
International  Journal  of

Environmental Research

and Public Health

Article

The Cumulative Risk of Chemical and Nonchemical
Exposures on Birth Outcomes in Healthy Women:
The Fetal Growth Study

Leah Zilversmit Pao 1,* , Emily W. Harville 1 , Jeffrey K. Wickliffe 2, Arti Shankar 3 and
Pierre Buekens 1

1 Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New
Orleans, LA 70112, USA; harville@tulane.edu (E.W.H.); pbuekens@tulane.edu (P.B.)

2 Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine,
Tulane University, New Orleans, LA 70112, USA; jwicklif@tulane.edu

3 Global Biostatistics and Data Science, Department of Global Environmental Health Sciences, School of Public
Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; sarti@tulane.edu

* Correspondence: lzilvers@tulane.edu

Received: 28 July 2019; Accepted: 26 September 2019; Published: 1 October 2019
����������
�������

Abstract: Metals, stress, and sociodemographics are commonly studied separately for their effects on
birth outcomes, yet often jointly contribute to adverse outcomes. This study analyzes two methods
for measuring cumulative risk to understand how maternal chemical and nonchemical stressors
may contribute to small for gestational age (SGA). SGA was calculated using sex-specific fetal
growth curves for infants of pregnant mothers (n = 2562) enrolled in the National Institute of Child
Health and Human Development (NICHD) Fetal Growth Study. The exposures (maternal lead,
mercury, cadmium, Cohen’s perceived stress, Edinburgh depression scores, race/ethnicity, income,
and education) were grouped into three domains: metals, psychosocial stress, and sociodemographics.
In Method 1 we created cumulative risk scores using tertiles. Method 2 employed weighted quantile
sum (WQS) regression. For each method, logistic models were built with three exposure domains
individually and race/ethnicity, adjusting for age, parity, pregnancy weight gain, and marital status.
The adjusted effect of overall cumulative risk with three domains, was also modeled using each
method. Sociodemographics was the only exposure associated with SGA in unadjusted models
((odds ratio) OR: 1.35, 95% (confidence interval) CI: 1.08, 1.68). The three cumulative variables in
adjusted models were not significant individually, but the overall index was associated with SGA (OR:
1.17, 95% CI: 1.02, 1.35). In the WQS model, only the sociodemographics domain was significantly
associated with SGA. Sociodemographics tended to be the strongest risk factor for SGA in both risk
score and WQS models.

Keywords: cumulative risk; chemical exposures; nonchemical exposures; perinatal health

1. Introduction

The Environmental Protection Agency (EPA) has defined cumulative risk as “the combined risks
from aggregate exposures to multiple agents or stressors” [1]. While much of the scientific community,
including the EPA, has advocated for the study of cumulative risk models [1–4], this is rarely done in
epidemiological studies. When it is studied, researchers typically do not combine social and chemical
exposures. Several studies have used various methodologies to study chemical mixtures [5], and
some scientists have combined psychosocial stressors [6], but most researchers tend to construct
separate models for chemical and nonchemical stressors. Recently, researchers have advocated for
combining these exposures in order to have a more complete understanding of how exposures interact
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to affect outcomes [2,3,7,8]. Although researchers have attempted to model the combined effects of
chemical and nonchemical exposures to study lead and stress on cognition [9]; benzene and stress on
birthweight [10]; and lead, cadmium, and polychlorinated biphenyls on blood pressure [11], methods
to study combined chemical and nonchemical are still lacking.

Studying multiple chemical and nonchemical exposures is of special interest to researchers
studying perinatal health. One area of concern are indicators for fetal growth restriction, such as small
for gestational age (SGA), which have shown to have both short-term and long-term effects on infants
as they grow into adulthood [12]. Despite extensive research into the exposures contributing to SGA,
understanding the exact etiology has proven difficult. Several studies reveal possible associations with
SGA, including environmental toxicants, race, ethnicity, income, maternal educational attainment, and
maternal mental health [13–15], but findings are often inconsistent and the biological rationale is not
conclusively known. Studies are consistent in indicating that women who are non-Hispanic-black,
low income, and have not attained degree past high school [15–19] are more at risk for most adverse
perinatal outcomes, including SGA.

