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Abstract

Background An immediate loss of strength follows vir-

tually all types of muscle injury but there is debate whether

the initial strength loss is maximal or if a secondary loss of

strength occurs during the first 3 days post-injury.

Objective The objective of this analysis was to conduct a

systematic review and meta-analysis of the research liter-

ature to determine if a secondary loss of strength occurs

after an injurious initiating event.

Methods Literature searches were performed using eight

electronic databases (e.g., PubMed, Cochrane Library).

Search terms included skeletal muscle AND (injur* OR

damage*) AND (strength OR force OR torque). The

extracted strength data were converted to a standard format

by calculating the standardized mean difference, which is

reported as the effect size (ES) along with its 95 % confi-

dence interval (CI). The calculation of ES was designed so

that a negative ES that was statistically less than zero would

be interpreted as indicating a secondary loss of strength.

Results A total of 223 studies with over 4000 human and

animal subjects yielded data on 262 independent groups

and a total of 936 separate ESs. Our overall meta-analysis

yielded a small-to-medium, positive overall ES that was

statistically greater than zero (overall ES = ?0.34, 95 %

CI 0.27–0.40; P\ 0.00000001). Considerable variation in

ES was observed among studies (I2 = 86 %), which could

be partially explained by the research group conducting the

study, sex of the subject, day of post-injury strength

assessment, whether fatigue was present immediately post-

injury, and the muscle group injured. From the subgroup

meta-analyses probing these variables, 36 subgroup ESs

were calculated and none were statistically less than zero.

Conclusion Overall, our findings do not support the

presence of a secondary loss of strength following an acute

muscle injury, and strongly suggest that strength, on

average, recovers steadily over the first 3 days post-injury.

Key Points

On average, strength does not deteriorate in the first

3 days after a muscle injury.

Care should be taken when debating the use of

therapeutic interventions designed to prevent or

attenuate a strength loss associated with secondary

muscle injury.

1 Introduction

Injury to skeletal muscle induced by work, exercise, and

most traumatic means (e.g., crush, laceration, penetration,

blast, freezing) results in an immediate loss of strength.
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Depending on the means for inducing injury, this strength

loss can be attributed to a disruption of the excitation–

contraction coupling process and/or frank damage to force-

generating or -transmitting structures within the muscle [1–

3]. We and others have hypothesized that the initial injury

can start a cascade of events that leads to additional injury

in the ensuing hours and days [3, 4]. This cascade has been

thought to begin with a loss of intracellular calcium

homeostasis within the damaged muscle fibers that is

brought on by a loss of plasmalemmal integrity. The loss of

calcium homeostasis may then lead to activation of several

degradative pathways intrinsic to muscle that are referred

to as autogenetic mechanisms [4]. These calcium-sensitive

pathways include calcium-activated neutral proteases and

those of the phospholipase A2 cascade, which produce

arachidonic acid, prostaglandins, and leukotrienes that may

further damage cell membranes. Elevated intracellular

calcium may also disrupt mitochondrial respiration and

result in sarcomeric contracture. The autogenetic mecha-

nisms for inducing damage are thought to be followed by

an inflammatory phase, beginning 2–6 h after the initiating

event [4]. In this phase, neutrophils and macrophages

invade the damaged tissue and are primarily responsible for

removal of that tissue over the next several days. It is

believed that this inflammatory response may induce

additional injury by spillover of inflammation, including

reactive oxygen species, from damaged tissue onto adja-

cent tissue that was initially undamaged (i.e., the so-called

bystander injury) [5].

If the autogenetic mechanisms and inflammatory response

contribute to an additional (or secondary) injury in the hours

and days following the initiating event, the damage should be

measurable using standard markers of muscle injury. Such

markers include histopathology, soreness, blood levels of

muscle proteins, limb range of motion, and strength. We and

others have reasoned that muscle strength, measured during

either maximal voluntary or electrically elicited contractions,

provides the single-best assessment of the extent of muscle

injury regardless of injury type. This is because strength

comes closest to evaluating the overall functional capacity of

the tissue [3, 6]. Strength is also quantifiable in both human

and animal injury models whereas many other measures are

not feasible or practical in all models (e.g., quantitative

histopathology in human models) and/or are only semi-

quantitative (e.g., blood levels of muscle proteins).

The earliest suggestion for a secondary loss of strength

following an initiating injurious event came from John

Faulkner and colleagues in a narrative review article pub-

lished over 20 years ago [3]. They specifically argued that

a secondary strength loss occurs in the first 3 days after

injury. Since then, others have acknowledged that such a

strength loss is likely [7, 8], but the direct evidence for the

loss has been mixed (e.g., Brooks and Faulkner [9] and

Roche et al. [10]). It is important to determine whether a

secondary strength loss occurs because this information can

affect if and how muscle injuries should be treated,

specifically whether interventions such as anti-inflamma-

tory medications, cryotherapy, or antioxidants should be

used to block autogenetic pathways or minimize the

inflammatory response. It is possible that these cellular

events are more associated with repair and regeneration of

the damaged tissue than with inducing an additional (or

secondary) injury. If this is the case, the above interven-

tions may have no beneficial effects at best and adverse

effects at worst.

Because of the apparent discrepant evidence in the litera-

ture for the presence of a secondary strength loss, we felt that a

rigorous, quantitative analysis of the literature was warranted.

Our objective was to conduct a systematic review combined

with a meta-analytic approach to determine whether over the

first 3 days following an injurious event to muscle, there is a

strength loss above and beyond the initial loss (Fig. 1). Such a

loss would constitute a secondary strength loss and a sec-

ondary muscle injury. We are unaware of any previous

attempt to address this issue using this methodology. We also

sought to explain the disparate findings in the literature by

examining the effects of various experimental factors (e.g.,

subject type [animal vs. human], sex of the subject, type of

injury, muscle group injured, day of post-injury strength

assessment) that have varied among studies.

