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Objective: To demonstrate that psychophysiology may have applications for objective
assessment of expertise development in deadly force judgment and decision making
(DFJDM).

Background: Modern training techniques focus on improving decision-making skills with
participative assessment between trainees and subject matter experts primarily through
subjective observation. Objective metrics need to be developed. The current proof of
concept study explored the potential for psychophysiological metrics in deadly force
judgment contexts.

Method: Twenty-four participants (novice, expert) were recruited. All wore a wireless
Electroencephalography (EEG) device to collect psychophysiological data during
high-fidelity simulated deadly force judgment and decision-making simulations using a
modified Glock firearm. Participants were exposed to 27 video scenarios, one-third of
which would have justified use of deadly force. Pass/fail was determined by whether the
participant used deadly force appropriately.

Results: Experts had a significantly higher pass rate compared to novices (p < 0.05).
Multiple metrics were shown to distinguish novices from experts. Hierarchical regression
analyses indicate that psychophysiological variables are able to explain 72% of the
variability in expert performance, but only 37% in novices. Discriminant function analysis
(DFA) using psychophysiological metrics was able to discern between experts and novices
with 72.6% accuracy.

Conclusion: While limited due to small sample size, the results suggest that
psychophysiology may be developed for use as an objective measure of expertise in
DFDJM. Specifically, discriminant function measures may have the potential to objectively
identify expert skill acquisition.

Application: Psychophysiological metrics may create a performance model with the
potential to optimize simulator-based DFJDM training. These performance models could
be used for trainee feedback, and/or by the instructor to assess performance objectively.
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INTRODUCTION
DEADLY FORCE JUDGMENT AND DECISION MAKING
Military and police personnel in peacekeeping roles, are often
required to make difficult and complex decisions regarding the
use of deadly force in the midst of fluid, vague, and emotion-
ally charged situations (Kleider et al., 2009). An experienced army
officer described the decision to use deadly force, “The dynamics
of a deadly force encounter. . . requires the Soldier to first rec-
ognize the threat, then choose the appropriate level of response
for the threat, and finally implement that response, all in a mat-
ter of seconds” (Netherland, 2006). It is critical that training for

deadly force judgment and decision making (DFJDM) be as effec-
tive as possible, and that performance be measured accurately
because the consequences of DFJDM are so extreme. Taking the
aforementioned into account, this pilot study aims to explore the
utility of DFJDM simulations and psychophysiological metrics in
assessment of DFJDM.

Computerized high fidelity DFJDM simulators are used exten-
sively by several branches of the military including the U.S.
Army, Navy, and Marine Corps (Fong, 2006). The majority
of police agencies in the United States also use these train-
ing devices (Hickman, 2005). High fidelity DFJDM simulators
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that use realistic, engaging, and arousing high definition video
scenarios provide trainees with the opportunity to efficiently
acquire experience in a shorter time period than field experience
alone would allow. Unlike traditional marksmanship training and
ground-combat tactics training, which tend to use repetition
to ingrain automatic responses or rational-analytic approaches
to choosing the appropriate response to tactical threats, these
simulators help build the skill sets necessary to apply rules of
engagement quickly in complex, realistic settings (van den Bosch
and Riemersma, 2004). However, effective training in these sim-
ulators must assess performance based on both outcome (the
observable decision to exercise force vs. inhibition), and on the
internal cognitive decision-making process of arriving at the deci-
sion. In other words, it is important to know whether a trainee’s
decision to shoot a person was justified (e.g., because he/she
perceived the suspect to be both armed and presented a deadly
threat), but it also is critical to know whether the trainee arrived at
this decision by a logically valid process rather than by “intuition”
or chance (Vila et al., 2012). The task of observing and measuring
mental processes of decision making poses a difficult challenge
for trainers and researchers, and is typically inferred from obser-
vation and after-action self-report. Psychophysiological methods
offer a complementary approach that measures the decision mak-
ing process objectively and provides a quantitative assessment of
processes not available through observation or participant report
alone, such as level of participant engagement and arousal.

Electroencephalography (EEG) and electrocardiography
(ECG) are useful tools for obtaining psychophysiological metrics,
such as engagement and arousal, which have the potential to
provide additional insight into the process of DFJDM that perfor-
mance outcomes or self-report alone cannot display. Unlike other
brain imaging technologies, physiological metrics based on EEG
have the advantage of providing high temporal resolution, which
offers the potential for real-time feedback and monitoring of skill
acquisition. In addition, EEG can be recorded under the same
conditions in which the task is normally performed (with an
awareness of artifact contamination complications), resulting in
data with greater ecological validity than data collected inside an
imaging machine or under other, less externally-valid laboratory
conditions.

