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for selecting confounders:
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Abstract

Background: The change in estimate is a popular approach for selecting confounders in epidemiology. It is recom-

mended in epidemiologic textbooks and articles over significance test of coefficients, but concerns have been raised

concerning its validity. Few simulation studies have been conducted to investigate its performance.

Methods: An extensive simulation study was realized to compare different implementations of the change in estimate

method. The implementations were also compared when estimating the association of body mass index with diastolic

blood pressure in the PROspective Qu�ebec Study on Work and Health.

Results: All methods were susceptible to introduce important bias and to produce confidence intervals that included

the true effect much less often than expected in at least some scenarios. Overall mixed results were obtained regarding

the accuracy of estimators, as measured by the mean squared error. No implementation adequately differentiated

confounders from non-confounders. In the real data analysis, none of the implementation decreased the estimated

standard error.

Conclusion: Based on these results, it is questionable whether change in estimate methods are beneficial in general,

considering their low ability to improve the precision of estimates without introducing bias and inability to yield valid

confidence intervals or to identify true confounders.
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1 Background

Adjustment for potential confounders is routinely performed in etiological studies based on observational data.

Subject matter expertise plays a pivotal role in identifying confounders. However, uncertainty often persists

regarding whether some covariates are truly confounders or not. In a recent review of studies published in

four major epidemiologic journals, only 146/292 (50%) of explicative studies indicated choosing adjustment

covariates based on prior knowledge, and 30/146 (20%) of these reported also using data-driven methods.1 In

total, 69/292 (24%) of explicative studies reported using some data driven method to help selecting covariates.1

This likely underestimates the prevalence of data-driven variable selection since 107/292 (37%) of studies did not
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provide sufficient information to determine how variables were selected. As such, variable selection based on the
observed data is frequently attempted in epidemiology.

Also according to this review, the change in estimate (CIE) would be the most popular data-driven method for
selecting confounders in epidemiologic studies.1 Indeed, 34/69 (42%) of studies that used data-driven methods
employed the CIE. Studies of varied size and fields of epidemiology were using the CIE. This is unsurprising
considering that the CIE is recommended both in modern epidemiologic textbooks and articles over confounder
selection methods based on P values in situations where the analyst determines that data-driven selection is
warranted (see literature2,3 and references therein). For example, in Chapter 15 of the 3rd edition of Modern
Epidemiology, it is written “Although many have argued against the practice [. . .], one often sees statistical tests
used to select confounders (as in stepwise regression), rather than the change-in-estimate criterion just discussed.”3

The most typical implementation of the CIE first entails fitting an outcome model according to the exposure
and adjusted for all potential confounders. Potential confounders are then removed from the outcome model one
at a time. The procedure stops once it becomes impossible to remove a potential confounder without altering too
much the exposure effect estimate as compared to the estimate produced by the initial fully adjusted model.
Intuitively, if all confounders are available, the fully adjusted model should yield an estimate that is appropriately
adjusted for confounding. Any reduced model that yields an estimate similar to that of the fully adjusted model is
thus also expected to provide adequate adjustment for confounding.

While the CIE is appealing because it is intuitive and simple to implement, concerns have been raised con-
cerning its validity. For instance, it has been noted that the change in the effect estimate may partly reflect non-
collapsibility instead of confounding when employing effect measures such as the odds ratio or the hazard
ratio.2,4–6 A further critique of the CIE is that it is susceptible to produce invalid P values and confidence
intervals.3 This is because P values and confidence intervals are typically computed by statistical software assum-
ing that the model is known a priori. When the model is selected based on the observed data, this assumption no
longer holds. Finally, if the CIE is applied without reflecting on how covariates are causally related to the
exposure and the outcome, it may lead to inappropriately controlling for colliders, thus introducing bias.4

We are aware of only three simulation studies that have investigated the performance of the CIE.7–9 According
to their results, the CIE would yield estimators with small bias and valid confidence intervals when a low change
in estimate threshold is used (for example, 10%), but would fail to produce estimators with improved precision as
compared to a model adjusting for all potential confounders. However, these simulation studies have a number of
limitations. First, they consider scenarios with at most nine potential confounders.7–9 As such, situations with
multiple potential confounders have never been investigated. Such situations are those where benefits from
performing confounder selection are most expected.2 Moreover, the CIE can be implemented in multiple ways.
For example, in addition to the backward exclusion described earlier, it is also possible to proceed by forward
inclusion of confounders. Forward implementation of the CIE is being used in practice,1 but its performance has
never been investigated as far as we know. Simulation studies have also focused on odds ratio effect measures. To
the best of our knowledge, the performance of the CIE with hazard ratios or mean differences has never been
examined.

The goal of the current study is thus to provide additional information regarding the performance of the CIE.
We do not consider the problems caused by including colliders in the potential confounder set since it has already
been shown that is impossible to distinguish between a confounder and a collider from the data alone.4,10 Hence, it
is expected that the CIE would perform poorly when colliders are included among the potential confounders.
Substantive knowledge input is essential for constructing the initial potential confounder set.

We have first conducted an extensive simulation study to investigate and compare the performance of various
implementations of the CIE in a wide range of scenarios. Next, we compared the CIE implementations in a real
data setting. This illustration, based on data from the PROspective Qu�ebec (PROQ) Study on Work and Health
led by Brisson,11 concerns the association between body mass index and diastolic blood pressure.