2 Methods

2.1 Systematic Review

2.1.1 Selection of Studies

A thorough systematic search of the research literature was

performed conforming to the PRISMA statement [11] to

Fig. 1 Hypothetical graph of strength loss vs. time post-injury with

and without a secondary loss of strength
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determine if a secondary loss of strength occurs over the

first 3 days after a muscle injury. Our literature search

began in January 2011 and continued through to December

2012. The databases that were searched include PubMed,

SPORTDiscus, ISI Web of Knowledge, CINAHL,

Cochrane Library, OpenSIGLE, ProQuest Dissertation and

Theses, and the American College of Sports Medicine

database of annual meeting proceedings. The search terms

used were skeletal muscle AND (injur* OR damage*)

AND (strength OR force OR torque). Reference lists from

fully evaluated publications were also examined for studies

not found with the online database searches.

2.1.2 Study Inclusion and Exclusion Criteria

Studies meeting the following criteria were considered for

review: (1) muscle injury had to be induced experimentally

by exercise or work biased to the performance of eccentric

contractions or by trauma (e.g., crush, laceration, penetra-

tion, blast, freezing, myotoxin injection, ischemia–reperfu-

sion); (2) strength in the injured muscle group had to be

assessed immediately post-injury (i.e., within the first 6 h) in

addition to at least one assessment performed between 24

and 72 h post-injury; and (3) isometric, isokinetic, and/or

isotonic strength was assessed usingmaximal voluntary and/

or electrically elicited contractions. Studies or study sub-

groups were excluded for the following reasons. First, sub-

jects performed non-damaging exercise (e.g., isometric or

concentric contractions) in addition to or in lieu of eccentric

contractions or eccentric contraction-biased exercise. Sec-

ond, drugs, ergogenic drink/food, or supplements were

ingested or administered prior to, during, or after injury.

However, if one or more independent groups of subjects

from a study met the above criteria for inclusion (e.g., a

control groupwhosemuscleswere injured but received sham

treatment in an interventional study), their data were inclu-

ded in the analysis. Third, a therapeutic modality such as

massage, heat, ice, transcutaneous electrical nerve stimula-

tion, ultrasound, or hyperbaric oxygen was applied prior to,

during, or after injury. Fourth, for studies inducing injury by

eccentric contractions, a bout of eccentric contractions had

been performed in the previous 3 months; in other words, the

second bout in repeated-bout studies was excluded. Fifth,

animal strains modeling a disease were used (e.g., the mdx

mouse, which is amodel for Duchennemuscular dystrophy).

Sixth, if there were insufficient data reported in a study to

calculate an effect size (ES) for the change of strength over

the first 3 days post-injury, the study was excluded. Before

excluding such studies, we attempted to retrieve the neces-

sary data by contacting the corresponding author by e-mail

and/or telephone.

A total of 5525 non-duplicate studies were originally

identified through the database searches and review of

article reference lists. Of those, 3685 were initially exclu-

ded on the basis of reviewing the title and abstract. At this

point, 1840 were fully evaluated via a careful review of the

full-text article. Using the inclusion and exclusion criteria,

1617 studies were excluded, leaving a total of 223 studies

to be included in the meta-analyses. The review and

selection processes for the studies in the systematic review

are summarized in Fig. 2. Each step of the review and

selection processes was conducted independently by at

least two of the authors. If there was disagreement among

the two authors, a third author was recruited to settle the

dispute.

2.1.3 Data Extraction and Assessment of Study Quality

or Bias

For calculation of study ESs to be used in the meta-anal-

ysis, strength data were extracted in the form of means,

sample sizes, and standard deviations (SDs) or standard

errors (SEs) for all post-injury timepoints, strength mea-

sures, and subject groups meeting our criteria. In studies

that did not report all three descriptors, the following were

extracted: (1) means, sample sizes, and P value; or (2)

effect direction, sample sizes, and P value. If available for

repeated-measures design studies, individual subject data

were also extracted so that between-trial correlations for

the strength measures (i.e., correlation between that mea-

sured immediately and day 1–3 post-injury) could be cal-

culated. Study quality and/or bias was not formally

assessed in the 223 studies because there were no studies

whose objective was to examine the existence of a sec-

ondary strength loss, which was the objective of the present

analysis. Thus, if a study’s quality was poor or if study bias

existed with regard to a study’s objective, this should not

have a systematic influence on a study’s ES in our meta-

analysis.

2.2 Meta-Analysis

The extracted strength loss data were converted to a stan-

dard format by calculating the standardized mean differ-

ence, which will be referred to as the ES. The standardized

mean difference calculation was set up so that a negative

value would indicate a secondary strength loss. For studies

in which the immediate and day 1–3 post-injury strength

measures were taken on the same subjects and also means,

SDs, and sample sizes were reported (i.e., the most com-

mon scenario; n = 197 studies), the paired difference (i.e.,

day 1–3 post-injury strength mean - immediate post-in-

jury strength mean), paired difference SD [i.e., (‘‘day 1–3’’

SD2 ? ‘‘immediate’’ SD2 - 2 9 between-trial correla-

tion 9 ‘‘day1–3’’ SD 9 ‘‘immediate’’ SD)�], and paired

difference SE (i.e., paired difference SD/n�) were initially
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calculated. These were then used to calculate the stan-

dardized mean difference [i.e., paired differ-

ence 9 (2 9 (1 - between-trial correlation))�/paired

difference SD] and standardized mean difference SE [i.e.,

(1/n ? standardized mean difference2/2n)� 9 (2 9 (1 -

between-trial correlation))�]. Because between-trial cor-

relations could be calculated for only 14 independent

groups, the median between-trial correlation (0.803) was

substituted in the calculations for studies without correla-

tions. For the studies in which independent groups of

subjects were used within a study for measurements at the

different timepoints (i.e., n = 26 studies), standardized

mean differences were calculated as detailed previously

[12].

