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The engulfment of dying cells is a specialized form of phagocytosis that is extremely conserved across evolution. In the worm,
it is genetically controlled by two parallel pathways, which are only partially reconstituted in mammals. We focused on the
recapitulation of the CED-1 defined pathway in mammalian systems. We first explored and validated MEGF10, a novel receptor
bearing striking structural similarities to CED-1, as a bona fide functional ortholog in mammals and hence progressed toward
the analysis of molecular interactions along the corresponding pathway. We ascertained that, in a system of forced expression
by transfection, MEGF10 function can be modulated by the ATP binding cassette transporter ABCA1, ortholog to CED-7.
Indeed, the coexpression of either a functional or a mutant ABCA1 exerted a transdominant positive or negative modulation
on the MEGF10-dependent engulfment. The combined use of biochemical and biophysical approaches indicated that this
functional cooperation relies on the alternate association of these receptors with a common partner, endogenously expressed
in our cell system. We provide the first working model structuring in mammals the CED-1 dependent pathway.
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INTRODUCTION
The engulfment of dying cells is ruled by the concerted action of

several molecules [1]: they act either at the cell surface to

recognize the prey that is to be engulfed, or intracellularly to

activate signalling cascades leading to the required spreading of

the membrane during ingestion. Extensive genetic approaches in

C. elegans have highlighted that engulfment genes, collectively

belonging to the ced group (cell death abnormal) [2], act along two

distinct and parallel pathways converging towards the same end-

effectors. CED-2, CED-5, CED-10 and CED-12 act in the first

pathway, whereas CED-1, CED-6 and CED-7 identify the second

[1]. CED-10 is Rac-1, a small GTPase able to induce actin

polymerization, which is an essential final step in phagocytosis,

and acts in both signalling pathways [3]. Recently, the large

GTPase dynamin has been shown to mediate the signalling of the

phagocytic receptor CED-1 and promote membrane renewal at

the site of ingestion of corpses [4].

Mammalian orthologs to the ced genes have been identified

along time mostly on the basis of sequence homology, and then

further validated as engulfment controlling genes in appropriate

cellular systems. Namely the CED-2 pathway corresponds, in

mammals, to the membrane recruitment of Dock180, CrkII and

ELMO triggered by the occupancy of integrin av b5 [5,6].

Interestingly, the membrane receptor orchestrating this signalling

cascade in the nematode remains still elusive. Small GTP binding

proteins of the Rac subfamily act downstream in the cascade and

lead to actin polymerization and pseudopod extension in both

nematodes and mammals [7]. The interactions between the

proteins belonging to the CED-1 pathway are less well established

both in the mammalian and nematode systems [8]. In fact, though

CED-6 [9] and its mammalian ortholog GULP are known to

dimerize and are able to interact with CED-1 through

phosphorylatable tyrosine residues in the NPxY motif [10,11],

no clear definition of the role of the ATP binding cassette

transporters (CED-7/ABCA1) has so far been achieved [12–14].

ABCA1 functions as a lipid translocator [15,16] and favours

engulfment by inducing local modifications of the membrane

composition in phospholipids. Indeed, the membrane lipid

composition could instruct both the lateral mobility or clustering

of receptors at contact sites and the recruitment of dynamin to

forming phagosomes [17]. Consistently, formal evidence of the

requirement of CED-7 for the recruitment of CED-1 around

engulfed corpses has been provided [18]. However, the modalities

of molecular interactions, if any, between CED-1 and CED-7 have

not been addressed.

CED-1 is so far the only membrane receptor identified as an

engulfment gene in the nematode. This contrasts with the

mammalian system where a plethora of surface molecules have

been implicated in the process [19]. Some of them have been

proposed as CED-1 orthologs but none has been explicitly

assigned as yet. On the basis of interaction analysis, CD91/

LRP-1 is a consistent candidate, in spite of its broad substrate

recognition [11] and its weak architectural conservation. Recently,

MEGF10 has emerged as a protein structurally related to CED-1

[20]. No functional role has been assigned to MEGF10 so far. In
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this paper, we explore and validate its function as an engulfment

receptor by providing experimental evidence in both C. elegans and

mammalian systems. In addition, by the combined use of cellular

and biochemical approaches we provide evidence that ABCA1

and MEGF10 interact at the molecular level. This allows us to

propose, for the first time, a framework model of interactions

structuring the whole CED-1 dependent engulfment pathway.

RESULTS

MEGF10 is a candidate CED-1 ortholog in mammals
The analysis of human MEGF10 sequence and of its structure

predictions highlighted unquestionable and stringent similarities

with CED-1 (Figure 1A). Indeed, both molecules display in

succession, from N- to C-terminus, an Emilin (EMI) domain, 17

and 18 (for MEGF10 and CED-1, respectively) canonical or

atypical 6-cysteine EGF domains, a transmembrane domain, and

the NPxY module for potential tyrosine phosphorylation. CED-1

possesses an additional potential site for tyrosine phosphorylation,

an YxxL module, which is absent in MEGF10. In functional terms

the EGF-like domains are presumed to be implicated in the

binding to, yet unknown, extracellular ligands, and the phosphor-

ylatable tyrosine in the NPxY site has been proven crucial for both

the CED-1 mediated signal transduction and its interaction with

the phosphotyrosine binding (PTB) domain of the adaptor CED-6

[11,18].

