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Abstract

Tomato is a popular vegetable worldwide; its production is highly threatened by

infection with the potato spindle tuber viroid (PSTVd). We obtained the full-length

genome sequence of previously conserved PSTVd and inoculated it on four geno-

types of semi-cultivated tomatoes selected from a local tomato germplasm resource.

SC-5, which is a PSTVd-resistant genotype, and SC-96, which is a PSTVd-sensitive

genotype, were identified by detecting the fruit yield, plant growth, biomass accumu-

lation, physiological indices, and PSTVd genome titer after PSTVd inoculation. A non-

target metabolomics study was conducted on PSTVd-infected and control SC-5 to

identify potential anti-PSTVd metabolites. The platform of liquid chromatography-

mass spectrometry detected 158 or 123 differential regulated metabolites in modes

of positive ion or negative ion. Principal component analysis revealed a clear separa-

tion of the global metabolite profile between PSTVd-infected leaves and control

regardless of the detection mode. The potential anti-PSTVd compounds, xanthohu-

mol, oxalicine B, indole-3-carbinol, and rosmarinic acid were significantly upregulated

in positive ion mode, whereas echinocystic acid, chlorogenic acid, and

5-acetylsalicylic acid were upregulated in negative ion mode. Xanthohumol and echi-

nocystic acid were detected as the most upregulated metabolites and were exoge-

nously applied on PSTVd-diseased SC-96 seedlings. Both xanthohumol and

echinocystic acid had instant and long-term inhibition effect on PSTVd titer. The

highest reduction of disease symptom was induced by 2.6 mg/L of xanthohumol and

2.0 mg/L of echinocystic acid after 10 days of leaf spraying, respectively. A superior

effect was seen on echinocystic acid than on xanthohumol. Our study provides a sta-

tistical basis for breeding anti-viroid tomato genotypes and creating plant-originating

chemical preparations to prevent viroid disease.
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1 | INTRODUCTION

Cultivated tomatoes (Solanum lycopersicum) have narrow genetic vari-

ations (Baldo et al., 2007), making them insufficient to resist or toler-

ate the invasion of various pathogens including viroids. Various

germplasms of semi-cultivated tomatoes of Solanum lycopersicum var.

Cerasiforme with different phenotypes and levels of stress tolerance

are important materials for breeding. Moreover, semi-cultivated toma-

toes are widely used in Southwest China for their function of being

processed as red sour soup hot pot (Xiong et al., 2021).

The sustainable production of tomato fruits is often threatened

by abiotic stressors, including insects, fungi, bacteria, viruses, and

newly emerged pathogens, such as viroids (Ling & Li, 2014). Viroids

are the smallest pathogens in molecular weight comprised of circular

single-stranded RNA without a protein coat; they are currently the

smallest known pathogens. Pospiviroidae and Avsunviroidae have

been classified as viroids (Adkar-Purushothama & Perreault, 2020;

Ding, 2009; Flores et al., 2005). Potato spindle tuber viroid (PSTVd)

is the first identified individual of the Pospiviroidae (Apostolova

et al., 2020).

Solanaceae crops, for example, potatoes (Solanum tuberosum) and

tomatoes, are easily infected with PSTVd (Matsushita & Tsuda, 2016;

Verhoeven et al., 2004). Viroids cause dwarfing and necrosis of

tomato plants a very short time after infection, and these plants accu-

mulate a relatively high titer of this agent (Diermann et al., 2010;

Hammond, 1994). Tomatoes symptomatically react to various PSTVd

strains in about 2 weeks (Raymer & O’Brien, 1962). Unlike most

viruses that are unable to infect the meristem and are transmitted by

seeds, some viroids are infectious to the smallest cells in the shoot

apical dome of the plant (Ebata et al., 2019), making this class of repli-

cons a seed-borne disease (Dall et al., 2019). We have demonstrated

through in situ hybridization technology that PSTVd can infect cells of

our semi-cultivated tomato stem tip (data not shown). Viroids cause

large yield losses and are a serious concern to the tomato industry,

seed breeders, suppliers, and agricultural safety managers. The lack of

efficient viroid control methods makes them a difficult problem for

tomato cultivation.

Exploring highly resistant and highly sensitive genotypes for

pathological study as well as anti-viroid breeding is of great impor-

tance considering the high risk of viroid disease on production,

breeding, and ecological security. Meanwhile, searching for disease-

resistant or -tolerant metabolites in plants and utilizing their own

metabolites to develop agricultural chemicals can ensure the safety

of crop disease and pest control. For instance, matrine extracted

from Sophora flavescens (Chu et al., 2018) and berberine extracted

from Coptis chinensis (Liu et al., 2022) have been widely used to pro-

tect crops from diseases and pests (Hwang et al., 2009; Li

et al., 2018; Wang et al., 2019) for their efficiency and safety (Sun

et al., 2022; Zhou et al., 2022).

The semi-cultivated tomatoes in this study are of great signifi-

cance for the daily diet of local residents and the local fermented food

production industry. The government of Guizhou Province requires

strict implementation of disease and pest control mainly based on bio-

logical agents in the vegetable cultivation industry. In this study, we

assessed PSTVd tolerance in semi-cultivated tomatoes based on

morphological traits, physiological changes, and the accumulation of

replicons; the possible viroid-tolerance-inducing metabolites of the

PSTVd-resistant tomato genotype were identified by non-target

metabonomics analysis.