A growing body of research has used EEG and ECG methodol-
ogy to identify psychophysiological indices of elite athletic perfor-
mance in a number of different sporting environments including
marksmanship (Haufler et al., 2000; Hillman et al., 2000; Kerick
et al., 2004), archery (Salazar et al., 1990; Landers et al., 1994),
and golf (Crews and Lander, 1993; Babiloni et al., 2008). These
studies suggest that changes in EEG and ECG indices are asso-
ciated with stages of skill acquisition. For example, the pre-shot
routine of skilled marksmen and archers is characterized by an
increase of EEG power in the alpha band (Kerick et al., 2007).
EEG metrics recorded during the pre-shot routine distinguished
expert marksmen from novices (Tremayne and Barry, 2001), and
between reactive shooting tasks with greater vs. less decision load
(Kerick et al., 2010). A decrease in heart rate (i.e., heart rate
deceleration), measured by ECG, also characterized the pre-shot
period of expert marksmen (Kontinnen et al., 1998) and archers
(Salazar et al., 1990). Recent studies also have demonstrated the

utility of EEG-based objective metrics for evaluating the decision
making process in simulation tasks (Kolev et al., 2001; Davis et al.,
2011). For example, significant changes in alpha frequency bands
were observed during complex decision making tasks, and may
likewise serve as indices in DFJDM (Davis et al., 2011).

In recent years, studies have found EEG bandwidths are associ-
ated with basic cognitive processes that influence decision making
in general, and deadly force decision making specifically. Deadly
force decision making is thought to be associated with per-
ception, attention, short term memory (i.e., working memory),
information processing, and past experience that may trigger
anxiety or stress (Honig and Lewinski, 2008). EEG power spec-
tral density (PSD) Hz bins can be averaged to obtain measures
of power in standardized bandwidths: theta (3–7 Hz), alpha (8–
12 Hz), beta (13–30 Hz), and gamma (25–40 Hz). With regard
to marksmanship, a base skill for DFJDM, frontal theta has
specifically been noted to distinguish expert from novice marks-
men during the pre-shot period (Doppelmayr et al., 2008).
Furthermore, increased gamma power in the right occipital-
parietal area occurred in response to attended-to stimuli vs.
non-attended stimuli (Kaiser and Lutzenberger, 2005) and alpha
suppression in this region is associated with increased alertness
and expectancy (Klimesch, 1999). Others have also shown that
alpha frequency band activity is typically suppressed in the areas
of the brain that are performing a cognitive task (Klimesch et al.,
1990, 1993). For decision making, specifically, alpha asymme-
try is associated with increased risk taking in the Iowa gambling
task model of decision making (Davis et al., 2011). Both theta
and gamma are elevated in the frontal and prefrontal areas dur-
ing tasks associated with the situational awareness (French et al.,
2007). In addition to the EEG based metrics, ECG provides
insight into anxiety and stress through examination of the PSD-
based low frequency (LF, 0.05–0.15 Hz) and high frequency (HF,
0.15–0.5 Hz) ratio (Camm et al., 1996).

By evaluating EEG and ECG recordings from experienced mil-
itary/law enforcement personnel and novice participants during
simulated DFJDM training, we attempted to identify the psy-
chophysiological characteristics of the expert DFJDM process.
The goal of the current study was to identify EEG and ECG
metrics that distinguish DFJDM expertise. By identifying such
metrics in this and future studies, objective assessments can
be developed to aid in screening and selecting candidates for
roles that require such skills, optimization (through feedback) of
DFJDM skill acquisition, and assessment of training applications
and curricula efficacy.

METHODS
PARTICIPANTS
Twenty-four participants (mean age = 30, range = 19–50, 75%
male) were recruited to evaluate the psychophysiological corre-
lates of DFJDM expertise. Participants were recruited as novices
(n = 12) or experts (n = 12). Novices consisted of civilians meet-
ing the criteria of (1) no military or police experience, (2)no
firearms training or experience, and (3) showing no intent toward
joining an occupation where DFJDM would be an expected
occurrence. Experts consisted of active duty military infantry
personnel (n = 6) and active duty police officers (n = 6). The
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experts were classified as such, not just by time in service, but by
the combination of successfully passing specified requirements.
For military personnel, they must have passed (1) a basic training
course; (2) their respective School of Infantry; and (3) consoli-
dated their knowledge, skills, and abilities obtained from 1 and
2 through practical experience in a minimum of one operational
tour. For law enforcement officers, they must have passed (1) a
formal law enforcement academy; (2) the field training officer
probationary period; and (3) consolidated their knowledge, skills,
and abilities obtained from 1 and 2 through practical experience
assigned to patrol. The skills of both military and police expert
participants were comparable because the demands of infantry
counterinsurgency operations so closely resemble those of day-
to-day police patrol work (Nagl et al., 2008). Both operational
groups must be expert in the same sorts of challenging DFJDM
in order to succeed.