When a study measured strength under multiple condi-

tions (e.g., measured both isokinetic and isometric strength

or measured strength multiple times over the first 3 days

post-injury) using the same group of subjects, the stan-

dardized mean differences and variances were calculated

for each condition level and then averaged across the dif-

ferent condition levels for the group. When a study had

more than one independent group of subjects that met the

Fig. 2 Flowchart for review and selection of studies in the systematic review
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criteria for assessing secondary strength loss, a standard-

ized mean difference and variance was calculated for each

group. Then, in the calculation of the overall standardized

mean difference, these groups were treated as if they were

independent studies [12]. Though 223 studies were used in

the meta-analysis, these studies yielded 262 independent

groups of subjects and a total of 936 separate ESs.

Meta-analyses were run using a random-effects model

that accounts for true between-study variation in effects as

well as for random error within each study. A random-

effects model was chosen over a fixed-effect model

because of the wide variation in experimental factors (e.g.,

use of humans vs. animals, different means of inducing

injury) among studies. Between-study variation in true ES,

or heterogeneity, was assessed by Q and I2 statistics.

Because heterogeneity was found to be high, meta-re-

gressions utilizing a method-of-moments approach and

subgroup meta-analyses utilizing a Q-test based on

ANOVA were used to investigate potential moderator

variables (experimental factors) as possible explanations

for the heterogeneity. The potential moderator variables

examined were (1) study publication year; (2) subject type

(human vs. animal); (3) subject sex; (4) subject age; (5) day

of post-injury assessment of muscle strength (day 1 vs.

day 2 vs. day 3); (6) for human studies, the muscle group

injured (e.g., elbow flexors vs. knee extensors); (7) for

animal studies, the type of rodent (rat vs. mouse); (8) for

animal studies, the muscle injured (ankle dorsiflexor vs.

plantarflexor); (9) for animal studies, the type of injury

(eccentric contractions vs. traumatic); (10) presence of

fatigue immediately post-injury; (11) magnitude of the

immediate strength loss; (12) type of contraction used to

assess strength; and (13) research group conducting a

study.

It was important to determine whether fatigue was

present in a study because it might explain some of the

between-study variation in ES. If fatigue was present after

injurious work or exercise, the immediate post-injury

strength would be lower than it should be. As a result, the

study ES would be inflated and possibly positive when it

should have been negative. To determine whether fatigue

was present in a study, we examined the methods for each

study to see if (1) there was a comparable control group

(e.g., using isometric or concentric contractions as a control

for injury induced by eccentric contractions); or (2) mul-

tiple strength measurements were made in the 0–6 h post-

injury period so that strength changes over this period

could be assessed. If the strength loss in a control group

was apparent as compared with that for an eccentric con-

traction-injured group or if recovery of strength was

apparent in the eccentric contraction-injured group over

0–6 h post-injury, fatigue was said to be present immedi-

ately post-injury in that study. For studies without these

controls but in which (1) the injury was traumatic in nature

(i.e., no contractions were performed during injury induc-

tion); or (2) the immediate post-injury measure of strength

was performed relatively late after the eccentric contraction

injury protocol (i.e., 0.5–6 h post-injury), we assumed that

fatigue was not present immediately post-injury. For all

other studies, the presence of fatigue immediate post-injury

was listed as unknown.

To determine if the research group conducting a study

might also explain some of the between-study variation in

ES, we designated research groups using the following

procedure. First, we identified authors of studies from our

meta-analysis that had conducted five or more studies.

These authors were then cross-referenced with each other

to identify collaborative groups (e.g., relationships between

an advisor and his/her current or former students, post-

doctoral fellows, or colleagues). Each collaborative group

was required to have ten or more independent groups for

which an ES was calculated in the meta-analysis. We

identified five research groups that met these criteria.

Studies not belonging to a research group were placed in a

group labeled ‘‘All other studies.’’

For all subgroup meta-analyses, each subgroup was

required to have a minimum of five studies, with the

exception as noted in the previous paragraph. In studies

that had more than one level of the experimental factor

being evaluated (e.g., a study measuring strength loss in

both a group of men and a group of women in the subgroup

meta-analysis evaluating the effect of subject sex), an ES

was calculated for each level and each ES was treated as if

it originated from an independent study.

Meta-analyses, subgroup meta-analyses, and meta-re-

gressions were performed using the Comprehensive

Meta-Analysis software (version 3.3; Biostat Inc.,

Englewood, NJ, USA). ESs of 0.2, 0.5, and 0.8 were

considered to be small, medium, and large, respectively

[13]; an ES of 0.1 was considered to be trivial. An a
level of 0.05 was used in all analyses except in subgroup

meta-analyses where more than two levels of a moder-

ator variable existed and the overall Q-test yielded a

significant P value. In this situation, a Benjamini and

Hochberg false discovery rate adjustment was applied to

the a level to correct for multiple post hoc pairwise

comparisons using Q-tests. As for study quality and bias

as mentioned above, the effect of publication bias on the

meta-analysis was not assessed because no studies in the

meta-analysis had a research objective matching that of

the present analysis. Though unpublished studies meet-

ing our inclusion/exclusion criteria are likely, these

should not be biased towards exhibiting a secondary

strength loss or not.
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3 Results

3.1 Description of Included Studies

In total, 223 studies, along with data for 262 independent

groups of subjects, were published between 1985 and 2012,

and these were included in the meta-analysis investigating

secondary strength loss. Briefly, there were 184 human and

39 animal studies. For the human studies, there were a total

of 3413 subjects, with the average age for a study ranging

from 18 to 70.5 years. These studies contained 111 inde-

pendent groups that were male only and 22 that were

female only. For the human studies, strength was reported

both immediately and at day 1, day 2, or day 3 post-injury

in 192, 188, and 163 independent groups, respectively.