2 | MATERIALS AND METHODS

2.1 | Materials

Fresh red fruits from semi-cultivated tomatoes with the SC-5, SC-60,

SC-96, and SC-128 genotypes were collected from dispersed villages

in Chishui City, Guizhou Province, China. The fruits were fermented

for 3 days, and the seeds were collected. The seeds were sowed in

wet peat covered with transparent plastic wrap and cultivated in an

artificial intelligence climate room at 25�C under a 16 h/8 h light/dark

photoperiod until the two-euphylla stage. The seedlings were used as

the plant material. The PSTVd-infected potato leaves were stored at

less than �20�C at the Vegetable Industry Research Institute,

Guizhou University.

2.2 | PSTVd detection and genome sequencing

Total RNA was extracted, and reverse transcription (RT) reaction

and polymerase chain reaction (PCR) were conducted as described

by Li et al. (2023). The primers, PSTVd-F: 50-ATCGATGAGGAGCGC

TTCAGGGATC-30 and PSTVd-R: 50-GTCGACGGAGCTTCAGTTGTT

TCC-30 were used to amplify 224 bp PSTVd bands. Annealing tem-

perature for PCR was 56�C. The primers, PSTVdSq-F: 50-ATCCC

CGGGGAAACCTGGAGCGAAC-30 and PSTVdSq-R: 50-CCCTGAAGC

GCTCCTCCGAG-30, were designed to sequence the whole genome

by next-generation sequencing (Leichtfried et al., 2019) and to ana-

lyze the secondary structure using Mfold (online tool). The RNA

sequence was set to linear, the folding temperature was fixed at

37�C, the ion condition was 1 M NaCl, and there were no

divalent ions.

2.3 | PSTVd infection and plant growing
conditions

The conserved PSTVd-infected potato leaves were ground into a

homogenate with sterilized quartz sand by friction inoculation.

A .2-mL aliquot of the leaf-extract mixture was inoculated on the true

leaves of the four genotypes of healthy semi-cultivated type tomato

seedlings. An equal volume of healthy potato leaf extract-treated

seedlings was taken as the control. Plants in each treatment were

maintained under 100% humidity for 7 days in an artificial intelligence
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climate room at 25�C under a 16 h light/8 h dark photoperiod.

Twenty days after incubation, RT-PCR was conducted to check if

healthy seedlings were successfully infected. The infected seedlings

were cultivated in a phytotron with each plant covered with an insect

screen net for 60 days.

2.4 | PSTVd titer detection by RT-qPCR

RT-qPCR was thereafter conducted as described by Li et al. (2023),

and the value of PSTVd titer was calculated according to Livak and

Schmittgen (2001). PSTVdq-F: 50-ACAAGGCAGGGAGGAGACT-

TACC-30 and PSTVdq-R: 50-GAAGACGAACCGAGAGGTGATGC-30

were used for PSTVd titer detection by RT-qPCR. The Actin gene was

taken as the internal control as described by Perveen et al. (2021).

2.5 | Growth measurements

Vegetative growth was assessed 60 days after inoculating and incu-

bating PSTVd by measuring the average stem height, shoot diameter,

leaf length, leaf width, root length, and weight of the roots. Reproduc-

tive growth was determined by average single fruit weight and total

yield. These indices were compared between the control and infected

plants of each genotype. Twenty randomly selected samples were

measured for each replication.

2.6 | Detection of chlorophyll content, the sugar
acid ratio, and soluble solids content

The content of chlorophyll was measured with a HED-YB portable

chlorophyll meter (Horde, China). The ratio of sugar/acid was mea-

sured by dividing the percent total sugar by the percent titratable

acidity according to Chauhan et al. (2020). The content of total soluble

solids in the tomato fruits was measured with the Erma hand refrac-

tometer (0%–20%, Master-Agri, Japan). Each treatment group con-

tained thrice replicates of 20 fruits or 20 plants.

2.7 | Non-targeted metabolomics assay

Tomato leaves were sampled equally from the healthy SC-5 (control)

and PSTVd-infected SC-5 plants. They were washed, mixed, and

ground in liquid nitrogen. Six replicates of each treatment were used.

Sample preparation for the liquid chromatography-mass spectrometry

(LC–MS) analysis was conducted as described by Li et al. (2022). LC–

MS analysis, metabolomics data processing, and analysis were con-

ducted according to Li et al. (2022) by LC-bio Co., Ltd (Huangzhou,

China). Metabolites were both detected under a mode of positive ion

and negative ion. Metabolites with a variable importance in projection

(VIP) value of >1 were counted by Student’s t-test. Significantly regu-

lated metabolites were analyzed on a p-value of <.05.

2.8 | Measurement of anti-PSTVd effects of
xanthohumol and echinocystic acid

2.8.1 | Instant effects measurement

The xanthohumol and echinocystic acid powder was first diluted with

a small amount of 95% alcohol, then diluted with ddH2O, and finally

prepared as an aqueous solution. Shoot terminals of PSTVd infected

SC-96 60-day seedlings carrying 1 youngest leaf and a shoot tip with

1 cm in length were harvested and incubated in PCR tubes loading

100 μL of xanthohumol (.0, 65.0, 13.0, or 2.6 mg/L) or echinocystic

acid (.0, 2.0, 2.0, or .2 mg/L) aqueous solution; the cut of shoot termi-

nals was immersed in different kinds of solution, each shoot terminal

per tube. The lids of PCR tubes were tightly closed in case of the solu-

tion evaporation; shoot terminals were incubated under normal seed-

ling culture condition. PSTVd titer detection of each treatment was

performed 0, 24, 48, and 72 h post metabolite feeding by RT-qPCR as

described above. Each treatment contained thrice of 10 shoot

terminals.