Military participants were directly recruited from local Army
and Marine Corps units and police participants were recruited
from local police departments and sheriff ’s offices. Permission
to recruit police officers and military personnel was obtained
through direct contact with their respective chains of com-
mand. Novice participants were recruited from the Spokane,
Washington population using printed flyers and online advertis-
ing. As per ethical regulations, participants were required to be
physically and psychologically healthy; they were found to have no
clinical disorders and/or illnesses based on self-reported history
and questionnaires.

All participants received compensation ($240 for a 12-h com-
mitment) for taking part in the study (the approximate equivalent
of law enforcement overtime pay rates). The use of human partic-
ipants was approved by the WSU Institutional Review Board prior
to participant recruitment.

MATERIALS/EQUIPMENT
Deadly force decision making simulator
The experiment was conducted in the WSU Simulated Hazardous
Operational Tasks laboratory, part of the Sleep and Performance
Research Center in Spokane, WA, which was equipped with two
high fidelity deadly force judgment and decision-making simu-
lators of the type commonly used in law enforcement training
(AIS PRISim®, Seattle, WA). These simulators are located in 28′
by 18′ shooting ranges, with an 18′ by 10′ screen at the far end on
which HD video scenarios are displayed. The handguns used in
these simulators are modified Glock model 21 s with barrels that
have been converted to accept infrared emitters and trigger mech-
anisms that were changed to allow dry firing. A sensor mounted
in the range registered shot placement on the screen and the time
from a threat becoming visible to each shot fired.

Video
A set of 60 realistic (live action, high-definition video) depic-
tions of encounters requiring deadly force decisions was used in
this experiment. Thirty-five percent of scenarios did not require
the use of deadly force (e.g., the suspect’s behavior appeared
to be threatening but he/she was unarmed). Scenarios lasted
between 1 and 3 min. Scenario content was based on data gath-
ered from the last 30 years of incidents in which officers were

killed or assaulted in the line of duty. Suspects in the scenarios
were African American, Caucasian, and Hispanic; and were rep-
resented proportionately to their involvement in officer-involved
shootings (United States Department of Justice, 2010). Suspects
were either armed with handguns or knives, or presented innocu-
ous objects such as wallets, driving licenses, cell phones, or beer
bottles. Scenario difficulty was controlled by manipulating com-
plexity (number of interacting variables in the encounter) and
coupling (how much change in one variable affects change in
another variable), based on Normal Accidents Theory (Perrow,
1999; Klinger, 2005). According to Normal Accidents Theory,
greater complexity and coupling increase situational difficulty
and the probability of a negative outcome. For this study, com-
plexity was operationalized as number of suspects, number of
officers, and number of weapons. Coupling was operationalized
as type of weapon, speed and subtlety of suspect movement, sus-
pect intoxication, and the degree to which the physical space
depicted in the scenario limited movement. Difficulty level of
the scenarios was carefully and unobtrusively manipulated into
three levels: naïve, intermediate, and journeyman. The difficulty
level for each scenario was set independently by a focus group
of deadly force training subject matter experts and has since
been tested to assure that scenarios in each difficulty level are
equivalent (Vila et al., 2012). Scenarios were filmed in natural-
istic settings using paid professional actors. For each scenario, a
suspect “die scene” was filmed that was automatically triggered
when a participant accurately fired a shot that hit a suspect. Three
major types of scenarios were filmed, based on the most common
deadly force encounters (United States Department of Justice,
2010): vehicle stops, suspicious person stops, and domestic
disturbances.