On the basis of these striking similarities, we checked the ability

of MEGF10 to promote engulfment in mammalian systems. As

a first step, we analyzed its expression pattern by Northern blot on

a panel of RNA samples originating from tissues and cell lines. As

shown in Figure 1B, a specific MEGF10 transcript, of approxi-

mately 7.3 kb in size, was widely expressed, being undetectable

only in CHO, COS-7 and HeLa cells (not shown). Its presence

during development, in adult tissues and in macrophage cell lines

is consistent with the proposed function during the engulfment of

dead cells.

MEGF10 was expressed by transient transfection in HeLa cells

as a chimera with EGFP or its variants (ECFP and EYFP), grafted

as a C-terminal tailpiece. Upon transfection, MEGF10 was

translated as 170 kDa protein targeted to the plasma membrane

as shown by the surface biotinylation of the immunoprecipitated

protein (Figure 2A, insert) and confirmed by confocal analysis

(Figure 2A). In addition, upon challenge with apoptotic thymo-

cytes, an enrichment of MEGF10 at the sites of contact with prey

was detectable (Figure 2A, arrow).

The functional involvement of MEGF10 in the engulfment

process was further confirmed by the modification of phagocytic

ability induced by its expression in HeLa cells. Indeed, a significant

engulfment competence followed MEGF10 expression (Figure 2B),

as indicated by a phagocytic index (average number of prey

ingested per transfected cell) comparable to that elicited by

ABCA1 or CD36 [21] and in fact higher than that induced by

LRP-1, a previously suggested CED-1 ortholog in mammals [11].

To strengthen the identification of MEGF10 as a CED-1

ortholog, we examined the molecular interactions with GULP

[22,23], the mammalian ortholog of CED-6. We thus investigated

Figure 1. MEGF10 is a candidate CED-1 ortholog in mammals: structural features and expression pattern.
(A) Schematic drawing comparing the molecular architecture of human MEGF10 and CED-1. MEGF10 and CED-1 share a highly similar structural
pattern. Structural predictions are based on sequence analysis by the Geneworks software and on the SMART website (http://smart.embl-
heidelberg.de/smart/show_motifs.pl). The cysteine-rich domains in both proteins were analyzed in term of sequential conservation of EGF-like
domains, either 6-Cys EGF-like domains (white pentagons) or laminin-type EGF-like domains (gray pentagons). The Emilin domains [20] (EMI
rectangles), the predicted transmembrane segments (white rectangles) and the NPxY motif (black crosses) implicated in the molecular interactions
with GULP/CED-6, are also indicated. For comparison a schematic illustration of the predicted structure of LRP-1 is shown; low density lipoprotein
receptor domains are indicated by hexagons, in brackets is indicated the number of repetitions.
(B) MEGF10 expression pattern. Northern blot analysis of MEGF10 transcript (M10: 7.3 Kb) in RNA samples prepared from adult mouse tissues (H:
Heart, A: Adrenals, K: Kidney, Li: Liver, B: Brain, U: Uterus, Lu: Lung), whole mouse embryos (Embryonic day 7, 8, 10, 13, 14 and 15) and a panel of cell
lines (Neuro 2a – mouse neuroblastoma, HepG2 – human hepatoma, P388D1, Raw 264.7 and U937 – mouse and human macrophages respectively).
Membranes were simultaneously hybridized with an actin probe as a quantitation control.
doi:10.1371/journal.pone.0000120.g001
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by pull down assays whether molecular contacts existed between

MEGF10 and GULP as well as their dependence on the NPxY

motifs, previously shown to be involved in CED-1/CED-6 and

GULP/LRP-1 contacts [11,24]. As shown in Figure 2C, bacte-

rially produced GST-GULP specifically interacted with MEGF10

expressed in HeLa cells upon transfection. Similarly, endogenously

produced GULP coprecipitated with MEGF10 in COS-7 cells

transfected with both constructs (not shown). The loss of

interaction upon mutation of the NPxY motif in MEGF10

indicated that these residues mediate the molecular contact

between the receptor and the GULP adaptor (Figure 2C), as

should be expected in the case of orthology. These data thus

provide compelling functional evidence that MEGF10 can act as

an engulfment receptor in reconstituted systems and designate this

protein as a bona fide candidate CED-1 ortholog.

To further seek evidence that MEGF10 acts as a phagocytic

receptor we examined whether MEGF10 could rescue the defects

of ced-1 mutants in the engulfment of apoptotic cells in C. elegans.

We generated transgenic worms with a construct driving the

expression of MEGF10 in engulfing cells under the control of

CED-1 promoter [18]. The MEGF10::GFP fusion protein under

the control of the ced-1 promoter was efficiently translated and

observed at the cell surface; however, in most lines, the localization

of the fusion protein displayed an additional punctuated pattern

(not shown). This was suggestive of the formation of intracellular

aggregates and indicated that the heterologous expression ensued

in inefficient trafficking to the plasma membrane.