2.8.2 | Long-term effects measurement

The PSTVd infection poses a heavier threat to the semi-cultivated

tomato plants under high temperature and low rainfall conditions in

the summer in the open field, causing much more serious symptoms.

Considering that under more serious disease symptoms, the effect of

metabolites is more pronounced. Therefore PSTVd-infected SC-96

seedlings were incubated under 33�C, 16 h/8 h light/dark photope-

riod, and 30% air humidity for 20 days to induce more serious disease

symptoms, which included plant wilting and leaf rolling. One hundred

milliliters of xanthohumol (.0, 65.0, 13.0, or 2.6 mg/L) or echinocystic

acid (.0, 2.0, 2.0, or .2) aqueous solution were evenly sprayed on the

leaves for 0, 5, and 10 days under the same plant incubation condi-

tion. Disease incidence and index were thereafter measured according

to Sofy et al. (2013). PSTVd titer of the treated leaves was detected

by RT-qPCR as described above. Each treatment contained thrice of

10 plants.

2.9 | Statistical analysis

One-way analysis of variance or Student’s t-test was used. Data are

presented as mean value ± standard error. Significance was evaluated

on a p-value of <.05.

3 | RESULTS

3.1 | PSTVd genomic sequence

The PSTVd genome isolated from PSTVd source potato leaves was

composed of 360 nt bases and had the highest identity (99.29%) with
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the PSTVd-JW1229 PSTVd sequence (accession number

MW312744.1) as reported by Wu and Bisaro (2020). This novel

PSTVd sequence was temporarily named “PSTVd-GZT” (tentative

acronym). The primary and secondary structures are presented in

Figure 1a. Two substitution mutations (A218 to C and A345 to G) were

confirmed in PSTVd-GZT compared with the PSTVd-JW1229

sequence. In addition, a one-base deletion mutation (221-GGA223) and

one base insertion mutation (282+ACCT286) resulted in an unchanged

genome size (Figure 1b).

3.2 | Effects of PSTVd on vegetative growth and
yield of four semi-cultivated tomatoes

Plant height was similar in the SC-5, SC-60, and SC-128 cultures of

healthy and PSTVd-infected plants, whereas the plant height

of healthy SC-96 (129.67 cm) is much higher than that of

PSTVd-diseased plants (99.68 cm) (Figures 2a and 3a–d). The PSTVd

infection significantly limited shoot thickening in SC-96. The average

diameters of the healthy and infected plants were 1.09 and .97 cm,

respectively; however, no significant differences were found in the

other genotypes (Figure 2b). PSTVd did not significantly induce

changes in leaf area, and the healthy control and diseased plants pro-

duced similar leaf lengths and widths (Figures 2c,d and 3e–h). Unlike

diseased SC-5, SC-60, and SC-128, diseased SC-96 germinated shriv-

eled leaves (Figure 3g,g0). In the present study, the systematic infec-

tion of PSTVd did not inhibit the average single fruit weight of SC-5,

SC-60, or SC-128 but did inhibit the weight of SC-96. The healthy

control produced fruits weighing 7.21 g, whereas infected plants pro-

duced significantly smaller fruits, weighing 5.58 g (Figures 2e and 3i–l,

i0–l0). A similar yield of tomato fruit was harvested in the control and

PSTVd-infected SC-5 and SC-128 samples, but the viroid caused a

significant loss of fruit yield in SC-60, SC-96, and SC-128. Healthy

SC-60 plants produced fruits that weighed 489.44 g, but PSTVd

F I GU R E 1 Structure and sequence of PSTVd (a) and the molecular characters compared with the PSTVd reference sequence (MW312744.1)
(b). The secondary structure was analyzed using Mfold online software. TL refers to the terminal left region; P refers to the pathogenicity region;
CCR is the central conserved region; V is the variable region; and TR is the terminal right region.
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caused nearly 20 g of loss on a single plant. The SC-96 plants normally

produced 542.85 g of fruits, but a 144.82 g loss was detected in

PSTVd-diseased plants (Figure 2f). The longest roots produced by

healthy samples were similar to those produced by PSTVd-infected

one (Figures 2g and 3m–p), whereas fresh biomass was significantly

greater in healthy SC-60, SC-96, and SC-128 plants than in viroid-

diseased counterparts. The weights of the fresh root were 27.57,

29.63, and 29.37 g respectively in diseased samples. The fresh root

weight of healthy control was similar to the PSTVd-infected cultures

in SC-5 plants (Figures 2h and 3m–p). Seeds were isolated from

healthy and diseased tomato fruits, and no significant differences in

the indices were detected, such as average seed number, weight, or

germination rate (data not shown).

3.3 | RT-qPCR analysis of the PSTVd titer in four
semi-cultivated tomato leaves

The PSTVd titer was significantly different among the four genotypes

of semi-cultivated tomato leaves. Inoculating PSTVd on SC-5 leaves

F I GU R E 2 Plant height (a), stem diameter (b), leaf length (c), leaf width (d), single fruit weight (e), total output (f), root length (g), and root
weight (h) of healthy and PSTVd-infected semi-cultivated tomatoes.
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resulted in the fewest PSTVd replicons, and the relative expression of

PSTVd to actin was .204. The level of PSTVd replication was higher in

SC-60 (.447) than in SC-5 but significantly lower than that in SC-128

(.744). PSTVd replicated the quickest in SC-96, and 1.133 PSTVd

replicons were detected by RT-qPCR (Figure 4).

3.4 | Effects of PSTVd on chlorophyll biosynthesis
and tomato fruit quality

Chlorophyll content was not significantly affected by infecting the

SC-5, SC-60, and SC-128 leaves with PSTVd. The control values were

4.20, 43.30, and 47.72, and the infected sample values were 40.51,

42.44, and 47.42, respectively. PSTVd-infected SC-96 leaves had a

significantly lower chlorophyll content (3.38) than the control (36.40).