2 Simulation study

2.1 Simulation scenarios

The scenarios we have considered were inspired by the fourth data-generating process in Talbot et al.,12 but
feature more covariates. Let L1, L2, . . ., L30 represent a set of 30 potential confounders, X the exposure of interest
and Y the outcome. For all scenarios, we have first simulated L6, L7, . . ., L30 as correlated normal variables with
mean¼ 0, variance¼ 1, and correlations¼q. Covariates L1, L2, . . ., L5 were then independently generated as
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normal variables with mean¼L11þL12þL13þL14þL15 and variance¼ 1. X was generated as a normal variable

with mean¼L11þL12þ � � � þL20 and variance¼ 1.
We have considered scenarios where Y was a continuous, binary, or time to event variable. When Y was

continuous, it was generated as a normal variable with mean¼ 0.1L1þ 0.1L2þ � � � þ 0.1L10þ bX and var-

iance¼ 1. When Y was binary, P Y ¼ 1ð Þ ¼ expit 0:1L1 þ 0:1L2 þ � � � þ 0:1L10 þ bXð Þ, where expit að Þ ¼
exp að Þ=½1þ exp að Þ�. When Y was a time to event variable, it was generated as an exponential variable with

rate¼ expð�5 þ 0:1L1 þ 0:1L2 þ � � � þ 0:1L10 þ bXÞ. In these latter scenarios, a random time to censoring var-

iable, C, was also generated according to a log-normal distribution with mean on the log scale¼ log(5) and

standard deviation on the log scale¼ log(1.5). The observed follow-up time was equal to the minimum between

Y and C, and observations for which Y>C were treated as right censored. The coefficient b represents the true

exposure effect: the mean difference when Y was continuous, the log-odds ratio when Y was binary, and the log-

hazard ratio when Y was a time to event.
A causal diagram representing the relationships between the variables is presented in Figure 1. If this diagram

was known to the investigator, confounder selection could be performed by ensuring that all backdoor paths from

X to Y are blocked (see the appendix of VanderWeele and Shpitser13 for an introduction to causal diagrams). For

instance, adjusting for either fL1;L2; . . . ;L5g or fL11;L12; . . . ;L15g is sufficient to eliminate confounding bias.

However, we are interested in a situation where the causal graph is unknown and the investigator is only able to

identify fL1;L2; . . . ;L30g as “potential confounders.” That is, the investigator is able to identify the preceding

variables as potential risk factors for the exposure or the outcome but is unable to clarify their exact role. Some

variables may have been excluded based on substantive knowledge, such as mediators of the effect of X on Y and

colliders, or some variables that are assuredly only associated with the exposure. While researchers would gen-

erally be able to identify at least some variables as definite confounders (for example, age or sex) and would

always adjust for such variables, our previous review revealed that it is not uncommon in practice to include all

covariates in the variable selection procedure.1 The goal was thus to investigate the ability of different CIE

implementations to select a subset of these potential confounders that unbiasedly estimate the causal effect. It

would typically be expected that the exposure estimate based on the subset is more precise than that based on the

model that include all potential confounders, since a more parsimonious model is employed.
A total of 54 different simulation scenarios were constructed by considering all possible combinations of the

following factors: (1) sample size of n¼ 500 or n¼ 1000, (2) correlations q between L6;L7; . . . ;L30 of either 0, 0.2

or 0.5, (3) effect of X on Y of either b¼ 0, 0.1 or 0.5, and (4) type of outcome as either continuous, binary or time

to event. We had initially planned to also consider a sample size of n¼ 200, but this was abandoned due to

frequent convergence issues when the outcome was binary or time to event.

2.2 Change in estimate implementations

We have considered six different implementations of the CIE. These six implementations are first described

generally, then details specific to the type of outcome are presented.

Figure 1. Causal diagram depicting the relationships between the variables in the simulation study. Arrows between groups of
variables indicate that each variable of one group is causally affecting each variable in the second group. Variables L6, . . ., L30 are
correlated in some scenarios (due to external/unobserved common causes).
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Backward – standard (BS). We have first fitted a model for the outcome according to the exposure and all
covariates, and computed the effect estimate from this model. All covariates were then considered for exclusion,
one at a time, and the relative difference in the effect estimate between the fully adjusted model and the model with
one fewer variable was computed. The covariate whose exclusion altered the least the effect estimate was effec-
tively excluded from the model. This process was repeated until it was impossible to exclude a covariate without
changing the estimate by more than a pre-specified threshold as compared to the estimate from the fully adjusted
model.

Backward – P values (BP). This implementation only differs from BS in that the covariate to be excluded at
each step was the one whose associated P value was the largest.