We scored the number of cell corpses in the head of newly

hatched L1 larvae as a measurement of the defect in engulfment.

In wild type animals, no cell corpses remain at this stage due to

swift engulfment and degradation occurring during embryogene-

sis. In ced-1(e1735) mutant animals, close to 30 persistent cell

corpses were observed (Table 1). As previously observed, the

expression of Pced-1 ced-1::gfp, the positive control construct, com-

pletely rescued the engulfment defect of the ced-1(e1735) mutants

(Table 1) [18], indicating that a GFP fusion to the C-terminus of

CED-1 does not affect its function. Expression of human

MEGF10::GFP fusion in engulfing cells (Pced-1 megf10::gfp) partially

rescued the engulfment defect of ced-1(e1735) (Table 1). The

number of persistent cell corpses in these transgenic animals is

about 69–74% of that of the non-transgenic animals (three

independent lines assayed). In addition, the expression of Pced-1

megf10::gfp in wild type animals did not result in the accumulation

of cell corpses (Table 1), indicating that MEGF10 did not exert

any dominant-negative effect on engulfment. These results indicate

that MEGF10 can partially replace CED-1 as an engulfment

Figure 2. Functional assessment of MEGF10 as an engulfment receptor.
(A) MEGF10 is expressed at the cell surface and clusters around cell corpses during engulfment. Confocal optical X-Y sections show the
localization of MEGF10 EYFP (M10Y - pseudo color green) in transfected HeLa cells challenged with 7-AAD labelled apoptotic thymocytes (pseudo
color blue). The white arrow indicates the location of the X-Z plan shown on the right. The surface localization was confirmed by the analysis of
surface biotinylation as shown in the insert. Western blot of total cell lysates probed with an anti-GFP antibody (TCL, left panel) are compared to blots
of biotinylated proteins (BP, right panel). Mock transfected cells (mock), and MEGF10 EYFP transfected (M10) HeLa cells.
(B) The expression of MEGF10 enhances the phagocytic ability of HeLa Cells. In vitro phagocytosis assays were carried out on HeLa cells
transfected with the indicated engulfment receptors. Results are expressed as distribution histograms. Percentages of cells, scored on $100
transfected cells, are plotted against the number of tethered/ engulfed apoptotic thymocytes. The phagocytic index, computed out of at least 4
individual experiments, is indicated in brackets. Mock: mock transfected cells; M10: MEGF10; A1: ABCA1; LRP: LRP-1.
(C) MEGF10 can interact with GULP as assessed by GST pull down. Left panel: lysates of HeLa cells transfected with MEGF10 EYFP were incubated
with bacterially produced GST or GST-GULP fusion protein before fractionation on SDS-PAGE and blotting onto nitrocellulose membrane. Total
proteins were visualized by Ponceau S staining (lower panel) whereas MEGF10 binding to GULP was detected by hybridization with an anti-GFP
antibody (upper panel –TCL: Total cell lysate). Right panel: GULP and MEGF10 interact via the NPxY motif since its mutation to APxA abrogates
binding (upper panel - NPxY: MEGF10 EYFP-NPxY, APxA: MEGF10 EYFP-APxA). Equivalent amounts of bacterially produced GST-GULP (middle panel)
were incubated with equivalent amounts of MEGF10 expressed in transfected cells (lower panel). MEGF10 detection was performed by probing with
an anti-GFP antibody on total cell lysate (lower panel) or on pulled down samples (upper panel).
doi:10.1371/journal.pone.0000120.g002
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receptor in the nematode. Collectively the above results provide

strong evidence that MEGF10 can be considered a bona fide ced-1

ortholog in mammals.

ABCA1 and MEGF10 interact during engulfment
To gain insight in the cooperativity between engulfment receptors,

and with the aim of assigning mammalian receptors to individual

pathways recapitulating those in the nematode, we set out to

analyze the phenotype conferred by the simultaneous expression of

various combinations of engulfment receptors (Figure 3A). Coex-

pression of both MEGF10 and ABCA1 significantly increased the

phagocytic index (4.0060.14, n = 11) with respect to single

transfected cells (P,0.0001 vs. ABCA1 2.8760.11, n = 13,

P,0.01 vs. MEGF10 3.1560.12, n = 11). MEGF10 and CD36

together produced a similar effect (4.2260.04 n = 3, P,0.001 vs.

MEGF10), whereas ABCA1 and CD36 coexpression led to

a minimal enhancement when compared to single transfected

cells (3.1660.3, n = 6 versus the single CD36 2.8360.19, n = 6).