To evaluate whether PSTVd infection decreases fruit quality and

taste, changes in soluble solids content and the sugar/acid ratio of the

tomato fruits were studied. Among the four phenotypes, a significant

decrease in the content of soluble solids was only seen in diseased

SC-96 (4.48%) compared with control (5.05%). The PSTVd infection

did not stimulate the accumulation of soluble solids in SC-5, SC-60, or

SC-128 (Figure 5b). Similarly, although PSTVd slightly inhibited the

conversion from acid to sugar in all materials studied, a significant

decrease in the sugar/acid ratio was only detected in SC-96. The SC-

96 ddH2O control value was 1.45, and that of its infected counterpart

was 1.28 (Figure 5c).

F I GU R E 3 Plant vegetative growth (a–d), leaf (e–h, g0), tomato fruit (i–l, i0–l0), and root (m–p) morphology of healthy and PSTVd-diseased
semi-cultivated tomatoes. The indices were determined 60 days post-inoculation. (i)–(l) indicate control fruits, and (i0)–(l0) indicate PSTVd-infected
fruits. (a), (e), (i), and (m) represent SC-5; (b), (f), (j), and (n) represent SC-60; (c), (g), (k), and (o) represent SC-96, (g0) is a close-up of a diseased SC-
96 leaf; (d), (h), (l), and (p) represent SC-128. Bars indicate 1 cm.
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3.5 | Global metabolic characteristics of the SC-5
tomato response to PSTVd infection

According to the non-targeted metabonomics analysis in positive ion

mode, the platform detected 158 differentially regulated metabolites

(DRMs) for the partial least squares discriminant analysis (PLS-DA)

model, of which 80 and 78 compounds were significantly upregulated

and downregulated in the PSTVd-infected SC-5 plants, respectively.

Sixty upregulated and 63 downregulated metabolites were detected

in negative ion mode (Figure 6a). The significant DRMs are provided

in Tables S1–S4. For pareto-scaled principal component analysis

(PCA), in positive ion mode, the first principal component (PC1)

explained 74.07% of the total variation, whereas PC2 explained

3.39% of the variation across the data set; in the negative ion mode,

PC1 explained 7.07% of the variation and PC2 explained 7.32% of the

variation. PC1 separated the PSTVd-infected leaves and those control

samples under both positive mode and negative ion mode (Figure 6b).

The top 30 most PSTVd responsive metabolites in SC-5 tomato

and their patterns are presented in Figure 6c. Only two-thirds of all

compounds were identified with a definite name: topsentisterol A2,

phenmetrazine, N-malonyltryptophan, fusarenone X, xanthohumol,

dehydroeburicoic acid, and gamma-tocotrienol were upregulated by

PSTVd infection in positive ion mode, whereas solasodine, mundulone

acetate, nandrolone, L-pyroglutamic acid, 100-apo-beta-caroten-100-

al, 3-hydroxy-7,12-diketocholanoic acid, 4-hydroxymandelonitrile,

N6,N6,N6-trimethyl-L-lysine, protoporphyrin IX, 9s, 13r,-12-

oxophytodienoic acid, tryptophol, and glutamine analog 1 were down-

regulated. In negative ion mode, guanine, 2-dehydro-D-gluconic acid,

3,4-dihydroxybenzoic acid, leucine, diethyl phosphate, 3-phosphoglyc-

erate, dehydroepiandrosterone sulfate, inosine, protogracillin, guano-

sine, and kukoamine A were upregulated in response to PSTVd

infection, whereas 3,4-dihydroxybenzaldehyde, quercetin 3-O-

sophoroside, diethyl phthalate, 5-acetylsalicylic acid, 4-nitrophenol,

daidzin, propylparaben, arctigenin, licochalcone A, and echinocystic

acid-3-O-glucoside were downregulated (Figure 6c). The raw data of

metabonomics analysis are deposited in the MetaboLights repository

(MTBLS7976).

3.6 | Identification of potential anti-PSTVd
metabolites

The potential anti-PSTVd compounds were isolated from the 20 top

DRMs in modes of positive ion and negative ion, respectively, accord-

ing to previous studies. Xanthohumol (fold change 112.3043),

F I GU R E 4 PSTVd titer of four infected semi-cultivated tomato
leaves.

F I G U R E 5 Leaf chlorophyll content (a), fruit soluble solids
content (b), and the sugar/acid ratio (c) of control and PSTVd infected
semi-cultivated tomatoes.
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oxalicine B (fold change 7.7779), indole-3-carbinol (fold change

6.1781), and rosmarinic acid (fold change 5.9883) were selected

among the upregulated metabolites in positive ion mode. Among

those significantly downregulated DRMs in positive ion mode, cyclo-

hexylamine (fold change .0271), protoporphyrin IX (fold change

.0719), solasodine (fold change .0919), astragalin (fold change .1199),

and tryptophol (fold change .1690) were identified. Echinocystic acid

(fold change 633.5949), chlorogenic acid (fold change 46.8765), and

5-acetylsalicylic acid (fold change 4.4690) were considered to be

potential anti-PSTVd metabolites among the significantly upregulated

DRMs in negative ion mode. Dronedarone (fold change .1414),

3,4-dihydroxybenzoic acid (fold change .1700), soyasapogenol B base

+ O-HexA-Pen-dHex (fold change .1717), and kaempferol-3-O-(6000-

trans-p-coumaroyl-200-glucosyl) rhamnoside (fold change .1832) were

selected among the downregulated counterparts. Among all of the

potential anti-PSTVd compounds, PSTVd infection stimulated echino-

cystic acid the most (633.5949-fold), followed by xanthohumol

(112.3043-fold) (Table 1). All metabolites have been reported to be

virus-resistant, anti-fungal, antioxidative, or anti-inflammatory accord-

ing to previous studies.