Psychophysiology
EEG and ECG were measured throughout testing using the pro-
totype B-Alert® X10 wireless sensor headset (introduced in 2007
by Advanced Brain Monitoring, Inc., Carlsbad, CA). This pro-
totype headset had eight referential EEG channels located at Fz,
F3, Cz, C3, C4, POz, P3, and P4 (according to the International
10/20 system), and ECG. Linked reference electrodes were located
behind each ear on the mastoid bone. ECG electrodes were placed
on right clavicle and lower left rib. Data were sampled at 256 Hz
with a band pass from 0.5 Hz to 65 Hz (at 3 dB attenuation)
obtained digitally with Sigma-Delta A/D converters. In order to
remove environmental artifacts that may have emanated from the
power network, sharp notch filters at 50, 60, 100, and 120 Hz were
applied. Data were then transmitted wirelessly via Bluetooth to
a host computer up to 10 meters from the sensor headset. Data
acquisition software then stored the psychophysiological data
on the host computer. The proprietary acquisition software also
included artifact decontamination algorithms for eye blink, mus-
cle movement, and environmental/electrical interference such as
spikes (caused by tapping or bumping of the sensors), saturations,
and excursions that occur during the onset or recovery of satura-
tions (Berka et al., 2004). The algorithm automatically detected
and removed a number of these artifacts in the time-domain
EEG signal through identifying and decontaminating by wavelet
transform (Berka et al., 2004, 2007).
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Neurocognitive tasks
The neurocognitive tasks were developed to time and record the
presentation and participant responses to stimuli in order to gen-
erate individualized models of Engagement and Workload (for
validation of these metrics and further detail on the tasks see
Berka et al., 2007; Johnson et al., 2011). The output files from
these tasks contain the simultaneously acquired EEG signals with
markers denoting when each stimulus was presented, when each
stimulus response occurred, and what each stimulus response
was. Specifically, these individualized models are built utilizing
reaction time to stimulus, and percent of the correct responses
(i.e., accuracy) in conjunction with EEG parameters. Engagement
can be quantified on an index involving “information-gathering,
visual scanning, and sustained attention,” which is obtained via
collection and algorithmic calculation of differential sites FzPO
and CzPO (Berka et al., 2007; p. B239). Additionally, work-
load can be quanitified as an increase in memory load “during
problem-solving, integration of information, analytical reason-
ing, and may be more reflective of executive functions” (Berka
et al., 2007). Workload is collected and calculated using differ-
ential sites FzPO, CzPO, C3C4, FzC3, F3Cz, and F3Cz. The 3
neurocognitive tasks are described below, in the same order they
were presented to participants.

3-Choice vigilance task (3CVT). The 3CVT requires subjects to
discriminate one primary (70% occurrence) from two secondary
(30% occurrence) geometric shapes with a stimulus presentation
interval of 200 ms over a 20-min test period. Participants were
instructed to respond as quickly as possible to each stimulus pre-
sentation. A training period was provided prior to the beginning
of the task to minimize practice effects. During the first 5 min of
the session, the inter-stimulus interval ranged from 1–3 s, while
the middle 10-min period had an inter-stimulus interval range
of 1–6 s. During the final 5 min, the inter-stimulus interval range
was 1–10 s. Participants were instructed to select the left arrow to
indicate target stimuli, and the right arrow to indicate non-target
stimuli. A training period was provided prior to the beginning of
the task in order to minimize practice effects.

Visual passive vigilance task (VPVT) and auditory passive vig-
ilance task (APVT). The VPVT and APVT tasks were passive
vigilance tasks that lasted 5 min each. The VPVT repeatedly pre-
sented a 10 cm circular target image for a duration of 200 ms. The
target image was presented every 2 s in the center of the computer
monitor, requiring the participant to respond to image onset by
pressing the spacebar. The APVT consisted of an auditory tone
that was played every 2 s, requiring the participant to respond to
auditory onset by pressing the spacebar.

Protocol
Participants were required to visit the WSU Simulated Hazardous
Operational Tasks laboratory on two separate occasions. An ini-
tial screening visit was used to brief participants on the study,
obtain informed consent, and complete the aforementioned neu-
rocognitive tasks with simultaneous EEG collection. The screen-
ing visit served to determine subject eligibility, including the
viability of the engagement and workload models as well as

meeting eligibility requirements. Model viability is determined
based on the accuracy of re-classifying the data used to build the
model, with accuracy levels required based on model accuracy
across our database of healthy, fully rested subjects (confirmed
with actigraphy). Accuracy levels are: (1) greater than 71.5%
in High Engagement for the 3CVT; (2) greater than 70% in
Low Engagement for the VPVT; and (3) greater than 82% in
Distraction for the APVT (Berka et al., 2007). During the sec-
ond experimental visit to the laboratory, participants were fitted
with the sensor headsets and given an orientation. During the
orientation, all participants (police and military experts, as well
as novices) received a 45-min standard training session con-
ducted by police firearms trainers which covered safety issues,
the weapon system, marksmanship, range layout, and concise
rules of engagement governing whether they should shoot or hold
their fire during the potentially deadly encounters depicted in the
scenarios:

“The goal of a police officer in a deadly force encounter is to accu-
rately identify a threat and neutralize it, while minimizing harm to
bystanders, officers, and suspects.”