Chemical exposures are also risk factors for reduced fetal growth. Heavy metals, which are
common neurotoxins [20], have been linked to impeded fetal development at high levels of occupational
exposure. In utero exposure to certain heavy metals, like lead (Pb), cadmium (Cd), and mercury
(Hg), have been associated with low birthweight (LBW) and preterm birth (PTB) [21–28], although
there are many studies that do not find an increased risk between chemical exposure and adverse
birth outcomes [13]. This is similar to studies researching other chemicals. For example, researchers
studying the effects of phthalates and pesticides on fetal development have reached inconclusive
results [13,29,30]. However, there is evidence that, while at low doses there are no detectable risks
when studied individually, there could be a cumulative risk when these low doses are studied in
combination [31,32]. Animal models have indicated that if modeled cumulatively, these chemicals do
in fact impact fetal development [33–35].

Beyond the possible link between environmental toxicants and birth outcomes, other researchers
have focused on social stressors for their risk of adverse birth outcomes. Many point to the stress
experienced during preconception and pregnancy, with evidence of an association between many
indicators of stress and fetal growth [15]. Women who report having depressive symptoms tend to
have worse birth outcomes [36,37], as well as a higher risk for SGA [14,38]. Although women who
experience these psychosocial issues trend towards having adverse birth outcomes, like chemical
exposures, literature reviews have reported some ambiguity; the evidence is far from conclusive that
stress disorders directly cause adverse birth outcomes [37,39–42]. Inconclusive findings could be
the result of inadequate methods for studying stress [43], but it could also be a result of the type of
populations that are studied. When studying low risk, healthy pregnant women, Voegtline et al. found
that stress indicators, such as depressive symptoms, trait anxiety, and emotional well-being, tended to
be non-significantly correlated with cortisol measured throughout pregnancy [44].

Further complicating perinatal research is the possible interaction between chemical and
nonchemical exposures. Common socioeconomic exposures, like race/ethnicity, income, and education,
are correlated with each other [45,46]. African Americans, for example, have higher incidences of PTB,
impaired fetal growth, and maternal mortality [47,48], with studies identifying stress induced by racism
as an underlying factor [18,49,50]. Levels of cortisol are higher among women of lower socioeconomic
status (SES) [51], with black women tending to report higher exposure to stress compared to other
races [41]. Race and ethnicity are commonly multi-correlated with other social factors [45] and those
that are disadvantaged are at additional risk to be ‘vulnerable’ to environmental exposures and
psychosocial stress. DeFur et al. theorized that vulnerability, which is typically a result of low SES,
interacts with physical and social environments and results in disparities in health outcomes [52].
This theory is supported by numerous studies finding that lower-SES populations most commonly
live in areas with higher environmental exposures, including proximity to pollution, industrial areas,
and other areas containing large amounts of environmental toxicants [7,53–56], and are thus more
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vulnerable to be exposed to psychosocial stress as a result of these circumstances [57,58]. SES may also
be an indicator of different dietary intakes or occupational exposures that may put people of lower SES
at greater risk for environmental toxicants [59].

Due to the multi-correlated nature of risk factors contributing to fetal growth, perinatal research
could benefit from researching exposures cumulatively. This is especially true when studying relatively
healthy women, as healthy women tend to be exposed to toxicants at levels lower than the regulatory
concerned and associations of individual chemical and nonchemical exposures with birth outcomes
are typically only evident at high levels of exposure [13]. However, just as in chemical exposures
that may only show risk at low doses with multiple exposures, there could be associations between
the nonchemical and chemical risk factors and perinatal outcomes, if a combination of lower levels
of exposure are measured cumulatively. These risks also may interact with each other, causing a
high degree of multicollinearity. We have included a conceptual model to explain the hypothesized
interrelationships of possible chemical and nonchemical stressors (Figure 1). The objective of this study
is to understand whether cumulative risk, indicated by the combination of exposure to heavy metals,
psychosocial stress, and sociodemographic risk, contributes to incidence of SGA infants in a healthy
cohort of pregnant women. We compare two possible ways of assessing this cumulative risk, one a
relatively simple risk score that weights exposures equally, and one which allows for varying weights,
weighted quantile sums [60,61].
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Figure 1. Conceptual model of the relationship between chemical and nonchemical exposures on
perinatal outcomes.