Backward – confidence intervals (BC). We have started by fitting a model for the outcome according to the
exposure and all potential confounders and determined the lower and upper bounds of the 95% confidence
interval for the effect estimate. Next, covariates were considered for exclusion, one at a time. For each candidate,
we calculated the relative change in each bound of the effect estimate’s confidence interval following the exclusion
of the covariate and computed the maximum of these two changes. The covariate whose exclusion altered the least
both bounds – the one with the smallest maximum change in bounds – was effectively excluded. This exclusion
procedure was repeated until the maximum change in bounds of all candidates for exclusion was larger than a pre-
specified threshold, comparing to the bounds of the fully adjusted model. Some authors have proposed that such
an implementation may be superior to those focusing on estimates, because the confidence interval is usually the
final product of an analysis.3

Backward – mean squared error (BM). Again, a model for the outcome according to the exposure and all
potential confounders was first fitted. The exposure coefficient and its estimated standard error are computed.
The mean squared error (MSE) of this initial model is estimated as the square of the exposure coefficient’s
standard error. Then, covariates are considered for exclusion, one at a time. For each candidate, we computed
the estimated MSE as the square of the difference between the exposure coefficient from the reduced model and
that of the initial model, plus the square of the exposure coefficient’s standard error in the reduced model. The
covariate whose exclusion yielded the lowest estimated MSE was effectively excluded. The exclusion procedure
stopped once excluding any of the candidates for exclusion increased the estimated MSE as compared to the one
in the previous step. This is a slightly adapted version of the procedure proposed by Greenland et al.,14 which is
designed to focus on accurate exposure effect estimation, as measured by the MSE.

Forward – crude (FC). We have first fitted a model for the outcome according to the exposure only and
calculated the exposure effect estimate. All covariates were then considered for inclusion, one at a time. The
covariate whose inclusion altered the most the estimate was effectively included. The estimate from the model
adjusting for one additional covariate became the new comparator. This inclusion process was repeated until all
candidates for inclusion altered the effect estimate by less than a pre-specified threshold.

Forward – partial (FP). This implementation only differs from FC in that the initial model was adjusted for L1,
L2, L3, L6, L7. This implementation seeks to imitate a situation where the investigator is able to identify some
confounders and risk factors of the outcome based on prior knowledge but is unsure about the status of the other
potential confounders.

For all implementations, the model was a linear regression when Y was continuous, a logistic regression when
Y was binary, and a Cox regression when Y was a time to event. For all implementations, except BM, the
exposure effect estimate for determining the change in estimate was a mean difference, an odds ratio or a
hazard ratio, when Y was continuous, binary or a time to event, respectively. For BM, the change in MSE
was based on the regression coefficient, regardless of the type of outcome. Three different changes in estimate
thresholds were used for each implementation, except BM: 1%, 5% and 10%. For BM, there was no threshold.
Percentages following implementation abbreviations are henceforth used to indicate the threshold.

2.3 Analysis

For each scenario, 1000 datasets were generated. The exposure effect was estimated with each of the 16 combi-
nations of CIE implementation and threshold value, as well as with an unadjusted model and a fully adjusted
model. For each of these 18 analysis methods (16 CIE implementations, unadjusted model and fully adjusted
model), we first computed bias as the difference between the estimated exposure coefficient and the true exposure
effect coefficient. For scenarios with a continuous outcome, this true exposure coefficient is the value of b in the
fully adjusted model. However, in scenarios with a binary outcome or a time to event outcome, the true exposure
effect coefficient depends on the covariates that are selected, because of the non-collapsibility of the odds ratio
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and hazard ratio. To estimate the true effect, we thus simulated a large sample of 1,000,000 observations where
none of the covariates affected the exposure, but all other data-generating equations were the same as in the
corresponding scenario. This allowed simulating a very large randomized experiment. The true effect, for a given
set of covariates, was then estimated as the exposure coefficient in the regression of the outcome on the exposure
and selected covariates in this randomized experiment. For each scenario and analysis method, we also estimated
the standard error (SE) as the standard deviation of the exposure coefficient estimates, and the proportion of the
time the 95% confidence intervals included the true exposure coefficient (cover) across the 1000 simulated data-
sets. The root-mean-squared-error (RMSE) was computed as the square root of the sum of the squared bias and
the squared SE. For each method, we compared the RMSE to the one of the fully adjusted model to determine if
the confounder selection was able to improve the accuracy of estimates (RMSE ratio). We also determined the
proportion of the time that each covariate was included by each CIE implementation in each scenario. We used
this to calculate the proportion of the time a set sufficient to control confounding bias was selected (sufficient sets
must at least include either fL1;L2; . . . ;L5g or fL11;L12; . . . ;L15g). Also, adjustment for fL16;L17; . . . ;L20g may
be particularly harmful to estimation, since these variables are so-called instruments (variables only associated
with exposure). Adjusting for instruments is susceptible to inflate the variance and bias.15 We thus computed the
proportion of the time that each instrument was included and report the average across all instruments. Similarly,
we computed the average proportion of inclusion of other variables, that is, those that are neither part of a
sufficient set, nor an instrument.

3 Results

The Monte Carlo standard error was less than 0.008 for estimating bias, 0.006 for estimating standard error, and
0.016 for estimating coverage.16 The results did not vary much according to sample size and amount of correlation
between covariates. Therefore, only tables presenting the results for n¼ 500 and q ¼ 0:2 are included in the
manuscript. Tables reporting the results of the other scenarios are devolved to online supplemental material.

3.1 Continuous outcome

Table 1 and Web Tables 1–5 summarize the results of the scenarios with a continuous outcome. When b ¼ 0, all
methods except the unadjusted model produced unbiased estimates. While all CIE have much lower bias than the
unadjusted model, FC10% and FP10% introduced substantial bias as compared to the fully adjusted model in
many scenarios when b ¼ 0:1. The other CIE methods yielded estimates with little or no bias. BS10%, BP10%,
FC5%, FC10%, FP5% and FP10% had substantial bias in many scenarios when b ¼ 0:5, but the other
methods remained essentially unbiased. Bias tended to increase in scenarios with greater correlations between
covariates (qÞ.