This training was necessary to get novices to a criterion level
so they could effectively operate the weapon and interact with
the scenario simulator. There was no coaching on the decision
element of the scenarios. At the end of this training session, par-
ticipants were required to demonstrate proficiency with the Glock
handgun by consistently firing a three-round group that was less
than 254 cm in diameter (note: this is smaller than the size of the
“hit zone” on suspects depicted in the simulation scenarios). In
addition, the novice participants received a second 45-min train-
ing session with deadly force trainers that focused on interacting
with the scenarios (e.g., use of assertive language such as “Show
me your hands!” and “Drop your weapon!”). During this one-
on-one training session, each participant completed a practice
scenario on which they received trainer feedback.

During the day-long experiment, each participant responded
to 27 scenarios (out of the 60 possible) in a deadly force judg-
ment and decision-making simulator. The scenarios were catego-
rized by location, resulting in video vignettes that took place in
stores/supermarkets, streets, homes, and in vehicles. Each partic-
ipant received a unique subset of the possible scenarios that were
randomized within each difficulty category and organized into
nine sets of three scenarios. The level of challenge increased as the
experiment progressed; all participants began by responding to
novice scenarios and were promoted to intermediate, then jour-
neyman scenarios once they demonstrated a consistent ability to
pass the previous level. For example, a participant who passed all
three scenarios in the novice set was promoted to intermediate
scenarios and, if he/she passed three scenarios at that level, was
promoted to journeyman scenarios. Each scenario lasted between
1 and 3 min and every participant had a 3-min rest period
between each scenario, during which they sat quietly in a chair,
and 30 min rest after completing each set of three scenarios—
so each set took 50–60 min, including rest breaks. A sample of
a subset is shown in Figure 1, diagramming a potential sequence
of scenarios (store, house, street) with breaks indicated between.
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FIGURE 1 | Flow diagram of stills from a random scenario video subset. (A) Threat in a store, (B) participant, during session, assessing house scene, (C)

Non-Threat in the street.

Participants were given lunch during one of the 30 min rest peri-
ods. Participants were monitored at all times and were kept from
discussing the scenarios or the simulators with each other. For
additional information, including the full sample of 60 video
vignettes, contact the corresponding author; Robin R. Johnson.

At the end of each scenario, an experimenter referenced a deci-
sion tree matrix to score the scenario performance as Pass or Fail.
A passing score was determined only if: (1) the scenario was Null
(use of deadly force not justified), and the participant did not fire
any rounds; or (2) the scenario was Threat (use of deadly force
justified), and the participant fired at least one round after the
threat became apparent, which hit the suspect and did not hit any
bystanders. Shooting before the threat was apparent (i.e., the first
video frame when a weapon became visible) was counted as a fail.
The simulator automatically tracked and reported these events.
Any deviation from these criteria was scored as a Fail. Overall pass
rate was calculated for each participant as the percentage of total
scenarios completed during the day-long experiment that resulted
in a passing score. Each participant was debriefed after they com-
pleted the experiment. The decision tree used for this process is
shown in Figure 2 along with the scoring matrix used by research
staff during the experiments.

Data reduction
PSD values were computed from the continuous EEG signal on a
second-by-second basis. The corresponding PSD values for each
1 Hz bin, from 3 to 40 Hz, were derived for each channel. The PSD
data was then log-transformed in order to create a more normal-
ized distribution (Davidson et al., 2000). Relative and absolute
power variables were calculated. Relative power was calculated
as the proportion of power in a given frequency band to the
total power in the 3 Hz to 40 Hz spectrum. Relative and abso-
lute values of theta (3–7 Hz), alpha (8–12 Hz), beta (13–30 Hz),
and gamma (25–40 Hz) power for each channel were averaged
for each DFJDM scenario and each 3-min rest between scenar-
ios. Alpha asymmetry was calculated by taking the Left (average
over F3, C3, P3) minus Right (average over C4, P4) alpha.

Absolute and relative power spectra variables were also used
to quantify levels of EEG-based Engagement and Workload. The
four-class Engagement model was individualized using EEG data
collected during 3CVT, APVT, and VPVT psychophysiological
tasks completed during screening (Johnson et al., 2011). The
Engagement and Workload models used quadratic and linear

discriminant function analyses to compute the posterior prob-
abilities for each of the four Engagement classes, and the two
Workload classes for each 1–3 min scenario, and each 3 min rest
session. For each metric (absolute and relative frequency bands,
posterior probabilities for Engagement and Workload), a change
score was calculated by subtracting the average value for the pre-
ceding rest period from the average value during the scenario of
interest.