2. Material and Methods

2.1. Study Participants

We conducted a secondary analysis on the data collected through the Fetal Growth Study, a
cohort study conducted on pregnant women through the Eunice Kennedy Shriver National Institute
of Child Health and Human Development (NICHD) with the primary goal of calculating a national
standard for fetal growth and size for gestational age. Secondary goals were to study fetal growth in
women with gestational diabetes mellitus (GDM) among the n = 468 obese participants, as well as
measuring fetal growth in twin gestations. The study was conducted between July 2009 and January
2013 in 12 locations: Columbia University (NY), New York Hospital, Queens (NY), Christiana Care
Health System (DE), Saint Peter’s University Hospital (NJ), Medical University of South Carolina (SC),
University of Alabama (AL), Northwestern University (IL), Long Beach Memorial Medical Center (CA),
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University of California, Irvine (CA), Fountain Valley Hospital (CA), Women and Infants Hospital
of Rhode Island (RI), and Tufts University (MA). The data are comprised of 3270 low-risk pregnant
women with singleton gestation, with 468 of them classified as obese. Women were recruited within
their first trimester, had a singleton gestation, did not consume alcohol, were nonsmokers, and were
not suspected to have a fetus with a fetal abnormality. Alcohol and smoking habits were assessed
upon recruitment in a questionnaire which asked participants the amount of alcohol they consumed
the amount they smoked within 3 months prior to pregnancy and current consumption and smoking
status. The dataset includes six visits: one initial recruitment visit and five additional follow-up
visits. Participants were randomized into four groups (A, B, C, or D) with each group having varying
schedules of follow-up visits, depending on gestational age. The first follow-up visit for group A was
scheduled for 15 to 17 weeks gestation; in B, for 17 to 18 weeks gestation; in C, for 19 to 21 weeks
gestation; and in D, for 21 to 23 weeks gestation. A detailed account of the cohort recruitment, including
exclusion criteria, has been previously published [62]. For the purposes of this analysis, only women
with a singleton gestation and who had a live birth were included in this study. After accounting for
missing data, the complete dataset consisted of n = 1569 women (Figure 2).
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Figure 2. Missing data in the Fetal Growth Study.

2.2. Variables

Education, race/ethnicity, and income were assessed upon recruitment. Women were asked their
highest degree obtained and whether they were white, black, American Indian, an Alaskan Native, or
Asian. Women were additionally asked whether they were Hispanic. Women reported their family
income from the previous year in 10 categorical groupings, which we collapsed into 4 categories for
better power: (1) ≤$29,999, (2) $30–$49,999, (3) $50–$74,999, (4) ≥$75,000. We categorized education
into high school or less, some college or an associate’s degree, and completed college. Race/ethnicity
was categorized as black, white, Hispanic, or Asian. We collapsed the categories as black or non-black
(non-black participants include white, Hispanic, and Asian) in the final analysis, because black women
tended to be more at risk for adverse outcomes, while risk was similar in the other groups.
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Information on depression and perceived stress was collected during the first and second trimesters
across a total of seven study visits (recruitment and six follow-up visits); however, we only included
information from the first 5 visits due to missing psychosocial information after five study visits. Each
depression score and perceived stress score was averaged across study visits. Perceived life stress was
assessed using the Cohen Perceived Stress scale. The 10-item questionnaire captures perceived stress
in daily life [63,64], where the top tertile used as an indicator of high stress. The Edinburgh Postnatal
Depression Index (EPDS) was used to assess depression [65], with a cutoff value of 12 used to indicate
depression [66]. Birthweight, gestational age, and sex of the infant were assessed through birth record
abstraction at the participating hospitals.

The outcome variable was SGA. Infants were categorized as being SGA if their weight fell below
the 10th percentile for their recorded gender and gestational age, in accordance with published national
standards [67].

Women were dichotomized as being married/cohabitating with a partner or single. Parity was
categorized into nulliparous, one previous birth, or two or more births. Age was categorized to 24 years
old or less, 25–34 years old, and 35 or over based on the risk distribution within the age categories. We
used the guidelines published by the Institute of Medicine (IOM) [68] to determine whether women’s
weight gain during the entire pregnancy was adequate, under the recommended amount, or over the
recommended amount according to reported pre-pregnancy BMI.