All CIE implementations produced confidence intervals that included the true effect in less than 90% of
replications in at least some scenarios, except for BC1% and BC5%. Overall, the coverage of confidence
intervals tended to be lower when the true effect increased, when a larger threshold was used or for the larger
sample size. Forward implementations generally had confidence intervals with the lowest coverage, sometimes as
low as 0%.

Only the BM implementation achieved a modest RMSE reduction as compared to the fully adjusted model,
around 10%, in all scenarios. When b ¼ 0, all other methods had a negligible impact on the RMSE. When
b ¼ 0:1, BS, BP and BC implementations as well as FC1%, and FP1% also produced RMSE similar to those
of the fully adjusted models. FC5%, FC10%, FP5% and FP10% yielded estimates with a lower RMSE than the
fully adjusted model in some scenarios and with a larger RMSE in others. When b ¼ 0:5, BS1%, BP1%, and
BC1% produced a RMSE comparable to the one of the fully adjusted model. BP5%, BC5%, BC10%, FC1%,
and FP1% allowed some reduction of the RMSE in all scenarios, especially BC10%. The other CIE implemen-
tations had a variable effect on the RMSE, sometimes producing reduced RMSE and sometimes increased
RMSE. FC5% and FC10% were particularly prone to yield greatly increased RMSE, whereas FP5% and
FP10% had an RMSE much smaller than the fully adjusted model in most scenarios.

3.2 Binary outcome

The results for the scenarios with a binary outcome are presented in Table 2 and Web Tables 6–10. When b ¼ 0,
only BS1%, BP1%, BC1%, BC5%, BC10% and BM produced estimates with low bias in all scenarios. When
b ¼ 0:1, only BC5% and BC10% had low bias overall. For b ¼ 0:5, all methods had substantial bias in most
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Table 2. Results of scenarios with binary outcome, n¼ 500 and q¼ 0.2.

b¼ 0 b¼ 0.1 b¼ 0.5

Method Bias SE Cover RMSE Ratio Bias SE Cover RMSE Ratio Bias SE Cover RMSE Ratio

Crude .243 .026 0.0 1.48 .269 .033 0.0 1.46 .380 .068 0.0 1.09

Full �.003 .126 94.2 1.00 .005 .142 93.7 1.00 .095 .211 91.1 1.00

BS1 �.002 .124 85.0 0.99 .005 .141 83.0 0.99 .094 .210 79.0 0.99

BS5 .015 .112 65.3 0.90 .020 .127 57.7 0.90 .096 .194 51.5 0.93

BS10 .046 .110 57.4 0.95 .049 .122 49.8 0.92 .117 .173 34.0 0.90

BP1 �.003 .125 89.4 1.00 .005 .141 89.4 1.00 .095 .210 84.7 1.00

BP5 .007 .111 77.3 0.88 .012 .127 74.1 0.90 .093 .200 71.9 0.95

BP10 .031 .095 67.0 0.79 .034 .105 59.8 0.78 .096 .173 55.8 0.86

BC1 �.003 .126 93.8 1.00 .004 .142 93.1 1.00 .095 .211 89.2 1.00

BC5 �.003 .119 94.3 0.95 .001 .134 92.9 0.95 .087 .207 88.3 0.97

BC10 �.002 .117 89.9 0.93 .002 .132 88.9 0.93 .072 .204 86.7 0.94

BM �.001 .111 75.2 0.89 .007 .124 73.4 0.87 .088 .186 65.1 0.89

FC1 �.001 .113 90.6 0.90 .004 .128 88.4 0.90 .091 .199 87.4 0.95

FC5 .076 .042 53.8 0.69 .077 .054 57.5 0.66 .111 .107 63.9 0.67

FC10 .071 .035 58.4 0.63 .068 .042 62.5 0.56 .079 .084 72.5 0.50

FP1 �.001 .113 91.4 0.90 .004 .128 89.9 0.90 .094 .198 86.8 0.95

FP5 .033 .049 87.8 0.47 .036 .062 82.9 0.51 .078 .113 75.8 0.59

FP10 .029 .041 91.7 0.40 .030 .048 88.6 0.40 .053 .087 83.7 0.44

Crude: Unadjusted model, Full: Fully adjusted model; BS: backward – standard; BP: backward – P values; BC: backward – confidence intervals; BM:

backward – MSE; FC: forward – crude; FP: forward – partial; %: change in estimate threshold; SE: Monte Carlo standard error; Cover: proportion of

95% confidence intervals that included the true effect; RMSE ratio: root mean squared error of the analysis method/root mean squared error of the

fully adjusted model.