These metabolites were selected from the top 20 significantly up

and downregulated metabolites from data generated in positive and

negative ion modes.

3.7 | Measurement of anti-PSTVd effects of
important DRMs

Xanthohumol (fold change: 112.3) and echinocystic acid (fold change:

633.5) were the two most important upregulated metabolites after

SC-5 tomato plants were infected by PSTVd. The effects of which on

PSTVd-tolerance inducement of seedlings of sensitive genotype SC-

96 were conducted by exogenous application. Instant effects were

measured by PSTVd titer detection. According to RT-qPCR value,

F I GU R E 6 Analysis of DRMs between PSTVd-infected SC-5 tomatoes and control. (a) The number of up and downregulated DRMs in modes
of positive ion and negative ion. (b) PCA of metabolic profiles of the control and susceptible groups. (c) Thirty top metabolites according to the
VIP score for SC-5 tomato in response to PSTVd infection.
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PSTVd titer of shoot terminals incubated with 13.0- and 2.6-mg/L

xanthohumol for 24, 48, and 72 h were significantly lower than that

of control and 65.0-mg/L treated samples. Further, 2.6 mg/L of

xanthohumol generally resulted in the lowest titer of PSTVd regard-

less of incubation duration (Table 2). On testing with echinocystic

acid, generally, a significantly lower PSTVd genome titer was identi-

fied on 2.0- and .2-mg/L treatments regardless of incubation duration.

Except for 48 h of incubation, no significant difference was found

between solvent control and 2.0-mg/L treatment. Among all treat-

ments, 2.0 mg/L resulted in the highest efficiency on PSTVd titer inhi-

bition (Table 2).

Middling seedling wilting and serious leaf rolling were observed

when seedlings were cultured under environment of high temperature

and low humidity; moreover, foliar solvent spraying (control) cannot

alleviate those symptoms (Figure 7a,c,e,g,i,k). Solutions of xanthohu-

mol and echinocystic acid were exogenously applied on SC-96 leaves

for 0, 5, and 10 days for long-term effect measurement. The highest

reduction of disease symptom was observed on 2.6 mg/L of xantho-

humol or 2.0 mg/L of echinocystic acid 10 days treated seedlings. The

curled leaves on the diseased plant tend to flatten after treatment,

and the plant changed from moderately wilted to upright (Figure 7b,d,

f,h,j,l); the disease index decreased to 4.2 by 2.6 mg/L of xanthohumol

and to 30.4 by 2.0 mg/L of echinocystic acid after 10 days of leaf

spraying, whereas disease index was around 56.2–60.5 of control

(Table 2). RT-qPCR value of PSTVd titer in each treatment may further

confirm the above results. It was identified that the anti-PSTVd effect

of 2.0 mg/L of echinocystic acid was higher and more stable than that

of 2.6 mg/L of xanthohumol. Interestingly, 2.0 mg/L of echinocystic

acid, which displayed a high instant effect on PSTVd titer inhibition,

could not well inhibit the disease symptom on SC-96 seedlings

(Table 2).

4 | DISCUSSION

Tomato is a sensitive crop to PSTVd and has long been used as an

experimental plant in viroid studies (Diermann et al., 2010; Fujibayashi

et al., 2021; Hammond, 1994). The expression of PSTVd symptoms in

T AB L E 1 Potential anti-PSTVd metabolites in PSTVd infected SC-5 tomato.

Name VIP
Fold
change p-value

No. of
KEGG Subclass PSTVd infected Control

Upregulated metabolites in positive ion mode

Xanthohumol 1.7067 112.3040 .0323 C16417 Chalcones and

dihydrochalcones

627,829.2 ± 613,623.9 5590.4 ± 1686.9

Oxalicine B .3602 7.7779 .0002 Terpene lactones 25,949.0 ± 9558.7 3336.2 ± 945.8

Indole-3-carbinol .5011 6.1781 .0017 Indoles 59,024.4 ± 28,493.4 9553.8 ± 1948.8

Rosmarinic acid .9302 5.9883 .0360 Hydroxycinnamic

acids and

derivatives

234,581.2 ± 197,512.5 39,173.1 ± 9217.7

Down-regulated metabolites in positive ion mode

Cyclohexylamine .3808 .0271 .0026 C00571 Cyclohexylamines 876.1 ± 276.2 32,279.6 ± 19,336.3

Protoporphyrin IX 1.5310 .0719 .0003 C05183 Porphyrins 35,053.1 ± 10,564.8 487,186.1 ± 207,549.2

Solasodine 3.1115 .0919 .0004 170,713.4 ± 19,771.7 1,856,511.3 ± 810,720.5

Astragalin .5839 .1199 .0003 C12249 Flavonoid

glycosides

8017.5 ± 2291.4 66,822.6 ± 27,282.6

Tryptophol 1.4451 .1690 .0097 C00955 Indoles 84,373.7 ± 18,713.5 499,175.8 ± 318,682.3