2.3. Specimen Collection and Analysis

For this study, we analyzed data from blood samples collected during recruitment (8–12 weeks
gestation). Obese women provided 30 mL non-fasting blood samples while women from other BMI
groups provided 20 mL samples, which were sent to the Trace Elements Section of the Laboratory of
Inorganic and Nuclear Chemistry at the Wadsworth Center, New York State Department of Health
(Albany, NY, USA) where they were stored at −80 ◦C. Whole blood Pb, Cd, and Hg were determined
by coupled plasma-mass spectrometry (ICP-MS). Methods to quantitate heavy metals were previously
validated [69–73]. In total, 2063 participants provided blood samples upon recruitment, which were
then analyzed for Pb, Cd, and Hg. Seven percent of participants who provided blood samples (n = 148)
had amounts less than the limit of detection (LOD) for Pb; this amount was 1% (n = 23) for Hg and 8%
(n = 171) for Cd. Values that were below the LOD were included during analysis in order to prevent
introducing bias [70] using the values that were originally detected, consistent with other studies using
the same laboratory analysis methods [71].

2.4. Statistical Analysis

Cumulative models were analyzed in two ways: (1) by creating a cumulative risk score, using
tertiles of the exposure and (2) by constructing weighted quantile sum (WQS) regression models.
Cumulative risk scores were created by first dividing each predictor into tertiles; the highest tertile was
considered exposed (x = 1) while the 2 lowest tertiles were unexposed (x = 0). We used tertiles given their
precedent in studies of chemical exposures [21]. In a sensitivity analysis using quartiles and quintiles
we found that results did not vary widely from the tertile method; however, using tertiles avoided
issues with model convergence. In the first method, we divided each of the continuous exposures
(Pb, Cd, Hg, EPDS scores, and perceived stress scores) into tertiles, with the highest tertile considered
exposed. The ordinal predictors (income levels, and educational attainment) were considered exposed
if income was <$30,000 and if women had attained less than a high school education. We created
indices for each of the three domains: (1) metals, (2) psychosocial stress, and (3) sociodemographics.
Each domain’s index was equal to the sum of the variables within that domain. The total cumulative
domain was also created, consisting of the sum of all three domains. We created an unadjusted
regression model for each of the four domains individually (metals, psychosocial, sociodemographics
and total cumulative), as well as an additional unadjusted logistic regression model that assessed
metals, psychosocial stress, and sociodemographic in a single model. We then created adjusted models
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looking at the three domains models separately in three different models. Lastly, we created two
fully adjusted models. The first included Metals Psychosocial stress, and sociodemographics adjusted
for parity, marital status, weight gain during pregnancy, and age. The last model included the total
cumulative domain adjusted for parity, marital status, weight gain during pregnancy, and age.

We compared the above models to those developed using the weighted quantile sum (WQS)
regression method developed by Carrico et al. [60]. WQS regression allows researchers to create an
index of correlated predictors that are weighted according to their strength of association with the
outcome. Weaker variables are zeroed out in the WQS index. The method accounts for highly correlated
exposures and was developed in the context of multiple chemical exposures, such as phthalates [60,61].

Specifically, the equation presented by Carrico et al. seeks to calculate the weights of c set of
correlated variables:

g(µ) = β0 + β1

 c∑
i=0

wiqi

+ z′ϕ

The sum term is the index for the c items, and weights are represented by the sum of wi. Each wi

is constrained to a value between 0 and 1. All confounders are represented by z′ϕ. Prior to analysis,
the data is split into two datasets at random: a training dataset and the validation dataset [60,61].
Using the training dataset, bootstrap samples are selected and the strength of the associations for
each c item is determined by the beta coefficient. The index is calculated based on the mean wis
across all bootstrap samples. Weights are estimated based on optimization algorithms employed to
maximize the likelihood in a nonlinear model. Variables with more influence within the quantile were
assigned higher weights. Variables are selected based on a previously set significance threshold (we
used p = 0.10).