Eccentric contraction-biased exercise or eccentric con-

tractions were used to induce injury in all human studies.

For the animal studies, there were a total of 664 rodents,

with the average age for a study ranging from 2 to

27 months. These studies contained 24 independent groups

that were male only and 11 that were female only. For the

animal studies, strength was reported both immediately and

at day 1, day 2, or day 3 post-injury in 14, 11, and 40

independent groups, respectively. Animal studies

employed several injury models (i.e., eccentric contraction-

induced injury, downhill walking/running, blunt-impact

injury, ischemia–reperfusion injury, and freeze injury).

3.2 Meta-Analysis of Secondary Strength Loss

Considerable variation in ES was observed among studies,

with ES ranging from -2.46 [9] to ?6.29 [14] (Electronic

Supplementary Material Figure S1). As illustrated in the

forest plot, 67 of the 262 independent groups exhibited a

negative ES, which supports a secondary loss of strength

occurring at 1–3 days post-injury. Conversely, 195 inde-

pendent groups exhibited a positive ES, indicating an

absence of secondary strength loss in those studies. With all

independent groups included, the meta-analysis yielded a

small-to-medium overall ES that was positive and statisti-

cally greater than zero (overall ES = ?0.336, 95 % confi-

dence interval [CI] 0.270–0.401; P\ 0.00000001;

Electronic Supplementary Material Figure S1), indicating

that, on average, muscle strength improves over the first

3 days post-injury. As one would expect, there was no one

study that dominated the overall ES. The study of Rodenburg

et al. [15] had the single largest effect on the overall ES. If

this study was removed from the meta-analysis, the overall

ES would only fall to ?0.326 and the effect would still be

statistically greater than zero (P\ 0.00000001).

The overall ES was also calculated using the most lib-

eral scenario for possibly detecting a secondary strength

loss. Because multiple ESs were calculated for most

studies, we opted to run the primary meta-analysis using

the single smallest (or most negative) ES determined for

each independent group or study. The overall effect

(ES = ?0.067; 95 % CI 0.004–0.130; P = 0.036) when

calculated this way was still positive, albeit trivial in

magnitude, and was significantly greater than zero. Thus,

this analysis also does not provide support for the occur-

rence of a secondary strength loss.

Tests of heterogeneity were performed to assess the

extent of between-study variation in the ES. Because

heterogeneity was large and statistically significant

(I2 = 86 %; Q = 1900, P\ 0.00000001), moderator

variables that could potentially explain this heterogeneity

were investigated using subgroup meta-analysis and meta-

regression. With the exception of one moderator variable,

Table 1 summarizes the findings of the subgroup meta-

analyses. Subject type was not a significant moderator

variable as there was no statistical difference in ES

between studies using humans and those using animals.

Likewise, within animal studies, there was no significant

difference in ES between studies using rats and those using

mice. The sex of the subject was, however, able to explain

a significant portion of the heterogeneity (P = 0.02).

Interestingly, the ES determined for studies using males

was more than twice that for studies using females, sug-

gesting that males may recover strength faster after injury.

The day of post-injury strength assessment was a sig-

nificant moderator variable. In the analysis examining all

studies (Table 1) and in the analysis examining human

studies only (Fig. 3a), studies making measurements of

strength at day 3 post-injury had an ES that was greater

than that for studies taking measurements at day 2 post-

injury, which in turn was greater than that for studies

taking measurements at day 1 post-injury. The moderator

variable’s effect was different when analyzing animal

studies only (Fig. 3b). Only animal studies taking mea-

surements at day 3 post-injury had an ES that was signif-

icantly less than the ES for studies taking measurements at

day 2 post-injury (?0.44 vs. ?1.19; P = 0.02). More

importantly, the ES for each of the day subgroups were

positive and statistically greater than zero. When the

analysis was run using only studies, including human and

animal studies, that took measurements on all 3 days, the

findings were identical to those for all studies and the

human-only studies (Fig. 3c).

To determine if the muscle group injured could explain

some of the between-study variation in ES, subgroup meta-

analyses were performed separately for human and animal

studies (Table 1). For humans, the ESs from studies

injuring elbow flexors, knee extensors, and/or knee flexors

were compared. For animals, ankle plantarflexor muscles

46 G. L. Warren et al.
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Table 1 Summary of subgroup meta-analyses examining nominal moderator variables that might explain between-study variance in effect size

Moderator variable Comparisona Q-test P value

Subject type Animal (n = 46, ES = ?0.36 [0.18–0.54]) vs. human (n = 216, ES = ?0.33

[0.26–0.40])

0.80

Rodent type Mice (n = 32, ES = ?0.26 [0.01–0.51]) vs. rat (n = 13, ES = ?0.77

[0.32–1.21])

0.05

Subject sex Female (n = 33, ES = ?0.17 [–0.04 to 0.37]) vs. male (n = 135, ES = ?0.45

[0.35–0.55])

0.02

Day of post-injury

assessment

Day 1 (n = 206, ES = ?0.19 [0.12–0.27]) vs. day 2 (n = 199, ES = ?0.34

[0.27–0.42]) vs. day 3 (n = 203, ES = ?0.52 [0.44–0.59])

0.00000004

Day 3[ day 2[ day 1

Muscle group (human

studies)

Elbow flexors (n = 117, ES = ?0.46 [0.37–0.54]) vs. knee extensors (n = 81,

ES = ?0.11 [–0.00 to 0.22]) vs. knee flexors (n = 11, ES = ?0.14 [–0.16 to

0.44])

0.000007

Elbow flexors[ knee extensors,

elbow flexors[ knee flexors

Muscle group (animal

studies)

Ankle dorsiflexor (n = 40, ES = ?0.33 [0.09–0.56]) vs. ankle plantarflexor

(n = 7, ES = ?0.98 [0.40–1.56])

0.04

Injury type (animal

studies)

Eccentric contraction-induced injury (n = 41, ES = ?0.40 [0.17–0.64]) vs.

traumatic injury (n = 5, ES = ?0.31 [–0.32 to 0.94])

0.78

Presence of fatigue

immediately post-

injury?