This clearly illustrated the presence of an additive effect of

MEGF10 over both CD36 and ABCA1, but did not allow the

clear sorting of individual receptors to distinct engulfment

pathway. However, the limited effect observed after the coexpres-

sion of ABCA1 and CD36 prompted us to consider that CD36

could act independently from the ABCA1 facilitator function

whereas MEGF10 appeared highly sensitive to the presence of the

transporter. To validate this hypothesis we took advantage of an

ATPase less ABCA1 mutant (MM) [14,25]. The substitutions of

crucial Lys into Met in the nucleotide binding domains (NBD)

carried by MM (position 939 and 1952) are known to lead to

a complete loss of function of the ABCA1 transporter without

affecting its trafficking. In the context of engulfment, the

expression of ABCA1MM prevented any increase in the

phagocytic ability of HeLa cells (0.7160.05, n = 13 versus mock

transfected cells 0.4660.06, n = 11; Figure 3). Moreover, the

coexpression of ABCA1MM with MEGF10 in HeLa recipients

completely reverted the MEGF10-induced engulfment to back-

ground levels (Figure 3B; 1.0960.1, n = 7, P,0.0001 vs.

MEGF10) thus showing that a transdominant negative effect is

exerted on MEGF10 by the mutant ABCA1.

The effect was specific to ABCA1; indeed in a similar

experimental set up, ABCA7 [26,27], the closest ABCA1 relative

in the A class of ABC transporters, exerted little influence on the

phagocytic behaviour of recipient cells. In HeLa cells, we

transiently coexpressed MEGF10 and ABCA7 or its mutant form

ABCA7MM that mirrors the ABCA1MM forms and bears Lys to

Met substitutions in both NBDs. In our cell systems, where both

forms of the ABCA7 transporter decorate the cell membrane, we

failed to observe either additive or transdominant negative effects

over the MEGF10-induced engulfment competence (Figure 3B).

These results suggested that specific molecular interactions

between ABCA1 and MEGF10 could underlie the transdominant

effect of ABCA1MM. We first ruled out any effect of ABCA1MM

on the intracellular trafficking of MEGF10 by the analysis of

surface biotinylation of MEGF10 coexpressed with either ABCA1

or its mutant (Figure 3C). We further validated that the

transdominant negative effect reflected molecular competition.

Indeed, the inhibition could be efficiently titrated by varying the

molar ratios (Figure 3D) of wild type versus mutant forms of the

ABCA1 transporter coexpressed in HeLa cells with fixed amounts

of MEGF10.

We then used imaging FRET as an appropriate technique to

assess close molecular proximity between ABCA1 and MEGF10

[25]. We measured the efficiency of energy transfer occurring

between ABCA1 EYFP and MEGF10 ECFP simultaneously

expressed in HeLa cells by the method of acceptor photobleaching

[28,29]. We analyzed the transfer of energy occurring in the

absence of any phagocytic challenges since confocal analysis had

shown that, while colocalized at rest, ABCA1 and MEGF10

distributed differentially during phagocytosis (Figure 4A). In fact

ABCA1 was consistently enriched at the edges of the phagocytic

cup, whereas MEGF10 was dynamically recruited at its rim.

Under these conditions, imaging FRET measurements indicated

significant transfer of energy between the two molecules at the cell

membrane (Figure 4B). The transfer was further validated as being

due to molecular proximity rather than random collision by

assessing its insensitivity to acceptor density, estimated as RFI of

EYFP, but sensitivity to variation in the acceptor: donor ratio. Our

measurements thus indicated that, when MEGF10 and ABCA1

are coexpressed at the plasma membrane, their fluorescent

tailpieces lie at distance ,100 Å.

To strengthen the evidence of interactions between the two

molecules, we took advantage of the experimental conditions and

tools developed to assess the oligomerization states occurring as

part of the ATPase cycle of the ABCA1 transporter. Whole lysates

of HeLa cells, expressing MEGF10 and either a functional ABCA1

or its ABCA1MM mutant, were fractionated by native PAGE and

analyzed by immunoblotting with specific antibodies [25,30]. No

evidence of comigration of ABCA1 and MEGF10 proteins was

found thus excluding a stable assembly in a single complex

(Figure 4C, upper panel). However, we observed that the presence

of MEGF10 destabilized the ATP induced oligomerization of

ABCA1, which can be visualized experimentally by the use of the

ABCA1MM mutant (Figure 4C, lower panel). This suggested that

ABCA1 and MEGF10 share a common partner transiently

shuttling between the transporter and the receptor. To validate

this hypothesis, we analyzed the effect of titrating the amounts of

MEGF10 versus ABCA1MM expressed in the cells; in fact if the

two molecules compete for the same rate limiting partner, we

should expect, and, indeed found, a direct correlation between

destabilization of ABCA1 oligomers (not shown) and rescue of

phagocytic competence (Figure 4D) at increasing ratios of

MEGF10 over ABCA1MM. Indeed, in the presence of excess

MEGF10, the phagocytic index of transfected HeLa cells reverted

to the values observed in the presence of MEGF10 alone

(Figure 4D).