Four models were created, one for each domain (metals, psychosocial, and sociodemographic)
and one for the total cumulative index that included all domains. For each domain, we created weights
adjusting for race/ethnicity and confounders (weight gain, parity, marital status, and age). The test
dataset consisted of a random sample of 40% of the observations with the results validated in the
remaining 60% of the sample population. Weights in the unadjusted and adjusted model (each of the
domains modeled separately with race/ethnicity and confounders) were noted, as well as the final
betas (β) for each of the models. The following equations represent the WQS models used:

logit (SGA) = β0+ βMetals x Metals + ε

logit (SGA) = β0+ βPsychosocialxPsychosocial + ε

logit (SGA) = β0+ βDemographicsxDemographics + ε

logit (SGA) = β0+ βTotalxTotal + ε.

logit (SGA) = β0+ βTotalxTotal + βRacex Race + βAgex Age + ε

SAS software 9.4 (SAS Institute Inc., Cary, NC, USA) was used to generate the descriptive and
cumulative risk scores. R software was used to find weights and estimates in WQS regression
analysis [74]. All participating sites received human subjects’ approval and participants gave their
informed consent before data was collected. As a secondary analysis of de-identified data, this analysis
was not considered human-subjects research.

3. Results

There were 2038 participants that met the inclusion criteria and provided a blood specimen.
Women were divided evenly between non-Hispanic white, non-Hispanic black, and Hispanic (27.3%,
26.1%, and 27.4% respectively) (Table 1). The majority of women either earned <$30,000 (n = 489,
27.8%) or ≥$100,000 (n = 521, 29.6%). Only 3% of women (n = 58) scored high enough on the EPDS to
be categorized as depressed. Seven percent of infants (n = 150) were SGA.
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Table 1. Population characteristics, The Fetal Growth Study (n = 2038).

Participant Characteristic n %

Race
Non-Hispanic White 557 27.33
Non-Hispanic Black 532 26.10
Hispanic 559 27.43
Asian & Pacific Islander 390 19.14

Income
Less than $30,000 489 27.78
$30,000–$39,999 155 8.81
$40,000–$49,999 138 7.84
$50,000–$74,999 216 12.27
$75,000–$99,999 241 13.69
$100,000 or more 521 29.60

Education
Less than high school 208 10.21
High school diploma or GED or equivalent 350 17.17
Some college or Associate degree 593 29.10
Bachelor’s degree 509 24.98
Master’s degree or Advanced degree 378 18.55

Perceived Stress
No (<75tth percentile) 1433 78.82
Yes (≥75th Percentile) 385 21.18

Depression
No 1980 97.15
Yes 58 2.85

SGA
No 1875 92.59
Yes 150 7.41

Preterm Birth
No 1902 93.74
Yes 127 6.26

Low Birthweight
No 1921 94.86
Yes 104 5.14

Weight gain
Adequate 566 30.64
Under 317 17.16
Over 964 52.19

Parity
0 1006 49.36
1 696 34.15
2+ 336 16.49

Marital Status
Not married or cohabitating 490 24.07
Married or cohabitating 1546 75.93

Age
≤24 583 28.61
25–35 1171 57.46
>35 284 13.94

Variables Measured Continuously

Mean (SD) Median 25th and 75th

percentiles
Perceived Stress 28.51 (9.09) 28.00 26.00, 30.00

Depression 4.67 (3.38) 4.00 2.00, 7.00
Weight gain (kg) 15.31(5.99) 14.97 11.79, 18.60

Age 28.21 (4.7) 29 24.00, 32.00
Pb (µg/dL) 1,2 0.51 (5.22) 0.11 0.06, 0.22
Cd (µg/L) 1,3 0.03 (0.40) 0.01 0.01, 0.02
Hg (µg/L) 1,4 0.32 (0.37) 0.22 0.11, 0.43

1 Heavy metals presented eliminated observations below the limits of detection (LOD). 2 n = 2038, 3 n = 2063,
4 n = 2063.
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A description of continuous variables is presented in Table 1. About 7% (n = 148) of women had
Pb levels below the limit of detection. Only 1% (n = 23) of women had Hg levels below the limit of
detection and 8% (n = 171) of women had Cd levels below the limit of detection. The average Pb blood
level was 0.51 micrograms per deciliter (µg/dL) and only 1% (n = 21) of the study population had a Pb
blood level of greater than 5 µg/dL. Only one participant had an excessive level of Cd, measured at 5
µg/L, and one participant had blood Hg content (>5 µg/L).