Yes (n = 27, ES = ?0.62 [0.39–0.85]) vs. no or not likely (n = 89,

ES = ?0.32 [0.19–0.46]) vs. unknown (n = 146, ES = ?0.30 [0.22–0.38])

0.03

Yes[ unknown

Type of contraction used

to assess strength

Isometric (n = 234, ES = ?0.33 [0.26–0.40] vs. isokinetic or isotonic (n = 44,

ES = ?0.30 [0.14–0.45]

0.67

ES effect size
a Sample size (n) refers to the number of independent groups of subjects in a subgroup. Values within brackets represent the 95 % confidence

interval for the ES. Analyses were run on data for human and animal studies combined except where noted otherwise

Fig. 3 Forest plots depicting the effect of day of post-injury strength

assessment on effect size: a studies using human subjects; b studies

using animal subjects; c studies with data for all 3 days. The center of

a diamond represents the subgroup effect size for a given day.

Diamond width represents the 95 % confidence interval for the

subgroup effect size. The number of independent groups contributing

to a subgroup effect size is listed within the parentheses. An asterisk

indicates a significant difference between subgroups analyzed using

post hoc pairwise comparisons and a Benjamini and Hochberg false

discovery rate-adjusted a level. CI confidence interval, ES effect size
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were contrasted against ankle dorsiflexor muscles. The

muscle group tested was a significant moderator variable

for both the human and animal studies. The ES for the

group of studies injuring the elbow flexors was three to

four times greater than the ES for the groups of studies

injuring the knee extensors or flexors. These data suggest

that the strength recovery over the first 3 days post-injury

may be greater for the elbow flexors than for either the

knee extensors or flexors. In the animal studies using the

ankle plantarflexors, the ES was approximately three times

greater than the ES for the studies using the dorsiflexors.

This suggests that the plantarflexors may recover strength

faster following injury.

The injury induced in all human studies was induced

using eccentric contractions or eccentric contraction-biased

exercise but several injury models were employed in the

animal studies including eccentric contraction-induced

injury, freeze injury, crush injury, and ischemia–reperfu-

sion injury. To determine if the type of injury could explain

some of the between-study variation in the ES, a subgroup

meta-analysis was performed for animal studies comparing

eccentric contraction-induced injury models with traumatic

injury models (i.e., freeze, crush, and ischemia–reperfusion

models combined). However, injury type was not found to

be a significant moderator variable (P = 0.78) (Table 1).

In addition, the type of contraction used to assess strength

(i.e., isometric vs. isokinetic or isotonic) was unable to

explain any heterogeneity (P = 0.67).

The presence of fatigue in a study at the time of the

immediate post-injury assessment was able to explain a

significant amount of the between-study variation in ES

(P = 0.03) (Table 1). When fatigue was present, the study

ES was greater than when the fatigue state in a study was

unknown (?0.62 vs. ?0.30). Similarly, when fatigue was

present, the study ES approached being significantly

greater than the ES from studies where fatigue was not

present or unlikely to be present (?0.62 vs. ?0.32;

P = 0.054).

A subgroup meta-analysis conducted to determine if the

research group performing a study could explain some of

the between-study variation in ES yielded statistically

significant results (P = 0.001) (Fig. 4). Research group ES

values ranged from -0.11 for the ‘‘J. A. Faulkner and S.

V. Brooks’’ group to ?0.47 for the ‘‘P.M. Clarkson, T.

C. Chen, and K. Nosaka’’ group. The ‘‘J. A. Faulkner and

S. V. Brooks’’ group was the only research group to have a

negative ES, though it was not statistically less than zero.

Post hoc testing revealed that there were three pairs of

groups, with one group being significantly different from

the other (Fig. 4).

Meta-regression analysis was used to determine if two

continuous variables, study publication year and subject

age, could explain any of the between-study variation in

ES. There was no significant (P = 0.17) linear relationship

between the year a study was published and its ES

(slope = ?0.008 year-1; 95 % CI -0.004 to 0.021). The

analysis of subject age was run separately for human and

animal studies. There was no significant (P C 0.16) linear

relationship between mean subject age in years and study

ES when analyzing either human studies

(slope = ?0.006 year-1; 95 % CI -0.005 to 0.017) or

animal studies (slope = -0.319 year-1; 95 % CI -0.766

to 0.129).

Meta-regression was also used to determine the rela-

tionship between the mean immediate post-injury strength

loss (%) and study ES. One might hypothesize that a sec-

ondary strength loss would be more likely to occur with a

greater initial injury. Figure 5 illustrates the relationship

for both the studies using humans (Fig. 5a) and those using

animals (Fig. 5b). Surprisingly, the relationship was posi-

tive in the human studies (P\ 0.000000001) but negative

in the animal studies (P = 0.02). More importantly, pre-

dicted study ES was only negative when the immediate

post-injury strength loss was small (i.e., \13 %) in the

human studies. In contrast, the predicted study ES in the

animal studies was never less than zero. The smallest

predicted ES would be ?0.19, occurring at a 100 %

immediate post-injury strength loss. If the studies exhibit-

ing fatigue at the time of the immediate post-injury mea-

surement were removed from the analyses, the relationship

between the immediate post-injury strength loss and study

ES was lost in the animal studies but remained unchanged

in the human studies.