Table 1. Results of scenarios with continuous outcome, n¼ 500 and q¼ 0.2.

b¼ 0 b¼ 0.1 b¼ 0.5

Method Bias SE Cover RMSE Ratio Bias SE Cover RMSE Ratio Bias SE Cover RMSE Ratio

Crude .276 .011 0.0 4.41 .276 .011 0.0 4.41 .276 .011 0.0 4.41

Full .001 .046 94.9 1.00 .001 .046 94.9 1.00 .001 .046 94.9 1.00

BS1 .001 .046 93.2 1.00 .001 .046 92.0 1.00 .002 .046 85.2 1.00

BS5 .001 .046 89.1 1.00 .002 .046 82.3 1.01 .013 .043 66.7 0.97

BS10 .002 .046 85.2 0.99 .003 .046 74.0 0.99 .031 .044 54.0 1.16

BP1 .001 .046 93.7 1.00 .001 .046 93.0 1.00 .001 .046 89.7 1.00

BP5 .001 .046 91.0 1.00 .001 .046 90.0 0.99 .007 .040 73.2 0.88

BP10 .001 .045 88.8 0.99 .000 .044 86.7 0.95 .032 .040 43.5 1.11

BC1 .001 .046 94.9 1.00 .001 .046 94.8 1.00 .002 .046 95.3 1.00

BC5 .001 .046 94.9 1.01 .001 .046 95.2 1.00 .001 .045 93.0 0.98

BC10 .001 .047 94.9 1.01 .001 .046 95.2 1.00 �.002 .042 86.3 0.90

BM .002 .040 79.9 0.87 .002 .040 79.9 0.87 .002 .040 79.9 0.87

FC1 .001 .046 94.6 1.00 .001 .045 94.6 0.98 .004 .042 89.6 0.91

FC5 .001 .044 93.3 0.95 .009 .046 79.2 1.01 .056 .023 12.5 1.31

FC10 .002 .044 88.7 0.96 .048 .035 25.0 1.28 .082 .015 0.1 1.80

FP1 .001 .046 94.3 1.00 .001 .045 94.6 0.98 .004 .041 89.7 0.90

FP5 .001 .044 93.0 0.95 .006 .043 84.4 0.95 .029 .018 58.1 0.74

FP10 .002 .043 89.0 0.94 .028 .036 54.2 0.98 .029 .017 58.9 0.73

Crude: Unadjusted model; Full: fully adjusted model; BS: backward – standard; BP: backward – P values; BC: backward – confidence intervals; BM:

backward – MSE; FC: forward – crude; FP: forward – partial; %: change in estimate threshold; SE: Monte Carlo standard error; Cover: proportion of

95% confidence intervals that included the true effect; RMSE ratio: root mean squared error of the analysis method/root mean squared error of the

fully adjusted model.
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scenarios. FC5% and FC10% generally had the largest bias, although this bias was much lower than that of the
unadjusted model. Of note, even the fully adjusted model produced biased estimates when b ¼ 0:1 or b ¼ 0:5: This
is likely due to the finite sample bias associated with fitting a large model with a relatively small sample size, since
the bias was lower for scenarios with n¼ 1000 than in scenarios with n¼ 500.

Table 3. Results of scenarios with time to event outcome, n¼ 500 and q¼ 0.2.

b¼ 0 b¼ 0.1 b¼ 0.5

Method Bias SE Cover RMSE Ratio Bias SE Cover RMSE Ratio Bias SE Cover RMSE Ratio

Crude .255 .033 0.0 1.02 .290 .032 0.0 1.31 .414 .043 0.0 1.16

Full �.001 .201 91.9 1.00 .014 .172 90.9 1.00 .058 .127 89.6 1.00

BS1 �.001 .200 82.2 1.00 .014 .171 79.5 0.99 .058 .126 55.1 0.99

BS5 .010 .185 63.4 0.92 .025 .154 55.1 0.90 .065 .110 25.5 0.92

BS10 .035 .167 60.3 0.85 .052 .140 44.6 0.86 .090 .092 14.1 0.92

BP1 �.001 .201 91.9 1.00 .014 .172 88.3 1.00 .058 .127 29.9 1.00

BP5 �.002 .198 92.2 0.99 .011 .169 90.4 0.98 .052 .126 67.6 0.98

BP10 .009 .197 91.1 0.98 .029 .168 87.9 0.99 .078 .121 57.6 1.03

BC1 �.001 .201 91.7 1.00 .014 .172 90.0 1.00 .058 .127 75.4 1.00

BC5 �.003 .197 89.8 0.98 .011 .168 88.6 0.97 .047 .124 74.3 0.95

BC10 �.004 .187 88.8 0.93 .010 .161 87.0 0.93 .049 .121 59.1 0.94

BM .002 .178 67.3 0.89 .016 .152 65.6 0.89 .057 .115 41.8 0.92

FC1 .000 .192 89.7 0.96 .012 .162 88.6 0.94 .057 .117 66.7 0.93

FC5 .074 .081 67.6 0.55 .076 .065 48.6 0.58 .059 .062 21.1 0.61

FC10 .066 .050 75.0 0.41 .065 .045 55.0 0.46 .097 .069 13.1 0.85

FP1 .001 .193 89.1 0.96 .014 .165 88.3 0.96 .056 .116 64.3 0.92

FP5 .037 .097 83.9 0.52 .040 .072 77.5 0.48 .037 .057 36.5 0.49

FP10 .033 .060 89.0 0.34 .032 .051 83.1 0.35 .029 .049 39.1 0.41

Crude: Unadjusted model, Full: Fully adjusted model; BS: backward – standard; BP: backward – P values; BC: backward – confidence intervals; BM:

backward – MSE; FC: forward – crude; FP: forward – partial; %: change in estimate threshold; SE: Monte Carlo standard error; Cover: proportion of

95% confidence intervals that included the true effect; RMSE ratio: root mean squared error of the analysis method/root mean squared error of the

fully adjusted model.

Table 4. Proportion of simulation replicates in which a set sufficient to control confounding (S) was selected and average proportion
of inclusion of each instrument (I) and other variable (O).