Most variables were individually associated with SGA (Table 2), with the exception of depression
(OR: 0.32, 95% CI: 0.08, 1.33) and Hg (OR: 0.91, 95% CI: 0.78, 1.45). Non-Hispanic black women were
at a higher risk of having SGA infants compared to non-black women (OR: 2.46, 95% CI: 1.59, 3.81).
Higher levels of Cd and Pb also were associated with having an SGA infant (OR: 1.18, 95% CI: 1.04, 1.35
and OR: 1.22, 95% CI: 1.03, 1.35). Higher income was protective against SGA when compared to lower
income (less than $30,000) and attaining higher levels of education was also protective against SGA.
Women with previous pregnancies, married women, and women who were older than 25 were less
likely to have SGA infants compared to nulliparous, nonmarried, and younger women respectively.

Table 2. Bivariate analysis comparing exposures and confounders to small for gestational age (SGA),
the Fetal Growth Study.

Participant Characteristic OR 95% CI p-Value

Race 0.0003
Not Black Ref
Non-Hispanic Black 2.46 1.59, 3.81

Income
Less than <$30,000 Ref 0.01
$30,000–$39,999 1.38 0.82, 2.34
$40,000–$49,999 1.06 0.69, 1.88
$50,000–$74,999 0.94 0.56, 1.59
≥$75,000 0.57 0.37, 0.86

Education
HS or Less Ref
Some college or Associate degree 0.81 0.57, 1.17 0.002
At least college degree 0.53 0.36, 0.76

Log Pb 1.18 1.04, 1.35 0.01
Log Cd 1.22 1.03, 1.35 0.01
Log Hg 0.91 0.78, 1.45
Perceived Stress (75th percentile) 1.04 0.70, 1.07 0.02
Depression 0.32 0.08, 1.33 0.10
Weight Gain

adequate Ref <0.0001
under 1.56 1.05, 2.33
over 0.56 0.33, 0.81

Parity
0 Ref
1 0.61 0.43, 0.86 0.004
2+ 0.59 0.38, 0.91

Married vs. Nonmarried 0.61 0.44, 0.83 0.002
Age
≤24 Ref <0.0001
25–35 0.52 0.38, 0.72
>35 0.46 0.28, 0.78

Variables within domains tended to be correlated with each other (Table 3); however, Hg and
Pb were not significantly correlated. Though many of the variables were statistically significantly
correlated, education and income appeared to be the only variables highly correlated to each other
(r = 0.68, p < 0.05). Depression and perceived stress were moderately correlated (r = 0.31, p < 0.05).
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Only the two sociodemographic variables (education and income) were correlated with SGA (not
included in table).

Table 3. Spearman correlation coefficients for tertiles of heavy metals, psychosocial stress, and categories
of sociodemographics.

Variables Pb Cd Hg Income 1 Education 1 Perceived
Stress Depression

Pb 0.22 0.01 0.08 0.05 0.00 0.02
p-value <0.0001 0.53 0.01 0.02 0.93 0.29

Cd 0.09 0.02 0.00 −0.02 0.05
p-value <0.0001 0.24 0.82 0.42 0.03

Hg −0.13 −0.12 −0.01 0.05
p-value <0.0001 <0.0001 0.63 0.03
Income 0.68 −0.02 0.16
p-value <0.0001 0.42 <0.0001

Education −0.07 0.10
p-value 0.002 <0.0001

Perceived
Stress 0.31

p-value <0.0001
Depression

p-value
1 Income and education were in reverse order (highest income and education to lowest).

In unadjusted cumulative models (Table 4), the demographic index and the total cumulative index
were the only variables associated with SGA. The total cumulative index (Table 4) was associated with
SGA even with race/ethnicity included in the model (OR: 1.17, 95% CI: 1.02, 1.35). While not significantly
associated with SGA, the unadjusted metals domain and the psychosocial domain appeared to have an
association, given that the lower confidence level was close to the null (OR 1.16, 95% CI 0.97, 1.38 and
OR: 1.20, 95% CI 0.96, 1.52 respectively). In the adjusted models, inputting the domains separately did
not yield any associations between the indices or race/ethnicity and SGA.

Table 4. Unadjusted and adjusted associations between composite variables for three domains (metals,
psychosocial stress, and demographics) and SGA, the Fetal Growth Study *.