Upregulated metabolites in negative ion mode

Echinocystic acid .2887 633.5949 .0036 16,099.9 ± 10,438.2 25.4 ± 21.8

Chlorogenic acid 1.0429 46.8765 .0162 C00852 Alcohols and

polyols

217,827.1 ± 180,984.6 4646.8 ± 2336.8

5-Acetylsalicylic acid .3361 4.4690 .0001 24,477.0 ± 7725.9 5477.0 ± 981.6

Down-regulated metabolites in negative ion mode

Dronedarone 1.7496 .1414 .0010 Carbonyl

compounds

103,869.2 ± 20,754.4 734,344.1 ± 340,048.7

3,4-Dihydroxybenzoic

acid

.5532 .1700 .0003 C00230 Benzoic acids and

derivatives

12,842.2 ± 3680.3 75,522.2 ± 28,089.3

Soyasapogenol B base

+ O-HexA-Pen-dHex

.1457 .1717 .0050 Terpene

glycosides

1027.9 ± 491.7 5984.4 ± 3354.6

Kaempferol-3-O-(6000-
trans-p-coumaroyl-200-
glucosyl)rhamnoside

.2374 .1832 .0265 Flavonoid

glycosides

3141.6 ± 1431.6 17,147.8 ± 13,121.1
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tomatoes is affected by the strain and the environmental conditions as

well as the plant host genotype (Mackie et al., 2019). A pair of PSTVd

highly resistant (SC-5) and sensitive (SC-96) semi-cultivar tomato geno-

types were identified in the present study (Figures 2 and 3). The PSTVd

replicon titer was much higher in SC-96 than in SC-5. Dwarf and thin

stems, reduced height, low fruit yield, and root biomass, as well as

shrunken leaves, were seen on PSTVd-infected SC-96 plants, but not

on the other genotypes. Similar results were reported for viroids inocu-

lated on tomatoes by Mackie et al. (2019) and Kinoga et al. (2021).

Infection usually causes malformed leaves, leaf chlorosis, reduced size,

stunting, aborted flowers, necrosis of petioles, midribs, and stems, and

decreases in fruit quality and yield. The irregular growth of diseased

plants may be the result of reduced soluble sugar accumulation as iden-

tified in this study (Figure 5b,c). PSTVd replicates within the nucleus of

host cells by the conserved sequence and/or the stem-loop structure it

forms (Abraitiene et al., 2008), but it moves systemically throughout

the plant and causes dysfunction of the chloroplast. Chlorophyll con-

tent significantly contributes to sugar accumulation and plant growth,

whereas PSTVd infection decreased chlorophyll content (Figure 5a),

thus restricting the growth of SC-96 tomatoes.

Viroids cause “viruela” symptoms as viruses on hosts, disordered

plant growth (Rubio et al., 2013), and redox imbalance. Effective anti-

viroid agents have not been developed or widely used. Thus, the

potential anti-viroid metabolites were searched in PSTVd-resistant

tomato cultivar SC-5 by non-target metabonomics analysis. As very

few studies have isolated or verified anti-viroid compounds, metabo-

lites that have been reported against virus disease, anti-inflammation,

anti-oxidation, and/or induce tolerance to other pathogens were

regarded as potential anti-PSTVd agents in PSTVd-resistant genotype

in the present study.

Among the upregulated metabolites detected in positive ion

mode, xanthohumol, a prenylated chalcone, was upregulated about

112-fold (Table 1). This compound exhibits antioxidant, anti-

proliferative (Miranda et al., 1999), and viral-resistant activities

(Buckwold et al., 2004). The effects on the resistance to bovine viral

diarrhea virus, hepatitis B/C virus (HBV/HCV) of xanthohumolon,

were thereafter confirmed by in vitro experiments (Lou et al., 2014;

Zhang et al., 2010). Oxalicine B, indole-3-carbinol, and rosmarinic acid

reduce HIV-1 activities, human papillomavirus type 16 induces a

malignant phenotype in cervical-vaginal cancer (Jin et al., 1999) and

T AB L E 2 Effects of xanthohumol and echinocystic acid on induced PSTVd-tolerance of SC-96 tomato.

Concentration
(mg/L)

Duration
(in vitro)

PSTVd titer
(relative accumulation) Duration

Disease
index

PSTVd titer
(relative accumulation)

