calculated with the following
equation:

% Bio f ilm reduction= 1 − (O.D.1/O.D.2)× 100% (1)

where:

O.D.1 = absorbance of wells containing cell-free supernatant and Candida spp.
O.D.2 = absorbance of wells containing only Candida spp. (control).

4.5. Determination of SCFAs in Cell-Free Supernatants

The short-chain fatty acids (SCFAs) concentrations were measured by gas chromatog-
raphy and flame ionization (GC 2010, Shimatzu®, Kyoto, Japan) using the method reported
by Femia et al., 2002 with some modifications [37]. Here, 250 µL of each supernatant was
acidified with 25 µL phosphoric acid solution (0.5 M). The short-chain fatty acids were
extracted by shaking with 250 µL of diethyl ether and then centrifugated (9400× g 3 min).
Next, 5 µL of the ether phase (5 µL) was directly injected onto a column (HP-FFAPP 30 m
× 0.250 mm × 0.25 mm, Agilent JW GC columns, Santa Clara, CA, USA) at 180 ◦C using
N2 as the carrier gas for 10 min; the temperature for detection and injection was 230 ◦C.

4.6. Statistical Analysis

All of the tests were performed in triplicate, and the data were represented as mean ± SD
(mean ± standard deviation). The mean values of the optical density measurements and
SCFA concentrations were compared between experimental treatments using one-way
ANOVA, and p < 0.05 was considered significant. GraphPad prism 8.4.3 (GraphPad
Software Inc., La Jolla, CA, USA) was used for analysis.

5. Conclusions

In summary, this study showed that a synbiotic combination of Lacticaseibacillus
rhamnosus and Pediococcus acidilactici with inulin-type fructans displayed growth and biofilm
inhibition against Candida albicans. These synbiotic formulations could be a promising
alternative to the use of antifungal drugs. However, further in vivo studies are needed to
confirm these findings.
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