Domain
Unadjusted Models Using
Highest Tertile as Exposed

Unadjusted Individual
Domains, without

Race/Ethnicity Included

Adjusted Models with
All Individual Domains

as Exposures

OR CI OR CI OR CI

Metals 1.16 0.97, 1.38 1.18 0.95, 1.46 1.17 0.93, 1.48
Psychosocial 1.20 0.96, 1.52 1.16 0.90, 1.50 1.24 0.95, 1.62
Demographic 1.35 1.08, 1.68 * 1.29 1.01, 1.65 * 1.10 0.80, 1.50

Total
Cumulative 1.21 1.06, 1.37 * - - 1.17 1.02, 1.35 *

* Significant at <0.05 level.

The weights for the WQS regression models and the betas are described in Table 5.
The sociodemographic domain was the only domain associated with SGA (β = 0.41, SE = 0.20,
p = 0.04). According to the weights assigned in the WQS regression models, income appears to have
the most influence on the index, as the weight for income was 0.69, while it was only 0.31 for education
(Table 5). Weights for adjusted and unadjusted WQS models, betas (β) and standard errors (SE) for
final adjusted WQS regression models n WQS models, Fetal Growth Study.
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Table 5. Weights for adjusted and unadjusted weighted quantile sum (WQS) models, betas (β), and
standard errors (SE) for final adjusted WQS regression models, Fetal Growth Study.

Domain Variable Unadjusted Adjusted β (SE) p-Value

Metals
Pb 0.49 0.48

0.30 (0.18) 0.10Cd 0.17 0.52
Hg 0.34 0.00

Psychosocial Depression 0.82 0.67 0.04 (0.19) 0.85Perceived Stress 0.18 0.33

Sociodemographic Income 0.69 0.12 0.41 (0.20) 0.04Education 0.31 0.88

Cumulative
WQS variable

Pb 0.28 0.03

0.37 (0.38) 0.33

Cd 0.07 0.30
Hg 0.01 0.06

Depression 0.15 0.14
Perceived Stress 0.14 0.15

Income 0.20 0.22
Education 0.14 0.10

4. Discussion

This analysis indicates that a cumulative measure of multiple exposures could be associated
with SGA. The index that included all three domains in the cumulative risk score analysis (heavy
metals, psychosocial stress, and sociodemographics) was consistently associated with SGA, suggesting
that modeling exposures cumulatively could help explain how lower levels of exposures jointly
increase women’s risk of these adverse birth outcomes. However, in WQS regression models, the total
cumulative model was not associated with SGA, and the only domain to be associated with the outcome
was the sociodemographic index. Sociodemographics and race/ethnicity were so strongly associated
with the outcome they outweighed effects of other exposures. Previous studies have indicated that
controlling for indicators of socio-economic levels could control for other effects. This results in
only the strongest SES terms being associated with the outcome, while producing null results among
other indicators. In Lefmann et al’s study, for example, they believed that the reason why Medicaid
status was the only predictor associated with SGA, LBW, and PTB was because Medicaid controlled
for other correlated indicators, such as race and experiencing stressful events [75]. They postulated
that Medicaid status could be an indicator for poverty, thereby negating associations between other
sociodemographic and stress variables in the models. A similar process could be operating with
respect to exposures to toxicants; certain lower-SES populations are more vulnerable to environmental
exposures [52]. Several studies have indicated disadvantaged populations are at higher risk of exposure
to both chemical and nonchemical exposures [3,76]. DeFur et al., described the vulnerability in lower
SES groups, meaning not just a susceptibility of lower SES groups to harmful exposures, but also an
inability of these groups to recover. That results in disparities in outcomes between SES groups [52].
DeFur et al.’s conclusion is plausible given that lower SES people tend to live in closer proximity to
industrial areas and other areas with higher chemical exposures [7,53–56]. However, depending on the
population, other potential sources of pollutant exposure (diet, consumer products, and occupation)
may not have the same correlation with SES: for instance, jobs with relatively high levels of exposure
may also be high-paying, or women with higher incomes may be able to afford seafood that contains
mercury. While the study does not allow us to determine why lower SES women had a higher risk of
having SGA infants, the analyses do provide more evidence on the lasting and overwhelming impacts
of lower income and educational attainment on perinatal outcomes.