A proprietary adaptive R-wave detection algorithm was
employed to detect the R-waves in the ECG signal, based on stan-
dard QRS complex detection (Fraden and Neuman, 1980). The
interval between two consecutive R-waves was used to determine
raw heart rate. The raw heart rate was interpolated so that instead
of a grid defined by heart beats, the grid is defined by seconds
(HR). To calculate heart rate variability (HRV), each set of three
scenarios (1–3 min each) and the intervening rest periods (3 min
each) were merged to meet the minimum 5 min segment of HR
signal required to be modeled as a 25th order auto regression pro-
cess. The coefficients of the process were estimated from the data
and were used to calculate the power spectra in the range from
0.001–0.5 Hz in steps of 0.001 Hz. LF HRV is equal to the sum
of the power spectrum from 0.04–0.15 Hz. HF HRV is calculated
as the sum of the power spectrum from 0.15–0.4 Hz. LF HRV is
commonly considered a marker of sympathetic modulation (i.e.,
the fight or flight response) when expressed as normalized units
(i.e., the proportion of power in the LF band compared to total
power), while the same calculation for HF HRV is considered to
represent parasympathetic modulation. To determine which sys-
tem is dominant at any given period, the ratio of LF:HF norms
are often used (Camm et al., 1996).

Average HR was calculated for each DFJDM scenario, and for
each 3-min rest between scenarios. The change score between
the scenario and the preceding rest was also calculated as above.
HR deceleration was calculated by comparing the change in HR
throughout the scenario to the last 5 s prior to the shot (i.e., The
change in HR from resting period to scenario). HRV was aver-
aged for each experimental cycle (including scenarios and rest
periods), since a minimum 5-min window is required to calculate
HRV.

Statistical analysis
Statistical Analysis Software (SAS) was used to generate a
prediction model of overall good decision making based on
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FIGURE 2 | Decision Tree for pass/fail scoring for each scenario.

psychophysiological variables. ANOVA analyses examined the
variables predicted to be of interest based on the literature, includ-
ing: frontal midline (Fz) theta; frontal theta and gamma (Fz,
F3); right parietal (P4) gamma; overall alpha and alpha asym-
metry; alpha suppression (as a change from resting alpha to
scenario), and specifically right parietal alpha suppression; HR
and HR deceleration (as a change from resting periods to sce-
narios); as well as LF:HF ratio measure of HR variability. For
all psychophysiological analysis, only the “good decision” trials
that included both the “pass” trials and those in which a threat
existed, shots were fired, but none hit either legitimate targets
or bystanders, were included (i.e., failed trials were not a part
of the comparison of psychophysiological metrics comparison).
Ignoring marksmanship issues kept the focus on decision mak-
ing, rather than performance, which was not the variable being
measured in this study.

Both 2-level (Expert vs. Novice participants), and 3-level
(Expert vs. Intermediate vs. Novice participants) ANOVAs were
examined. For the 2-level ANOVA we examine the experts (n =
12) that include a range of 6–25 years of experience as an active
duty military or police officer compared to novices (n = 12),

N = 24. In order to examine “intermediate” expertise, we also
split the experts by years of experience and down-selected the
novice group to match the smaller sample sizes of n = 6, N = 18.
The Three-way analysis split the Expert group of military and
police participants based on years of experience, with Experts
having more than 10 years of experience, and Intermediates hav-
ing less than 10 years of experience. To down-select the novice
sample size, we removed all females (as none of the experts were
female), and those outside of the age range of the expert group
(i.e., under 25 years).

Following the ANOVA, additional analyses were conducted to
examine what physiological metrics explained variance in sce-
nario success. A hierarchical step-wise regression was conducted,
with the variables entered based on the literature reviewed.
Predictor variables presented to the regression modeling are listed
in Table 1. Given our sample size (n = 12 per group), we prior-
itized the 9 variables that are most consistent with the literature
reviewed, with the exception of HR deceleration, which was not
included because of the lack of consistency between the DFJDM
performance findings and the marksmanship findings. As was
noted previously, we also split the experts into “expert” and
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“intermediate” groups based on years of experience, and down-
selected the Novice group to match, leaving sample size of n = 6
for each group, and leaving us with four variables to use in the
regression modeling: the frontal midline theta, workload (based
on ANOVA findings), frontal gamma, and overall alpha in these
analyses.