Table 1. Human MEGF10 can partially replace ced-1 function
in the engulfment of apoptotic cells in C. elegans.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Genotype Transgene Line # cell corpses in L1 head

ced-1(e1735) none NA 27.462.6 (n = 10)

ced-1(e1735) Pced-1 ced-1::gfp Line 4 0.160.3 (n = 15)

ced-1(e1735) Pced-1 megf10::gfp Line 31 20.263.4 (n = 12)

ced-1(e1735) Pced-1 megf10::gfp Line 33 19.063.0 (n = 15)

ced-1(e1735) Pced-1 megf10::gfp Line 37 20.163.6 (n = 11)

wild type none NA 0 (n = 20)

wild type Pced-1 ced-1::gfp Line 1 0.260.4 (n = 15)

wild type Pced-1 megf10::gfp Line 13-1 0 (n = 7)

wild type Pced-1 megf10::gfp Line 17-3 0 (n = 10)

wild type Pced-1 megf10::gfp Line 25-2 0 (n = 7)

The numbers of cell corpses were scored in the heads of L1 larvae hatched
within two hours. Data are presented as mean6standard deviation. n: number
of animals scored.
doi:10.1371/journal.pone.0000120.t001..
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DISCUSSION

In this report we provide evidence for MEGF10 as a bona fide

ortholog of the nematode engulfment receptor CED-1. The

evidence, which was initially born from structural considerations

[20], was supported by functional studies in both the mammalian

and nematode systems. Indeed, MEGF10 induced engulfment

competence in the non phagocytic HeLa cells to indexes similar to

those of the established engulfment receptors, CD36, ABCA1 and

LRP-1. MEGF10 was also able to rescue the engulfment defect of

ced-1 mutant worms. It is worth noting however that the rescue of

the ced-1 phenotype appeared incomplete. This may be due to the

observed defective intracellular trafficking of the MEGF10

receptor in the worm; in fact failure to efficiently reach the

plasma membrane decreases in situ availability of MEGF10 with

consequent reduced rescue of the engulfment defect. Of note the

reciprocal experiment of heterologous expression of CED-1 in

mammalian cells leads invariably to a massive retention in the

endoplasmic reticulum (our observations and [11]). Thus, both

CED-1 and its mammalian ortholog, in our hands MEGF10,

might require species-specific chaperones to assist their folding and

cellular trafficking.

Figure 3. ABCA1 and MEGF10 cooperation during engulfment.
(A) Positive cooperation between engulfment receptors. Phagocytosis assays were performed on HeLa cells transfected with the indicated
molecules. Phagocytic Indexes (PI)6SEM, and number of independent experiments (n) are as follows : Mock: Mock transfected cells PI = 0.4660.06,
n = 11, CD36 PI = 2.8360.19, n = 6, LRP: LRP1 PI = 1.7560.06, n = 4, A1: ABCA1 PI = 2.8760.11, n = 13, M10: MEGF10 PI = 3.1560.12, n = 11, A1+M10:
ABCA1+MEGF10 PI = 4.0060.14, n = 11, M10+CD36: MEGF10+CD36 PI = 4.2260.04, n = 3, A1+CD36: ABCA1+CD36 PI = 3.1660.30, n = 6, A1+LRP:
ABCA1+LRP1 PI = 2.8260.14, n = 2. Coexpressions of receptors were performed by transfection of equal quantities of plasmid cDNA of each species.
ECFP or EYFP fusion proteins were used and visualized by confocal microscopy.
(B) The inactive ABCA1MM mutant hampers the ability of MEGF10 to promote engulfment. Coexpression of MEGF10 and ABCA1MM (A1MM+M10)
reverts the phagocytic index to background levels. The reversion is specific since the coexpression of MEGF10 with ABCA7 (A7) or its inactive mutant
(A7MM) is devoid of significant effect on the phagocytic index. Phagocytosis assays were performed on HeLa cells transfected with the indicated
molecules. A1MM+M10: ABCA1MM+MEGF10 PI = 1.0960.10, n = 7, A1MM: ABCA1MM PI = 0.7160.05, n = 13, A7: ABCA7 PI = 2.9060.26, n = 7, A7+M10:
ABCA7+MEGF10 PI = 3.5760.37, n = 5, A7MM+M10: ABCA7MM+MEGF10 PI = 2.2860.27, n = 7, A7MM: ABCA7MM PI = 1.160.15, n = 5. ECFP or EYFP
fusion proteins were used and visualized by confocal microscopy.
(C) ABCA1MM does not affect the trafficking of MEGF10 to the cell surface. Western blot of lysates from cells expressing MEGF10 and ABCA1 or its
inactive mutant ABCA1MM were probed with an anti-GFP antibody (upper panel) and compared to blots of biotinylated proteins (lower panel). Mock
transfected cells are compared to cells transfected with ABCA1 EYFP (A1), ABCA1MM EYFP (A1MM), MEGF10 ECFP (M10), or the indicated
combinations.
(D) Molecular competition between wild type and mutant transporter underlies the ABCA1MM effect. ABCA1MM expression levels titrate the
ABCA1/MEGF10 cooperation during engulfment. Various ratios of ABCA1/ABCA1MM cDNA (5/0; 4/1; 2.5/2.5; 1/4 and 0/5 from the left to the right)
were cotransfected with fixed amounts of MEGF10 and phagocytic assays performed on transfected cells. The phagocytic index is expressed as
average of 3 independent experiments6SEM. Values are from the left to the right: MEGF10: 2.8160.10; 3.9960.31; 3.0360.16; 2.0060.26; 1.0260.09;
0.8960.09.
doi:10.1371/journal.pone.0000120.g003
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Having validated MEGF10 as a CED-1 ortholog, we attempted