WQS regression’s ability to weight predictors may be of special interest to researchers who study
multiple correlated predictors, as it avoids a simplistic assumption of equal weighting provided by a
simple cumulative risk score, such as our initial analysis provided. It should be noted, however, that
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WQS still assumes an equal increase/decrease in risk with every one-quantile change, which may be
incorrect if an association is nonlinear. We found no other studies that used the WQS method to estimate
the joint effect of both chemical and nonchemical exposures. Since its development, the approach has
been primarily used to combine multiple chemical exposures [61,77–81], although more recently, the
approach has been used to create SES indices [82], nutrient indices from self-reported food frequency
questionnaires [11,83,84], and an index for psychosocial stress [6]. Though the authors of these studies
chose to build models that did not combine chemical and nonchemical exposures, some authors did
attempt to build WQS coefficients that combined several domains. Yorita, Christensen et al. created
three WQS indices (heavy metals, co-planar polychlorinated biphenyls [PCBs], and non-dioxin-like
PCBs) to predict alanine amino transferase (ALT) levels (which indicate liver damage). Czarnota et
al. used one WQS index to estimate the combined effect of PCBs, polycyclic aromatic hydrocarbons
(PAH), and pesticides [77]. Risk factors across different domains are commonly correlated with each
other, so using an approach that accounts for this correlation could be helpful for researchers in many
fields of epidemiology. However, if exposure variables are strongly correlated with each other and
weakly correlated with the outcome WQS will perform poorly [60].

Limitations

We conducted this analysis on a cohort of pregnant women with no previous history of very PTB
or LBW infants, as well as no other pregnancy complications. Results cannot be generalized to other
populations of women and are not representative of the entire population of the United States. A review
of literature reveals that scientists are also currently unaware of the amounts of heavy metals that may
cause adverse birth outcomes. While most women did not have blood samples that were higher than
the CDC recommended limits, there is still evidence that lower levels of exposure could have adverse
effects on perinatal outcomes (which was one of the objectives of this study) [25,33,34]. As no clear
cut-off point was available from the literature, we used the highest tertile to classify exposure.

The primary intention of this study was to understand whether cumulative risk, of chemical and
nonchemical exposures, was associated with SGA in a healthy population of women, which included
women who were obese but otherwise healthy. Investigating women who do not present prior health
issues results in the exclusion of higher-risk women. If the examined risk factors are associated with
intermediates, selection bias could exist; regardless, this fact limits generalizability. Studying the
effects in more-exposed and/or less-healthy populations is an important next step in this research.
While we chose variables that have effects on fetal growth, there may have been other variables that
could be more appropriate for this analysis that were not measured for this study. Other chemical
exposures, such as PCBs, air pollution, or other environmental pollutants, may interact with heavy
metals, but cannot be studied in this secondary data analysis [11,85,86]. We were similarly limited to
the psychosocial stress measures studied in this analysis; we were unable to study other indicators
of stress, such as childhood traumatic events or post-traumatic stress disorder (PTSD), which have
also been associated with adverse birth outcomes [44,87]. Each factor studied is affected by a degree
of measurement error; some of them, such as stress and metal levels, may change over time as well.
(Age is likely to be a susceptibility factor, but thoroughly examining this interaction would require
multiple measures over time.) Combining multiple imperfectly measured variables can attenuate
effects under some circumstances [88]. As methods for combined exposure analysis develop, the
degree to which errors are amplified will need to be assessed. The study also suffers from missing data,
as illustrated in Figure 1. One limitation of WQS, or any assessment studying cumulative risk, is that
the many exposure variables included in the study will inevitably lead to more missing data compared
to traditional studies, which only assess one exposure variable with one outcome. To the extent that
missing data is informative or associated with exposure and outcome, this may bias the sample; most
likely, women with complete data will be at lower risk than the overall cohort.
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5. Conclusions

This study demonstrates that risk factors may affect SGA cumulatively and introduces WQS as a
possible tool to measure cumulative risk. WQS has been presented as a possible tool to measure risks in
perinatal research, as well as presenting the possibility of using the method in studies involving chemical
and nonchemical risk factors. The present analysis also supports previous research on the importance
of socioeconomic factors on reproductive health outcomes. When researchers study cumulative risk,
special attention should be placed on acknowledging the important role of sociodemographics on
maternal health.
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