4 Discussion

Overall, we found 262 independent groups of subjects from

223 studies in which strength was measured immediately

post-injury and again at 1, 2, and/or 3 days post-injury. Our

analysis was based on a total of 936 ESs, which were

calculated from a total of over 4000 human and animal

subjects. The calculation of the ES was designed so that a

negative ES would be interpreted as supporting a sec-

ondary strength loss. Furthermore, in order to establish a

significant secondary strength loss, a negative ES had to be

statistically less than zero. Our meta-analysis of the data

from the 223 studies yielded a small-to-medium, positive

overall ES that was statistically greater than zero

(P\ 0.00000001) (Electronic Supplementary Material

Figure S1), indicating that strength in the typical study

recovers during the first 3 days after injury. However, there

was a large variation in ES among studies (i.e., I2 = 86 %).

Experimental factors that could explain the variability, at

least partially, included the sex of the subject, the day of

post-injury strength assessment, whether fatigue was

48 G. L. Warren et al.

123



present immediately post-injury, the muscle group injured,

the research group conducting the study, and the magnitude

of the immediate post-injury strength loss (Table 1;

Figs. 3, 4, 5).

4.1 Technical Limitations of the Analysis

Potential technical limitations of our systematic review and

meta-analysis include (1) the likelihood of our review

having missed studies; and (2) failure to know the between-

trial correlations in many studies utilizing a repeated-

measures research design. We performed an extensive lit-

erature search for studies conducted in 2011 or before. We

did not exclude unpublished studies, non-English studies,

or studies based on geographical location. However, it is

doubtful that our systematic review retrieved all relevant

studies and therefore our analysis probably consists of a

random subset of all relevant studies. While failure to

include all possible studies can affect meta-analysis sta-

tistical power and ES CIs, we do not believe that this

limitation had a significant impact on the overall ES [12].

An Orwin’s Fail-Safe N test was used to determine how

many missing studies would have to exist in order to bring

the overall ES down to a level indicating a secondary

strength loss [16]. We sought to identify the number of

missing studies that would need to be found to produce a

negative, albeit trivial, overall effect (i.e., ES = -0.1) that

would be statistically less than zero. Assuming that the

missing studies had a mean ES of -0.5, we determined that

234 missing studies would have to be found and added to

our meta-analysis before we could conclude that, on

average, a secondary strength loss occurs following injury.

This number of missing studies is almost equal to the total

number of independent groups that we did find. Further-

more, only 8 % of the 262 independent groups we retrieved

had an ES of -0.5 or less. We believe it is highly unlikely

that we missed 234 or more studies with a mean ES of –0.5

and thus this analysis is consistent with the argument that a

secondary strength loss does not occur in the typical study.

The other technical limitation of our systematic review

and meta-analysis was not knowing the between-trial cor-

relations (i.e., that between immediate post-injury and the

day 1–3 post-injury measures) in most of the studies

employing a repeated-measures research design. We were

only able to calculate correlations for 14 independent

groups and used the median of those 14 correlations (i.e.,

0.803) as the correlation for the groups for which a cor-

relation could not be calculated. The inability to calculate

between-trial correlations is a common issue for data

extraction from primary research studies but the effect of

this limitation can be addressed by performing a sensitivity

analysis [12]. We performed a sensitivity analysis by

allowing the assumed correlation to vary between what we

considered to be the extreme possibilities for the correla-

tion. By varying the correlation between 0 and 0.95, the

overall ES varied minimally from ?0.299 to ?0.339 while

remaining statistically greater than zero (P\ 0.00000001)

in all instances. Therefore, our sensitivity analysis indicates

Fig. 4 Forest plot depicting the effect of research group on effect

size. The center of a diamond represents the effect size for a given

research group. Diamond width represents the 95 % confidence

interval for the subgroup effect size. Research group assignments

were made after careful cross-of all studies to detect collaborations

(e.g., co-authorships) and shared research approaches (e.g., same or

similar experimental model). For consideration as a group for the

subgroup meta-analysis, each research group had to have a minimum

of ten independent groups of subjects included in the overall meta-

analysis. Studies not assigned to a research group were lumped

together in the ‘‘All other studies’’ group. The number of independent

groups contributing to a subgroup effect size is listed within the

parentheses. An asterisk indicates a significant difference between

subgroups analyzed using post hoc pairwise comparisons and a

Benjamini and Hochberg false discovery rate-adjusted a level. CI

confidence interval, ES effect size
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that not knowing the between-trial correlations for all

studies most likely had minimal effect on the overall ES

and its qualitative label as a small-to-medium, positive

effect.

4.2 Evidence For and Against Secondary Strength

Loss

There was minimal evidence in our analysis supporting a

secondary strength loss after muscle injury, even when

considering the potential moderator variables that might

explain some of the marked between-study variation in ES.

For example, the subgroup meta-analysis probing how the

day of post-injury assessment affected study ESs showed

that for both all studies and the human-only studies, the ES

for the subgroup of studies measuring strength at 3 days

post-injury was significantly larger than that for the sub-

group measuring strength at 2 days post-injury, which in

turn was larger than that for the subgroup measuring

strength at 1 day post-injury (Table 1; Fig. 3a). These

results were the same as when we conducted a subgroup

meta-analysis using only studies that made measurements

on all 3 days (Fig. 3c). While causal conclusions cannot be

made from subgroup meta-analyses, this particular analysis

presents the strongest case for the interpretation that mus-

cle strength is steadily recovering over the first 3 days post-

injury.