to recapitulate in mammalian cells the molecular cascade of the

CED-1-engulfment pathway. While we were unable to unambig-

uously assign receptors to a given engulfment pathway, we

observed that the function of MEGF10 as an engulfment receptor

was highly sensitive to the presence of ABCA1. Indeed, its

coexpression with a functional ABCA1 led to enhanced engulf-

ment competence, accompanied morphologically by an ABCA1-

dependent redistribution of MEGF10 along the rims of the

phagocytic cup. These data, which recapitulate the seminal

observation in C. elegans on the CED-7/CED-1 relationship [18],

are highly suggestive of transient molecular interactions between

the two molecules. Likewise, we observed that the coexpression of

MEGF10 with the mutant ABCA1MM induced a transdominant

negative effect on the MEGF10-dependent engulfment competence.

To explain this phenomenon we explored several possibilities.

We could rule out non specific effects due to impairment of

intracellular trafficking of MEGF10 to the plasma membrane in

the presence of the mutant ABCA1 or to the mere presence at the

plasma membrane of ATP Binding Cassette molecules acting as

modifiers of lipid packing/distribution. We in fact analyzed the

behaviour of ABCA7, a close relative of ABCA1 that is able to

drive cellular lipid effluxes [31–33], and whose involvement in

engulfment has been recently suggested [34]. In our hands, the

expression of ABCA7 at the surface of HeLa cells was devoid of

cooperative effects on engulfment: while a general effect on the

phagocytic competence could be observed, no transdominant

effects (either positive or negative) over the MEGF10 induced

phenotypes were detected. Conversely, we provided evidence for

interactions between the ABCA1 transporter and MEGF10 by two

methods relying on biophysical and biochemical approaches. We

detected intermolecular transfer of energy via imaging FRET and

observed by electrophoresis in native conditions that MEGF10

destabilized the oligomeric assemblies of the ABCA1 transporter.

Increased ratios of MEGF10 over ABCA1MM were directly

correlated to destabilization and to loss of the transdominant

Figure 4. Assessment of molecular interactions between MEGF10 and ABCA1.
(A) MEGF10 and ABCA1 distribute differentially during engulfment. X-Y confocal sections of transfected HeLa cells evidence that during the
engulfment of apoptotic thymocytes (7-AAD in pseudo color blue) MEGF10 (M10: MEGF10 ECFP in green) is recruited at the bottom of the forming
phagocytic cup (arrows) while ABCA1 stays at its edges (A1: ABCA1 EYFP in red). X-Z sections of the regions highlighted by the red line confirm the
spatial distribution of MEGF10 in the core of the phagocytic cup.
(B) Molecular proximity between ABCA1 and MEGF10 assessed by FRET. Imaging FRET analysis of cells expressing simultaneously ABCA1 EYFP and
MEGF10 ECFP indicates that the C terminal tailpieces lie at a distance of ,100 Å. Transfer efficiency is insensitive to acceptor intensity (YFP RFI – left
panel) but sensitive to acceptor: donor ratios (right panel).
(C) MEGF10 hampers the oligomerization of ABCA1. Native PAGE profile of lysates of HeLa cells transfected with equivalent amounts of MEGF10
and either ABCA1 (A1 upper panel) or its mutant ABCA1MM (MM lower panel). The immunodetection with anti-GFP and anti-ABCA1 antibodies
reveals no evidence of comigration of the two proteins in a single complex in the case of transfection with the wild type functional transporter.
However the presence of MEGF10 greatly destabilises the pattern of oligomerization linked to the expression of ABCA1MM.
(D) Titration of the transdominant negative effect of ABCA1MM on MEGF10. Cells were transfected with various ratios of ABCA1MM and MEGF10
as shown by the SDS-PAGE pattern (lower panel) and analyzed by phagocytic assays and native PAGE (not shown). Increased ratios of MEGF10 over
ABCA1MM lead to increased destabilization of ABCA1MM complexes (not shown) and rescue of phagocytic competence. Phagocytic indexes
(averaged from 3 independent experiments)6SEM are from the left to the right: 0.6660.16, 1.0460.11, 1.2360.27, 1.7560.02, 2.4760.19, 2.8260.13,
3.1460.30.
doi:10.1371/journal.pone.0000120.g004
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negative effect thus indicating competition for a single molecule.

The limiting availability of this shared partner in HeLa cells

provides the molecular rationale for the transdominant effect on

both oligomerization and engulfment.