Xanthohumol

.0 24 h 1.00 ± .16 a 0 days 59.4 ± 8.6 a 1.00 ± .36 a

65.0 1.05 ± .13 a 62.8 ± 4.6 a .86 ± .12 a

13.0 .74 ± .32 b 65.3 ± 7.6 a 1.27 ± .27 a

2.6 .22 ± .03 c 60.8 ± 7.7 a .76 ± .15 a

.0 48 h 1.00 ± .14 a 5 days 60.3 ± 5.4 a 1.00 ± .15 a

65.0 1.21 ± .18 a 62.8 ± 4.3 a 1.05 ± .14 a

13.0 .32 ± .04 b 53.6 ± 9.5 a .57 ± .11 b

2.6 .34 ± .03 b 45.3 ± 2.2 b .49 ± .02 b

0.0 72 h 1.00 ± .17 a 10 days 59.4 ± 9.2 a 1.00 ± .16 a

65.0 .84 ± .29 a 53.7 ± 4.3 a 1.21 ± .23 a

13.0 .23 ± .03 b 57.9 ± 2.3 a .48 ± .02 b

2.6 .15 ± .03 c 4.2 ± 1.2 b .33 ± .04 c

Echinocystic acid

0.0 24 h 1.00 ± .17 ab 0 days 56.2 ± 7.4 a 1.00 ± .14 a

2.0 1.34 ± .19 a 58.8 ± 2.5 a 1.10 ± .10 a

2.0 .38 ± .03 c 53.6 ± 7.7 a .76 ± .13 b

.2 .96 ± .05 b 6.2 ± 6.5 a .69 ± .25 b

.0 48 h 1.00 ± .14 a 5 days 60.5 ± 8.7 a 1.00 ± .03 a

2.0 .46 ± .06 b 46.6 ± 3.4 ab .45 ± .08 c

2.0 .18 ± .02 d 45.7 ± 2.7 b .29 ± .11 d

0.2 .31 ± .04 c 54.7 ± 5.3 a .76 ± .05 b

0.0 72 h 1.00 ± .27 a 10 days 57.3 ± 4.4 a 1.00 ± .27 a

20.0 .71 ± .14 a 45.6 ± 3.4 b .20 ± .04 b

2.0 .26 ± .03 c 30.4 ± 4.6 c .07 ± .01 c

.2 .41 ± .02 b 53.8 ± 9.7 a .11 ± .05 b
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keratinocytes (Newfield et al., 1998), and replication of the Japanese

encephalitis virus induces inflammation and Japanese encephalitis.

Moreover, rosmarinic acid has strong antifungal properties, as it

reduces the growth of Candida albicans (Gohari et al., 2009), Alternaria

alternate, and Penicillium digitatum (Abdel-Rahman et al., 2020).

In the interaction between plants and pathogens, we hypothe-

sized that there may be pathogens that downregulate resistant sub-

stances and immune systems through genetic or other biochemical

regulation to achieve the goal of invading the host and replicating

themselves. Thus, we selected the potential anti-PSTVd substances

from the downregulated DRMs. Cyclohexylamine, protoporphyrin IX,

solasodine, astragalin, and tryptophol, which play important roles in

resisting oxidation reactions, as well as anti-pathogen and anti-

inflammation functions, were isolated from downregulated DRMs in

positive ion mode (Table 1). Cyclohexylamine is toxic to the fungus

Pythium ultimum (Gindrat, 1981), but its anti-viral effect has not been

reported. In vitro, protoporphyrin IX and derivatives show broad

antiviral activities (Cruz-Oliveira et al., 2017; Figueira et al., 2020). A

porphyrin derivative inhibits the virus entry on early stage (Lu

et al., 2021) and its tin derivative is a prophylactic agent against HIV-1

(Figueira et al., 2020; Neurath et al., 1994). Solasodine, a derivative of

tomatidine, has potent antiviral activity against Chikungunya virus

in vitro. The effects of astragalin are complex, including anti-oxidation,

anti-viral, and anti-inflammatory effects (Choung et al., 2017). Luo and

Li (2017) reported the inhibitory effect of astragalin on HCV. Trypto-

phol reduces infection/replication of the GVE2 bacteriophage (Jin

et al., 2015) and virus infection in shrimp (Zhu & Jin, 2015).

The potential anti-viroid agents echinocystic acid, chlorogenic

acid, and 5-acetylsalicylic acid were isolated from the upregulated

metabolites detected in negative ion mode (Table 1). Echinocystic acid

is frequently used for inflammatory diseases in Asian (Lee et al., 2002;

Ma et al., 2016). It exhibits potent anti-HCV entry activity (Wang

F I GU R E 7 Effects of xanthohumol and echinocystic acid on disease symptom inhibition of PSTVd-infected SC-96 tomato. (a) and (c): leaves
(front and back) treated with solvent for 10 days; (b) and (d): leaves (front and back) treated with 2.6-mg/L xanthohumol for 10 days; (e) and (f):
seedlings treated with solvent and 2.6-mg/L xanthohumol for 10 days; (g) and (i): leaves (front and back) treated with solvent for 10 days; (h) and
(j): leaves (front and back) treated with 2.0 mg/L of echinocystic acid for 10 days; (k) and (l): seedlings treated with solvent and 2.0 mg/L of
echinocystic acid for 10 days. Bar in (a), (b), (c), (d), (g), (h), (i), and (j) refers to 1 cm, and that in in (e), (f), (k), and (l) refers to 2 cm. Leaves and
seedlings were seldom selected from each treatment.
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et al., 2013; Yu et al., 2016). Echinocystic acid was the most upregu-

lated compound in the present study (Table 1), suggesting its impor-

tant role in blocking PSTVd entry or reducing disease development.

However, very limited information was found on the biosynthetic

pathway of echinocystic acid and related enzymes or gene sequences.

Chlorogenic acid reportedly inhibits inflammation (Zheng et al., 2015)

and mammalian virus infection. Chlorogenic acid and crude extracts of

coffee beans, which contain a high amount of chlorogenic acid, inhibit

HBV activities. Moreover, chlorogenic acid sustains anti-enterovirus

71 activity (Li et al., 2013) and anti-human coronavirus NL63 activity

(Weng et al., 2019) in vitro. Acetylsalicylic acid reduces the activities

of plant and human viruses. Dhital et al. (2008) confirmed resistance

of Solanaceae crop virus. Acetylsalicylic acid may induce an antioxi-

dant environment to regulate HCV replication (Ibarra et al., 2013).

Dronedarone, 3,4-dihydroxybenzoic acid, soyasapogenol B, and

kaempferol-3-O-rhamnoside were selected among the downregulated

DRMs in negative ion mode. Gehring et al. (2014) reported the inhibi-

tory function of dronedarone towards filovirus and New World arena-

virus Guanarito activities, and the effects were dosage-dependent.

3,4-Dihydroxybenzoic acid is a well-known antioxidant (Bao

et al., 2019). Ou et al. (2012) discovered its anti-infectious bursal dis-

ease virus and anti-HIV1 activities. Moreover, 3,4-dihydroxybenzoic

acid is a TMV resistance agent (Tan et al., 2010). Soyasapogenol B has

antivirus and anti-inflammatory activities (Amin & Mohamed, 2012).