In addition to the stepwise regression analysis, a discrimi-
nant function analysis (DFA) was carried out on the individual
scenario performances (Pass only) to characterize the relation-
ship between expert/novice (dependent variable) and the psy-
chophysiological measures (independent variables). Due to the
small sample sizes and the large number of variables selected,
the 3-level analysis is highly over-fit to these data and thus
not presented. This analysis indicated the contribution of each
psychophysiological measure to the prediction of expert, or
novice, by finding linear combinations of the potential pre-
dictors that provide the best discrimination between scenarios
performed by experts and those performed by novices. The
discriminant model was validated using several indices: sensi-
tivity, specificity, false positive, and false negative. Sensitivity
ranges from 0 to 1 and represents the proportion of sce-
nario performances that were correctly classified by each psy-
chophysiological metric. Similarly, specificity values range from
0 to 1, but represent the proportion of correctly classified
novice scenario performances. False positive rate is the pro-
portion of scenario performances misclassified as expert, and
false negative rate is the proportion of scenarios misclassified as
novice.

RESULTS
The results will be presented based on 2-level (expert vs. novice,
n = 12 per group) and 3 level (expert, 10+ years; intermediate, 6–
10 years; and novice, 0 years expertise; n = 6 per group) analyses,
separately. Graphs are shown primarily for the 3-level analysis,
as this is the most informative of the development of expertise
process based on this preliminary study.

EXPERT vs. NOVICE (N = 12)
Performance
A two-sample t-test was conducted to compare the overall pass
rates for experts and novices. Pass rate was calculated at the
individual level as the number of passed scenarios out of the
total possible (27). Experts (M = 92.89%, SD = 6.39%) had
significantly higher pass rates than novices (M = 87.03%, SD =

Table 1 | Psychophysiological variables.

Metrics Construct associated

Frontal-midline theta Expertise in marksmanship

Change in alpha from rest Expertise in marksmanship

Engagement N/A

Workload N/A

Alpha asymmetry during scenario Decision making

Frontal theta and gamma during scenario Situational awareness

Right parietal gamma Stimuli relevance

Overall alpha during scenario Overall cognitive functioning

5.58%); t(22) = 2.39, p < 0.05 (two-tailed). These grand means
are the mean of the individual pass rates. A total of 305 scenar-
ios from experts and 295 scenarios from novices were available
to analyze out of a total of 324 possible for each cohort (due
to excessive contamination of the EEG signal, 7.5% of data was
excluded). Table 2 provides the counts for the pass/fail due to
performance errors (i.e., failed to hit perpetrator), and fail (i.e.,
shot when no threat existed, failed to shoot when one did, or
hit a bystander when shooting), of this down-selected dataset.
The mean pass rate of the down-selected datasets are similar to
those in the larger data set (respectively, M = 92.78 vs. 92.89%
for experts and M = 87.46 vs. 87.03% for novices).

Psychophysiological metrics
Heart rate. HR, HR Deceleration (the change in HR from rest-
ing to scenario), and HR variability (LF:HF Ratio) were examined
for both the Expert and Novice cohorts. The ANOVA revealed a
significant effect of expertise on HR, F(1, 22) = 16.71, p < 0.001,
and HR deceleration, F(1, 22) = 8.59, p < 0.001, but not LF:HF
Ratios, p = 0.57.

EEG metrics. The ANOVA between the Experts and Novices
revealed significant differences on some, but not all, of the metrics
of interest. Overall alpha, F(1, 22) = 8.79, p < 0.01, and overall
change from rest alpha was significant, F(1, 22) = 4.64, p < 0.05,
but the right parietal change in alpha was not (p = 0.32). Alpha
asymmetry was not significant. Frontal midline theta was sig-
nificant, as was overall frontal theta, F(1, 22) = 5.14, p < 0.05
and F(1, 22) = 5.06, p < 0.05, respectively. Finally, neither frontal
gamma nor right parietal gamma were significant.

B-alert classifications. Engagement and workload were exam-
ined as additional metrics of internal cognitive processing. The
2-level analysis found significant differences for engagement, but
not workload metrics, between the Expert and Novice groups;
F(1, 22) = 6.94, p < 0.01.

Hierarchical regression
Table 3 provides the outcome Adjusted R2 values of the hier-
archical regression analyses that were conducted for the 2-level
regression analyses to examine how psychophysiological variables
explain pass rate variance. The Adjusted R2 is for the model
that includes all prior variables in the table. Briefly, while we
examined metrics that theoretically should explain variability in
performance in DFJDM, we found these metrics to explain a large
portion of variability in the experts, up to 72%, with frontal mid-
line theta, change in alpha from rest, workload, and frontal and
right parietal gamma. Collectively these variables explain a great
deal of the physiologic underpinnings of expert performance. In
contrast, these same variables explain only 37% of the variance

Table 2 | Pass/fail counts—2 level analysis, n = 12.