On the basis of these observations and of the previously

gathered information on ABCA1 architecture and function [25]

we propose the following model of the molecular interactions

taking place. At the site of engulfment, ABCA1 molecules are

activated, by yet unknown mechanisms linked to the recognition of

the prey, and then enter the catalytic cycle. The binding of ATP

induces assembly into complex oligomers containing ABCA1

multimers and additional molecules endogenously expressed in

HeLa cells. ATP hydrolysis at the NBDs triggers local remodelling

of lipid composition, such as the ABCA1 dependent outward

displacement of phosphatidylserine [14,35], and disassembly of the

oligomeric complexes into individual components. The new

membrane configuration and charge [17] could well favour the

shuttling of one or more components to MEGF10, thereby

increasing its pro engulfment function. Cytoskeletal motors or

scaffolds such as dynamin [4] able to propel MEGF10 along the

forming phagosome could well fulfil this role.

MATERIALS AND METHODS

Northern Blot
Total RNA from tissues and cell lines was extracted following

standard procedure by LiCl precipitation or by RNeasy extraction

kit (Quiagen Inc, Hilden, Germany). Ten mg of total RNA were

loaded on denaturing agarose gel and blotted overnight onto

nitrocellulose membrane (Schleicher & Schuell, Dassel, Germany).

Blots were probed with a MEGF10 fragment (nt 3036-3287,

Genbank #AB058676) labelled with the prime-a-gene labelling kit

(Promega, Madison, WI, USA). For quantitative comparison, blots

were simultaneously hybridized with an actin probe.

Plasmid generation
pf01012 (MEGF10 cDNA, Genbank #AB058676) was obtained

from the IMAGE consortium and cloned into the XhoI-AgeI sites

of pECFP-N1, pEGFP-N1, pEYFP-N1 (Clontech, Palo Alto, CA,

USA). MEGF10 APxA mutant (bearing N928A and Y931A

mutations in the NPxY motif) was generated using the Quik-

change XL mutagenesis kit (Stratagene, La Jolla, CA, USA). The

Pced-1 megf10::gfp fusion construct was generated by cloning megf10

cDNA and Pced-1, the promoter for ced-1 into the C. elegans

expression vector pPD95.75 [18].

pBI ABCA1 EYFP was described previously [36]. pBI

ABCA1MM EYFP was generated by replacing the BsrGI-BsrGI

fragment of pBI ABCA1 EYFP by the corresponding fragment

containing the MM mutation [14].

Mouse ABCA7 cDNA was reconstituted from original lambda

clones [26] by Overlap Extension-PCR (OE-PCR) amplification

[37] and cloned into the NotI-SalI sites of pBI (Clontech, Palo

Alto, CA, USA) or pBud CE4.1 vector (Invitrogen, Carlsbad, CA,

USA). The EYFP chimera was similarly generated by OE-PCR

and subsequently cloned by replacing the fragment of interest in

pBI ABCA7. ABCA7MM EYFP was generated by replacing the

Acc65I-Acc65I fragment of ABCA7 by the same fragment bearing

the KRM mutation in each walker A motif (K844 and K1847)

introduced by OE-PCR.

CD36 cDNA was kindly provided by Chris Gregory. CD36

EYFP fusion was generated by OE-PCR and cloned into the pBud

CE4.1. To generate the CD36 ECFP fusion we adapted the

sequence swapping protocol proposed by the Quikchange XL

mutagenesis kit [38]. All constructs were validated by sequencing

(MWG Biotech, Ebersberg, Germany).

Cell transfection
Transient transfections were performed on 60% confluent

monolayers of HeLa Tet off cells, cultured in DMEM medium,

containing 10% FCS (GIBCO BRL, Gaithersburg, MD, USA)

with a total of 5 mg of plasmid DNA mixed to EXGEN 500

(Euromedex, Mundolsheim, France) accordingly to manufac-

turer’s instruction and as described previously [14]. The mix

was left in contact with cell monolayers for 18 h and cells seeded

according to experimental needs 24 h after transfection. Trans-

fection efficiency, monitored when appropriate by flow cyto-

fluorometry on a FACScalibur (Becton Dickinson, Mountain view,

CA, USA) 24 h after transfection, was consistently at around 40%.

In the case of ECFP chimeras, transfection efficiency was

monitored visually by confocal microscopy examination. In the

case of multiple simultaneous transfections, the total amount of

DNA was kept invariant (5 mg) and the ratio between the DNA

species varied as mentioned. Titration of the protein products

was confirmed by fractionation on SDS-PAGE, blotting and

hybridization with anti-ABCA1 (mAb 891.3 – [25]) or anti-GFP

antibodies (clone 7.1/13.1, Roche Diagnostics, Mannheim,

Germany). Cells were further analyzed for FRET or biochemical

assays 60 h after transfection.

Surface biotinylation and protein analysis
Surface biotinylation was carried out as described [36] on 3–

56105 cells with 1 mg/ml NHS-LC-biotin (Pierce, Rockford, IL,

USA) in ice cold PBS for 30 min, lysed in 100 mM TrisHCl pH 8,

100 mM NaCl, 10 mM EDTA, 1% Triton X-100 for 30 min at

4uC. Normalized amounts of cell lysates were immunoprecipitated

with the anti-GFP antibody, according to standard protocols,

loaded on SDS-PAGE and blotted onto nitrocellulose membrane.

The biotinylated proteins were probed by streptavidin-HRP

followed by revelation with ECL detection reagent (Amersham

Pharmacia Biotech, Uppsala, Sweden).