Hanna et al. (2012) successfully assessed its HCV, vesicular stomatitis

virus, and hepatitis A virus inhibitory activities. These anti-viral effects

were not detected for kaempferol-3-O-rhamnoside. Xi et al. (2016)

confirmed that it inhibits inflammation and modulates antioxidant

activity, and its biosynthesis was significantly affected by PSTVd-

infection. We speculate that it may participate in plant immunity or

damage replication.

Xanthohumol and echinocystic acid were substances in tomato

SC-5 that regulated more than 100 folds in content after being

infected with PSTVd. It was demonstrated that these two substances

can inhibit the titer of PSTVd in both instant and long-term manner,

reducing symptoms of wilting and leaf rolling caused by PSTVd infec-

tion. However, the inhibitory effect of Xanthohumol and echinocystic

acid on PSTVd is significantly time- and concentration-dependent;

specific concentrations and longer processing times were more effec-

tive (Table 2 and Figure 7). However, currently, we have only

observed this phenomenon in terms of morphological characteristics

and PSTVd titers. It is unclear how these two substances induce

tomato SC-96 tolerance to PSTVd, and whether the regulatory mode

is consistent with previous research on virus-induced diseases

(Buckwold et al., 2004; Lou et al., 2014; Wang et al., 2013; Yu

et al., 2016) deserves further exploration. In the previous study,

extract of a xanthohumol enriched hop (Humulus lupulus) displayed a

weak to mild BVDV (bovine viral diarrhea virus), HSV-1 (herpes

simplex virus type 1), HSV-2 (herpes simplex virus type 1), and rhino-

virus antiviral activity. Moreover, compared with purified isomer iso-

xanthohumol, xanthohumol was found to be a more potent antiviral

agent against the above viruses (Buckwold et al., 2004). Lou et al.

(2014) confirmed xanthohumol’s anti-HCV (hepatitis C virus) activity

at concentrations ranging from 3.53 to 14.11 μM. Echinocystic acid

has a significant anti-HCV effect. Wang et al. (2013) established eight

new metabolites of echinocystic acid with the chemical structure

modified to assess the anti-HCV activity; however, most changes in

its chemical structure cannot effectively improve its antiviral effi-

ciency; instead, it had a certain degree of toxicity. Only two out of the

eight types of echinocystic acid retain their antiviral properties, with a

slight increase in antiviral efficiency. In the research of Yu et al.

(2016), some echinocystic acid 28-COOH derivatives showed HCV

moderate resistant activity, and one of them further removed

hemolytic effect, which is commonly undesired. In addition, we

observed that a high concentration (65.0 mg/L) of xanthohumol had

no inhibitory effect on the titer of PSTVd at various treatment dura-

tions, but the effect of a lower concentration (2.6 mg/L) was more

pronounced (Table 2). Whether there is a dose-dependent effect of

xanthohumol on the inhibition of PSTVd titers, such as melatonin on

Alternaria brassicae (Li et al., 2023), deserves further verification. Simi-

lar results were obtained by Lou et al. (2014), compared with 7.05 and

14.11 μM, xanthohumol at 3.53 μM had a stronger inhibitory effect

on the HCV activity. This situation on echinocystic acid was not

obviously seen.

There have been many successful cases of developing plant-

originated metabolites as commercial biological stress resistance

agents. For example, matrine developed from Sophora flavescens and

berberine developed from Coptis chinensis. KNI3126 made by neem

and matrine exhibited its promising inhibition efficiency against

6 pests, and it has shown the lowest biohazard (Hwang et al. (2009).

Besides being used as an insecticide, .01% matrine reduced fungal

pathogens by 44.5%–51.2% (Wang et al., 2019). Berberine is an

environment-friendly fungicide with high efficiency in dealing with

plant fungal diseases (Li et al., 2018). Knocking down the expression

level of berberine bridge enzyme TaBBE64 compromised wheat’s

(Triticum aestivum) Puccinia striiformis resistance (Yu et al., 2023).

Moreover, Guo et al. (2019) reported its promising function of anti-

tobacco mosaic virus, further expanding its scope of application. The

present study enriches the types of plant-derived disease-resistant

metabolites; however, whether xanthohumol and echinocystic acid

can be widely used as commercial egriculture chemicals needs further

field experiments and environmental safety tests. In addition, based

on the synthesis pathway of target plant-resistant metabolites, rele-

vant metabolite synthesis genes can be excavated, and molecular

breeding methods can be used to change gene expression levels and

target metabolite synthesis levels, which can significantly alter target

plant resistance traits. For instance, salicylic acid (SA) plays a crucial

role in triggering system-acquired resistance of plants. Overexpress

SA carboxyl methyltransferase or bacterial genes coding for enzymes

that convert chorismate into SA would reduce or increase the SA-

mediated plant resistance (Koo et al., 2007; Verberne et al., 2000). In

addition, indirect regulation of SA signaling in plants through overex-

pression of VqWRKY31 enhances powdery mildew resistance in

grapevine (Vitis vinifera) as well (Yin et al., 2022). Viroid-resistant/

tolerant commercial tomato cultivars have not been developed, and

key genes related to xanthohumol and echinocystic acid biosynthesis
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in tomatoes have not been excavated yet; our results offered alterna-

tive molecular breeding targets.

With the continuous discovery of types of viroids, the danger of

such diseases should be given attention in tomato breeding and culti-

vation. This study provides a statistical basis for breeding anti-viroid

tomato cultivars and creating plant-originating chemical preparations

for preventing viroid disease.
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