Overall, we looked at ten moderator variables using the

subgroup meta-analysis procedure. This generated a total

of 36 subgroups and there was only one subgroup with a

negative ES, and that ES was not statistically less than zero

(Table 1; Figs. 3, 4). Moreover, of the 35 subgroups with

positive ESs, all but six were statistically greater than zero.

From the 223 studies included in our review, we also

conducted an overall meta-analysis using the smallest (or

most negative) ES from each study and still observed a

positive overall effect (ES = ?0.067), which was statisti-

cally greater than zero. Given the criterion to establish a

secondary strength loss (i.e., a negative ES that was sta-

tistically less than zero), this ‘‘smallest ES’’ analysis

approach was biased towards finding a secondary strength

loss but still failed to do so. Also, the mean immediate

post-injury strength loss among the 223 studies varied

substantially, and one might posit that greater initial injury

would coincide with the appearance of a secondary

strength loss. However, the relationships between mean

immediate post-injury strength loss and study ESs deter-

mined by meta-regressions were not predictive of a sec-

ondary strength loss in the case of the animal-only studies

or were only predictive of a secondary strength loss at

relatively small immediate post-injury strength losses in

the human-only studies (Fig. 5). Collectively, we found

minimal evidence to support a statistically significant

secondary strength loss.

4.3 Explanations for Between-Study Variance

in Effect Size

Over the past 30 years, a number of research groups have

made significant contributions to the understanding of

muscle injury and repair. It is not surprising that differ-

ences in ES were observed among the five research groups

in our ‘‘research group’’ analysis because these groups have

used different experimental models and had differing

research objectives. For example, of the five groups, the ‘‘J.

A. Faulkner and S. V. Brooks’’ and ‘‘R. B. Armstrong, C.

P. Ingalls, and G. L. Warren’’ groups primarily used rodent

models, with the former group utilizing an in situ model for

Fig. 5 Meta-regression analysis of the relationship between the

magnitude of the immediate post-injury strength loss (%) and study

(or independent group) effect size for human-only studies (a) and

animal-only studies (b). Each study or independent group is

represented by a circle and the size of a circle reflects the degree of

weighting for that datapoint. There are 334 and 88 datapoints in

(a) and (b), respectively. These outnumber the numbers of studies and

independent groups because many studies measured strength in more

than one fashion. In (a) and (b), the straight line reflects the line of

best fit and is surrounded by two curvilinear lines representing the

95 % confidence interval. The statistical significance of the relation-

ships in (a) and (b) are P\ 0.000000001 and P = 0.02, respectively
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inducing injury versus an in vivo model being used by the

latter group. The three other research groups primarily used

human subjects, with the ‘‘P. M. Clarkson, T. C. Chen, and

K. Nosaka’’ studies typically injuring the elbow flexors

while the ‘‘A. E. Donnelly’’ and ‘‘R. G. Eston and M.

P. McHugh’’ studies typically injured the knee extensors

and/or flexors. It is important to remind the reader that in a

separate subgroup meta-analysis we found human studies

injuring the elbow flexors to have an ES that was much

greater than that for studies injuring the knee extensors.

However, it is not possible to determine if this muscle

group difference is truly a muscle group difference or if it

occurred due to other experimental differences among the

‘‘P. M. Clarkson, T. C. Chen, and K. Nosaka,’’ ‘‘A.

E. Donnelly,’’ and ‘‘R. G. Eston and M. P. McHugh’’

research groups. This emphasizes why causal conclusions

cannot be made from the results of subgroup meta-analyses

or meta-regressions. However, what is clear from this

‘‘research group’’ analysis is that no single subgroup ES

was statistically less than zero, which argues against a

secondary loss of strength occurring.

In a narrative review discussing secondary strength loss,

Faulkner and associates [3] wrote that the magnitude of the

primary injury can be determined by measuring strength

loss at 3 h post-injury to rule out any contribution to

strength loss arising from fatigue. While both injury and

fatigue can cause an immediate loss of muscle strength,

fatigue is characterized by the reversal of strength loss with

rest, whereas muscle injury requires muscle fiber repair

and/or regeneration and strength recovery is more pro-

longed. Per our inclusion criteria, we accepted studies with

strength measurements up to 6 h post-injury for our ‘‘im-

mediate post-injury’’ timepoint. We subsequently per-

formed a subgroup meta-analysis to determine the potential

impact that fatigue could have had on the study ES.

Specifically, if fatigue contributed to the immediate post-

injury strength loss, this would make it more difficult to

detect a secondary strength loss because the ES would be

inflated. Indeed, the ES for studies where fatigue was

present was twofold greater than the ES for all other studies

(i.e., ?0.62 vs. ?0.30–0.32). More importantly, this sub-

group meta-analysis also showed that when fatigue was not

present or not likely to be present, there was still a positive

ES that was statistically greater than zero (Table 1). We

concluded that fatigue can confound the strength loss

immediately post-injury in eccentric contraction-induced

injury studies and thus inflate the associated ES. However,

fatigue appears to have occurred in a minority of studies

and thus it is unlikely to have substantially affected our

overall finding and interpretation of that finding.

The results of our ‘‘day of post-injury strength assess-

ment’’ subgroup meta-analysis conducted on animal-only

studies (Fig. 3b) may lead some to suggest that we should

give consideration to calculating the ES for strength data

collected after 3 days post-injury. This is because the studies

taking measurements of strength at 3 days post-injury had a

significantly lower ES than that of studies taking measure-

ments at 2 days. One might hypothesize that the ES could

decline further over the next few days post-injury, eventually

becoming negative. However, using data collected after

3 days post-injury is outside the time frame originally pro-

posed for when a secondary strength loss occurs [3]. Fur-

thermore, as compared with the analysis using human-only

studies, there were far fewer independent groups contribut-

ing to the animal-only subgroup meta-analysis (i.e., 11–40

vs. 163–192 studies per timepoint). With far fewer studies in

the animal-only analysis, it is more likely for a subgroup ES

to be influenced by a particular research group’s approach or

methodology. For example, 15 of the 40 ‘‘3 days post-in-

jury’’ ESs came from the ‘‘J. A. Faulkner and S. V. Brooks’’

research group, whereas only one of the 11 ‘‘2 days post-

injury’’ ESs came from that group. This is noteworthy

because the ‘‘J. A. Faulkner and S. V. Brooks’’ studies tended

to have negative ESs (Fig. 4), and thus this might help

explain why the ‘‘3 days post-injury’’ ESwas lower than that

for 2 days post-injury.