Continuous Binary Time to event

S I O S I O S I O

BS1 0.53 0.93 0.73 0.27 0.94 0.22 0.22 0.92 0.37

BS5 0.41 0.71 0.41 0.17 0.32 0.00 0.14 0.34 0.01

BS10 0.36 0.56 0.27 0.11 0.12 0.00 0.09 0.13 0.00

BP1 0.64 0.79 0.81 0.44 0.98 0.99 0.26 0.37 0.37

BP5 0.53 0.68 0.82 0.11 0.52 0.69 0.44 0.88 0.88

BP10 0.43 0.56 0.69 0.03 0.17 0.28 0.22 0.91 0.91

BC1 0.66 0.98 0.77 0.50 1.00 0.58 0.50 1.00 0.87

BC5 0.53 1.00 0.52 0.49 1.00 0.04 0.46 1.00 0.05

BC10 0.50 0.85 0.28 0.46 0.89 0.00 0.42 0.79 0.00

BM 0.63 0.57 1.00 0.41 0.54 0.97 0.37 0.54 0.99

FC1 0.68 0.94 0.86 0.07 0.91 0.35 0.07 0.94 0.60

FC5 0.33 0.58 0.51 0.00 0.02 0.00 0.00 0.01 0.00

FC10 0.20 0.36 0.29 0.00 0.00 0.00 0.00 0.00 0.00

FP1 0.70 0.93 1.00 0.18 0.91 1.00 0.18 0.92 1.00

FP5 0.35 0.58 1.00 0.00 0.02 1.00 0.00 0.01 1.00

FP10 0.21 0.37 1.00 0.00 0.00 1.00 0.00 0.00 1.00

S: Sufficient; I: instrumentals; O: others (not in a sufficient set and not an instrument); BS: backward – standard; BP: backward – P values; BC: backward

– confidence intervals; BM: backward – MSE; FC: forward – crude; FP: forward – partial.
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Most methods had coverage rate below 90% in most scenarios. BC1% and BC5% had close to appropriate
coverage in all scenarios with either b ¼ 0 or 0.1 and in all but one scenario with b ¼ 0:5: While the fully

adjusted model had important bias in some circumstances, as previously noted, its coverage remained adequate
in all scenarios.

BS1%, BP1%, BC1% and BC5% had an RMSE similar to the one of the fully adjusted model in all

scenarios. BS10%, FC5% and FC10% had mixed results, sometimes increasing, and sometimes decreasing
the RMSE. BP10%, BM, FP5% and FP10% were the implementations that most consistently decreased the

RMSE across scenarios. FP5% and FP10% were the most susceptible to yield an important decrease in
the RMSE.

3.3 Time to event outcome

The results for the scenarios with a time to event outcome are displayed in Table 3 and Web Tables 11–15. In
scenarios with b ¼ 0, most CIE methods had low bias, except BS10%, FC5%, FC10%, FP5% and FP10% which

had notable bias in at least some cases. In contrast, when b ¼ 0:1 or 0.5, all methods had important bias in at least
some scenarios, including the fully adjusted model. The bias was smaller for the larger sample size, again

suggesting a finite sample bias.
The coverage of 95% confidence intervals was below 90% in at least some scenarios for all methods. Only the

fully adjusted model had close to appropriate coverage in all scenarios.
As in the binary outcome scenarios, BS1%, BP1%, BC1% and BC5% had an RMSE similar to the one of the

fully adjusted model. BS10%, BP5%, BP10%, FC5% and FC10% increased the RMSE by more than 10% in one
or more of the scenarios we considered. FP5% and FP10% were the methods that most consistently decreased the

RMSE and that induced the greatest reduction in the RMSE.

Table 5. Characteristics of the extracted sample from the PROspective Qu�ebec (PROQ) Study on Work and
Health according to body mass index.

BMI<median BMI>median

Sex (women) 2033 (62.3) 1120 (34.3)

Age, mean (SD) 45.3 (7.5) 49.0 (8.5)

Income, mean (SD) 53.1 (18.4) 55.8 (17.4)

Hours of work per week

�20 h/week 16 (0.5) 10 (0.3)

21–34 h/week 193 (5.9) 153 (4.7)

35–40 h/week 2877 (88.2) 2800 (85.8)

�41 h/week 177 (5.4) 300 (9.2)

Education

High school or less 982 (30.1) 827 (25.3)

College 983 (30.1) 895 (27.4)

University 1298 (39.8) 1541 (47.2)

Occupation

White collars 1167 (35.8) 809 (24.8)

Technicians 725 (22.2) 656 (20.1)

Professionals 1067 (32.7) 1258 (38.6)

Managers / Directors 225 (6.9) 454 (13.9)

Others 79 (2.4) 86 (2.6)

Job strain 686 (21.0) 680 (20.8)

Hypertension or hypertensive medication 328 (10.1) 836 (25.6)

Diabetes 40 (1.2) 71 (2.2)

Family history of cardiovascular disease 1036 (31.7) 1177 (36.1)

Physical activity, mean (SD) 5.3 (4.3) 5.2 (4.4)

Alcohol, mean (SD) 2.8 (4.01) 3.6 (5.20)

Smoking 809 (24.8) 621 (19.0)

Note: All results are n (%), unless otherwise indicated, SD: Standard deviation, BMI: body mass index.
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3.4 Covariates inclusion

Table 4 presents the proportion of inclusion of covariates for each CIE implementation across simulation sce-
narios. The proportion of replicates in which a set sufficient to control confounding was effectively selected was
less than 70% for all methods. This proportion was generally greater for smaller thresholds than for larger ones.
On the other hand, most methods included instruments relatively often, sometimes as much as including all
instruments in 100% of the replicates. This was particularly the case for smaller thresholds. Similarly, most
methods also often included variables that are neither confounders nor instruments (“other” variables), especially
with the 1% threshold. These results indicate that none of the implementation adequately differentiated con-
founders and non-confounders in our simulation study.