In vitro phagocytosis assay
In vitro engulfment assays were performed as described previously

[14] 48 h after transfection. Cells seeded on microscopic slides

were incubated in DMEM 5% FCS for 2 hours in the presence of

excess of irradiated (600 rad) thymocytes, previously labelled

for 20 min at RT with 7-AAD (20 mg/ml in PBS – Sigma Aldrich,

St. Louis, Missouri, USA). After extensive washing to remove

unengulfed thymocytes, cells were fixed with 4% paraformalde-

hyde in PBS pH 7.4. Slides were then mounted in Mowiol for

observation by confocal microscopy (LSM 510 on Axiovert

200 inverted microscope – Zeiss, Oberkochen, Germany). The

number of ingested thymocytes per cell was visually scored on

a sample $100 transfected cells. Results were expressed either by

plotting the fraction of cells having ingested a given number of

thymocytes or as phagocytic index (average number of apoptotic

thymocytes per transfected cell). Statistical analyses (Paired student

t-tests) were performed using GraphPad Prism software (Graph-

Pad Software, Inc., San Diego, USA).

GST pull down experiments
GST pull down were performed as described [11]. Briefly,

transfected HeLa cells were cultured for 48 hours before lysis in

10 mM TrisHCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1%

Triton X-100, 0.5% NP-40 plus protease inhibitors. Ten mg of

bacterially produced GST or GST-GULP fusion proteins were

ABCA1 and MEGF10 Cooperation

PLoS ONE | www.plosone.org 7 December 2006 | Issue 1 | e120



immobilized on beads and incubated with cell lysates for 4 hours

at 4uC. After extensive washes, the bound proteins were fractio-

nated on SDS-PAGE and immunoblotted using the anti-GFP

antibody. GST fusion proteins were revealed by Ponceau S

staining of the membrane.

Imaging FRET measurements
FRET was measured by the method of acceptor photobleaching

[28,29,39] by a Zeiss LSM 510 module mounted on an Axiovert

200 inverted microscope (Zeiss, Oberkochen, Germany). The

microscope was equipped with a 25 mW Argon/2 laser beam and

a polychromatic multichannel detector (META detector) to

spectrally resolve emission spectra. ECFP and EYFP were

illuminated respectively with the 458 (60% intensity of the

acoustico-optical tunable filter – AOTF) and 514 nm (6% intensity

of the AOTF) laser lines. To maximize selectivity, 4 dimension

stacks were acquired in spectral mode with wavelength series at

10-nm intervals recorded for every time series. EYFP and ECFP

images were subsequently reconstituted by linear unmixing of the

wavelength series. Regions of interest (ROI) corresponding to

membrane colocalization of the two fluorochromes were selected

visually on images acquired on double transfected cells. ROI were

bleached at 514 nm (100% intensity of AOTF) by 400 reiterations

as previously calibrated [40]. Bleaching time varied from 150 to

200 sec. A set of 5 images was acquired before and after bleaching

in spectral mode and reconstituted by linear unmixing to visually

check both bleaching efficiency and stability of the sample. FRET

efficiency was calculated according to the formula Ef = Ipost2

Ipre6100/Ipost on numerical values tabulated by the LSM

software. Background levels, measured as pixel values outside

cells or in the cytoplasmic region, were computed in each

experimental set and never exceeded 20% of signal.

Native PAGE fractionation and analysis
Monolayers of HeLa cells (60 hours after transfection with the

indicated plasmid), were rinsed in PBS before solubilisation in 1%

a-DM, 150 mM NaCl and 50 mM TrisHCl, pH 7.4 for

30 minutes at 4uC. Homogenates were then spun at 4uC at

100,0006g for 20 min to eliminate aggregates and protein

concentration in the cleared post-nuclear supernatant determined.

Between 5 and 20 mg of proteins were loaded on a Deriphat/

PAGE system adapted from Peter and Thornber [30] and

analysed as previously described [25]. After electrophoresis at

4uC at 50 Volt for 12 hours, proteins were electrically transferred

onto nitrocellulose membrane. Membranes were subsequently

probed with the anti ABCA1-891.3 mAb or anti-GFP mAb

followed by the appropriate secondary antibody and revealed by

ECL detection reagent. The migration of native protein standards

(Amersham Biosciences, Saclay, France) was analyzed by Ponceau

S staining of the membrane.

C. elegans ectopic expression of MEGF10
The MEGF10 EGFP fusion construct was introduced as extra-

chromosomal array into ced-1 complete loss-of-function mutants

ced-1(e1735) and into the wild-type background. Transgenic lines

were obtained using standard microinjection technique and

transgenic animals identified as GFP+ by fluorescence microscopy.

Engulfment defects were measured by counting the number of

persistent cell corpses which appear as highly refractile, button-like

objects in the head region of newly hatched L1 larvae (hatched

within 2 hours) using the Nomarski Differential Interference

Contrast Microscopy. L1 Larvae were anesthetized with 30 mM

NaN3 and mounted on agar pads before counting.
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