The present analysis provides insight for future research

directions. In particular, studies exploring subject sex dif-

ferences or muscle group differences in the strength

recovery from muscle injury would be warranted (Table 1).

One interpretation from the ‘‘subject sex’’ subgroup meta-

analysis is that males recover faster than females. Alter-

natively, males could be more susceptible to muscle injury

(i.e., greater immediate strength loss) and if males and

females recovered to a similar percentage of initial strength

by 3 days post-injury, the rate of strength recovery would

appear to be greater for males. This theory would tend to

agree with our meta-regression analysis showing a positive

relationship between immediate strength loss and the study

ES in the human-only studies (Fig. 5a). However,

assumptions on sex differences in susceptibility or recovery

from injury are not supported by a cursory review of the

literature, at least for human studies [17]. Similar to subject

sex differences in ES, the greater ES for human studies

employing the elbow flexors may simply reflect how the

ES is calculated because the elbow flexors appear to be

more susceptible to eccentric contraction-induced injury

than are the knee extensors [18–20]; the immediate

strength loss for the elbow flexors is *50 % greater on

average [18]. A possible alternative explanation for the

muscle group difference is that the elbow flexors may be

more fatigable than the knee extensors during the perfor-

mance of eccentric contractions. However, in our analysis

of the incidence of fatigue, the association of fatigue with

studies using the elbow flexors was no different from that

for studies using the knee extensors (P = 0.92).
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4.4 Practical and Clinical Implications

A primary motivation for this meta-analysis was to deter-

mine if a secondary loss of strength occurs after the initi-

ating injurious event so that one can make more informed

decisions about if and how to treat muscle injuries.

Specifically, the autogenetic and inflammatory phases fol-

lowing injury have been directly implicated as causing a

secondary deleterious event in skeletal muscle leading to a

secondary loss of strength [3, 14, 21, 22]. If such a sec-

ondary strength loss occurs, then pharmacological, dietary,

and therapeutic interventions to block autogenetic path-

ways and/or inflammation in the first few days post-injury

might be efficacious. On the other hand, if there is no

secondary strength loss, more caution should be employed

for such interventions because they might impair the

recovery process. The results of our systematic review and

meta-analysis may suggest why pharmacological, dietary,

and therapeutic interventions have not been generally

effective [23, 24], i.e., because there is minimal, if any,

evidence for a secondary injury, at least not an injury

resulting in an additional strength loss. This could be

because the autogenetic and inflammatory phases may be

constrained to lie within the initially damaged tissue and

thus may be thought of as parts of the tissue repair and

regeneration processes rather than degeneration processes

that cause additional damage.

We can also envision a scenario in which secondary

injury occurs but a secondary strength loss does not. We

have shown that in the first few days after the initiation of

eccentric contraction-induced injury, most (i.e., 50–75 %)

of the strength loss is attributable to a failure in the exci-

tation–contraction (E-C) coupling process, with the

remainder of the strength loss being due to physical dis-

ruption of force-bearing elements within the muscle [25].

The strength loss attributable to E-C uncoupling is recov-

ered more rapidly than that associated with physical dis-

ruption. We have hypothesized that the former recovery

process is more of a repair process and does not require

degeneration and subsequent regeneration of muscle fibers,

whereas recovery of strength from physical disruption

would require degeneration, including inflammation, and

regeneration [26]. We theorize that it is possible to have

some damaged muscle fibers recovering from E-C uncou-

pling at the same time that other damaged fibers, although

fewer in number, are engulfed in inflammatory infiltrate to

the extent that adjacent, but previously undamaged, fibers

incur a bystander injury. In this scenario, strength mea-

sured at the whole muscle level could be recovering but

locally, initially uninjured fibers could be undergoing

damage by the inflammation but not to the extent that the

muscle strength recovery is blunted or noticeably slowed.

Support for such a hypothesis comes from a study by Pizza

and colleagues [27] in which eccentric contraction-induced

injury was induced in muscles of wild-type mice and mice

with a genetic deletion that blunts neutrophil accumulation

in injured muscle. There was no evidence of a secondary

strength loss in either strain of mice, i.e., strength recov-

ered steadily over time after injury, but strength recovered

faster in the mice with a reduced neutrophil accumulation

in the injured muscle. The scenario of having a secondary

injury without a secondary strength loss can easily be

envisioned when the mechanisms for injury, and the

recovery from it, are not homogenous, either temporally or

spatially, within the muscle.

5 Conclusions

A robust systematic review and meta-analysis was con-

ducted utilizing data from 262 independent groups of

subjects reported in 223 studies with over 4000 subjects

and 936 separate ESs. Our findings do not support the

presence of a secondary strength loss following an initial

injurious event in skeletal muscle. In fact, our findings

suggest that, on average, strength recovers steadily over the

first 3 days post-injury, particularly in humans. Moving

forward, we recommend that future studies no longer use

secondary strength loss as a foundation on which to justify

a study. Furthermore, careful thought should be applied

before initiating a study using an intervention (e.g., dietary,

pharmacological, therapeutic) to block or attenuate

inflammatory or autogenetic processes when recovery of

muscle strength is desired.
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