3.5 PROspective Qu�ebec (PROQ) study on work and health

To illustrate the change in estimate method in a real data setting, we explored the association between body mass
index (BMI) and diastolic blood pressure (BP) in the PROspective Quebec (PROQ) Study on Work and Health.
We note it would be possible (in fact, preferable) to instead draw a causal graph based on our subject-matter
knowledge. However, since our goal is to illustrate and compare the different CIE implementations, we applied a
naı̈ve approach where all variables that were identified as potential confounders based on substantive knowledge
are included in the variable selection procedures.

In Quebec City (QC, Canada) 9188 white-collar workers (48.5% women) enrolled in the PROQ cohort, were
followed over a period of 25 years.11 At recruitment, in 1991–1993, participants worked in one of 19 public and
parapublic organizations in the Quebec City region. The eligibility criteria were to work at least 21 hours a week
and not to hold another paid job of more than 10 h a week. The PROQ cohort had a participation rate of 75%.
A first follow-up occurred in 1999–2001 with a participation rate of 89%. A second follow-up happened in
2015–2018, but is not considered in this analysis. This study was approved by the CHU de Qu�ebec –
Universit�e Laval’s ethical review board (#2012-1674).

BMI, a measure of body fat based on height and weight, has been positively associated with systolic and
diastolic BP as well as with hypertension.17–20 The reduction of BMI combined with lifestyle modification are
preferred strategies to reduce BP.21–23 Weight management strategies are supported by prospective evidence
reporting that BMI reduction is associated with BP reduction, implying a causal relationship.18,24,25 Since BMI
and BP are important cardiovascular risk factors,26 this relationship has important implication, especially in
population with high obesity rates.

We estimated the association between BMI at baseline and diastolic BP at the first follow-up using an
unadjusted model, a fully adjusted linear regression, as well as the 16 CIE implementations considered in the
previous section. Based on subject-matter knowledge, a set of 13 potential confounders measured at baseline was
considered. This set included sex, age, income (in 1000 Canadian dollars), hours of work per week, education,
occupation, exposure to job strain (a psychosocial work stressor), hypertension diagnosis or use of hypertension
medication, self-reported diabetes, family history of cardiovascular disease, frequency of 20–30minutes physical
activity per month, number of alcohol drinks per week and current smoking (yes or no). Weight (kg) and height
(cm) were measured by a trained research assistant. BMI was calculated by dividing a participant’s weight by their
height in metres squared. BP was measured according to recognized protocol.27 In brief, participant’s BP was
measured at rest after they had been sitting for 5min. The average of three BP measurements taken 1–2 minutes
apart was recorded. More information is available elsewhere.11 For the FP implementation, age and sex were
forced to be included. To simplify the illustration, we considered a subsample of 6526 participants without missing
data on any of the considered variables.

Table 5 provides descriptive statistics on these data. Among others, the proportion of female participants was
lower among those with a BMI over the median (24.1 kg/m2) than those with a BMI below the median. Those with
a greater BMI were also older, more likely to have a university diploma, suffered from hypertension or diabetes in
a greater proportion, drank more alcohol and were less likely to be smokers. The linear association between BMI
(in kg/m2) and diastolic BP (in mm Hg) estimated using the different methods is reported in Table 6. In this
illustration, all methods produced similar point estimates, wherein each increase of 1 kg/m2 of BMI was associated
with an increase of approximately 0.78mm Hg of diastolic BP. Interestingly, all methods yielded virtually iden-
tical standard errors (0.042). Hence, in this example, employing the CIE to select potential confounders did not
improve the apparent precision of the estimation. The covariates selected by the CIE implementations were also
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very similar. Age, sex and diagnosis of hypertension were always selected, and education was additionally includ-

ed when a 1% threshold was used. Only the BP and BM implementations included further covariates.

4 Discussion

We have conducted an extensive simulation study that aimed at addressing a gap in knowledge regarding the

performance of the CIE for selecting potential confounders. To the best of our knowledge, this is the first

simulation study to consider scenarios with multiple potential confounders, with a continuous or a time to

event outcome and to investigate the performance of forward inclusion and backward exclusion based on

changes in confidence intervals implementations of the CIE.
In summary, we have observed that all CIE implementations are at risk of introducing substantial bias and to

produce confidence intervals that include the true effect much less often than expected. Forward inclusion

methods produced particularly poor results in terms of bias and coverage. Our results also indicate mixed per-

formance of many CIE implementations in terms of reducing the RMSE. While most methods were able to

achieve at least some reduction of the RMSE as compared to the fully adjusted models in some scenarios, the

reduction was often modest and an increase in the RMSE could also occur. In such cases, the data-driven selection

of confounders was harmful. In this regard, our results are similar to those of previous simulation studies.7–9

Forward CIE implementations were the most susceptible to substantially reduce the RMSE but were also the

most likely to introduce important bias and yield invalid inferences. We have also observed that all CIE imple-

mentations failed to adequately differentiate confounders from non-confounders. The methods that were the most

likely to include confounders were also the most likely to include instruments, which are particularly harmful for

effect estimation. In the real data illustration, no reduction of the estimated standard error was observed, regard-

less of the implementation or threshold.
A limitation to consider when interpreting these results is that they arose from a synthetic data simulation

study. Although a total of 54 different scenarios were considered, alternative scenarios may yield different results.

Moreover, it is difficult to adequately replicate the complexity of real data using synthetic data simulations.

Future studies may consider plasmode simulations,28 which combine real and synthetic data, to address this

Table 6. Estimate and selected covariates for the association between body mass index and diastolic blood pressure in the
PROspective Qu�ebec (PROQ) Study on Work and Health according to change-in-estimate implementation.

Selected covariates

Method Estimate (SE) 1 2 3 4 5 6 7 8 9 10 11 12 13

Crude 1.411 (0.044)

Full 0.774 (0.042) X X X X X X X X X X X X X

BS1% 0.776 (0.042) X X X X

BS5% 0.787 (0.042) X X X

BS10% 0.787 (0.042) X X X

BP1% 0.773 (0.042) X X X X X X X X X X X X

BP5% 0.788 (0.042) X X X X X X

BP10% 0.788 (0.042) X X X X X X

BC1% 0.776 (0.042) X X X X

BC5% 0.787 (0.042) X X X

BC10% 0.787 (0.042) X X X

BM 0.776 (0.042) X X X X X X X X X

FC1% 0.776 (0.042) X X X X

FC5% 0.787 (0.042) X X X

FC10% 0.787 (0.042) X X X

FP1% 0.776 (0.042) X X X X

FP5% 0.787 (0.042) X X X

FP10% 0.787 (0.042) X X X

Crude: Unadjusted model, Full: fully adjusted model; BS: backward – standard; BP: backward – P values; BC: backward – confidence intervals; BM:

Backward – MSE; FC: forward – crude; FP: forward – partial; %: change in estimate threshold; SE: Standard error; 1¼ sex; 2¼ age; 3¼ income;

4¼ hours of work per week; 5¼ education; 6¼occupation; 7: job strain; 8¼ hypertension diagnosis or use of hypertensive medication; 9 ¼diabetes;

10¼ family history of cardiovascular disease; 11¼ physical activity; 12¼ alcohol; 13¼ smoking.
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issue. Another limitation concerns the non-collapsibility of the odds ratio and the hazard ratio. When non-

collapsible effect measures are used, the change in estimate between different covariate adjustment sets may

reflect non-collapsibility in addition to confounding. We attempted to mitigate this issue by estimating a true

effect specific to the variables that were included in the final model. It would have also been possible to employ

adjustment methods that circumvent the non-collapsibility issue by estimating marginal effects instead of condi-

tional ones. When estimating a marginal effect, the effect measure is no longer conditional on the covariates that

are included in the model, thus bypassing the non-collapsibility issue. Such methods notably include inverse

probability weighting, standardization/g-formula, augmented inverse probability weighting and targeted maxi-

mum likelihood estimation.29,30 We did not consider these methods in the current study in an attempt to evaluate

the CIE methods as they are currently being implemented in practice.
Despite these limitations, our results provide important insights concerning the CIE for selecting confounders.

Considering the low ability of all CIE methods we have explored to yield unbiased estimates with improved

precision and their inability to identify true confounders or valid inferences, there seems to be little or no benefit in

employing any of the CIE implementation. An important point to consider is that CIE may give a false impression

of improved precision when the estimated standard error is reduced after variable selection. However, this esti-

mated standard error is invalid and underestimates the true standard error, since it does not account for the

variability associated with the variable selection. Unfortunately, adequately accounting for the variable selection

when estimating the standard error and producing confidence intervals is theoretically challenging.31,32 Although

the usual bootstrap has been proposed,14 this solution is not theoretically supported when the post-selection

estimator is insufficiently smooth.33

More sophisticated data-driven methods for confounder selection have been developed in recent years. Some of

these methods address multiple of the shortcomings of the CIE that were observed in our study. For instance, they

target an unbiased estimation of the casual effect with improved precision as compared to a fully adjusted model,

and offer theoretical guarantees, under some assumptions, concerning the identification of true confounders in

large sample sizes.12,34–40 However, causal thinking is always essential to adequately control confounding, notably

to avoid adjusting for colliders or for variables lying on the causal pathway of interest (mediators) and to ensure

that all known confounders are adjusted for.
Multiple tools and methods have been proposed to facilitate knowledge-based selection of covariates.5,13,41,42

Sensitivity analyses can also be used to explore the robustness of results to different choices of covariates when the

role of some of them is unclear. As such, we believe that data-driven confounder selection should be considered as

a potential complement to substantive knowledge only when it is unclear if some variables are true confounders or

not; it should not be considered as a mandatory step of exposure effect estimation. Data-driven confounder

selection methods may prove particularly helpful in new areas of research where expert knowledge is

scarce, such as an emerging disease like COVID-19. When data-driven confounder selection seems warranted,

we believe the CIE should be avoided since it offers little or no benefits and it can yield invalid estimates and

inferences. Instead, the novel methods with a stronger theoretical background we mentioned earlier should be

considered.
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