Pass Fail (miss) Fail Total

Expert 283 5 17 305

Novice 258 9 28 295
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in the novice cohort, with change in alpha from rest and right
parietal gamma providing the most insight. If we combine the
groups, very little variance is explained by these metrics, indicat-
ing that the psychophysiological processes associated with exper-
tise may vary differently than skill acquisition during the novice
state.

Discriminant function analysis
A DFA was conducted to determine how accurately the psy-
chophysiological variables classified the expertise of the partic-
ipant completing each scenario (expert or novice), using the
scenarios rated as “pass” only to ensure equitable comparison.
The same variables used throughout this paper were presented to
the DFA on a scenario by scenarios bases. As seen in Table 4, the
cross validation results indicate that we can classify 72.6% of the
scenarios as expert or novice using these variables. The original
classifications began at 76.95% of experts correctly classified, and
70.95% of novice scenarios.

The function was identified using the leave-one-out cross vali-
dation (LOOCV) method to examine the generalizability of the
model, or the “overfittedness.” LOOCV uses one observation
from the N = 510 (good quality, passed scenarios) as the vali-
dation data in order to use it as training data for the validation
model. This process is then repeated for each observation in the
dataset so that each sample is used once as the validating data.
This, in turn, creates the function prediction from the regression
equation.

EXPERT vs. INTERMEDIATE vs. NOVICE (N = 6 PER GROUP)
Performance
ANOVA was conducted to compare the overall pass rates at each
of the three levels. Pass rate was calculated at the individual level
as the number of passed scenarios out of the total possible (27).

Table 3 | Two level regression adjusted R2 values.

Metrics Expert Novice Overall

Frontal−midline theta 0.21 −0.03 −0.03

Change in alpha from rest 0.23 0.24 −0.08

Engagement 0.13 0.22 −0.10

Workload 0.55 0.28 0.04

Alpha asymmetry 0.49 −0.07 0.11

Frontal theta 0.42 −0.24 0.13

Frontal gamma 0.68 −0.37 0.12

Right parietal gamma 0.72 0.37 0.08

Overall alpha 0.60 0.17 0.01

Table 4 | Summary of predicted classification for cross-validation.

Observed Predicted Predicted % Correct % Incorrect

Expert Novice

Expert 202 67 75.09 24.91 (false positive)

Novice 72 169 70.12 29.88 (false negative)

Overall %
correct

72.6

Experts (M = 97.5%, SD = 3.03%) had significantly higher pass
rates than both intermediates (M = 88.3%, SD = 5.42%) and
novices (M = 85.2%, SD = 3.7%); F(2,15) = 14.14, p < 0.001.
Duncan’s post-hoc analysis revealed that the experts differed sig-
nificantly from both the intermediate and novice performances,
but the latter did not differ from each other. A total of 143 scenar-
ios from experts, 162 for intermediates, and 150 scenarios from
novices were available to analyze out of a total of 162 possible
for each cohort (due to excessive contamination of the EEG sig-
nal, 7.4% of data was excluded). Table 5 provides the counts for
the pass, fail due to performance errors (i.e., failed to hit perpe-
trator), and fail (i.e., shot when no threat existed, failed to shoot
when one did, or hit a bystander when shooting), of this down-
selected dataset. The mean pass rate of the down-selected datasets
are similar (although not as closely as in the 2-level analysis) to
those in the larger data set (respectively, M = 95.2 vs. 97.5% for
experts, and M = 85.8 vs. 88.3% for intermediates M = 84.0 vs.
85.2% for novices).

Psychophysiological Metrics
Heart rate. HR, HR Deceleration (change from resting), and
HR variability (LF:HF Ratio) were examined based on exper-
tise. ANOVA revealed significant effect of expertise status on
HR, F(2, 15) = 18.74, p < 0.001; HR deceleration, F(2,15) =12.30,
p < 0.001, and, as with the 2-level analysis, no effect for LF:HF
Ratio,p = 0.63. A Duncan’s post-hoc analysis on the Three-Way
interaction found that the novice and intermediate groups were
similar, while both were significantly different from the expert
group for both HR and HR deceleration. The Three-Way data
for HR and HR deceleration are shown in Figure 3, where we see
that while the experts have lower HR compared to the other two
cohorts, they also increase HR during the scenario compared to
the resting period.

EEG metrics. A 3-level ANOVA of expertise effect on psychophys-
iological effects revealed effects similar to the 2-level analy-
sis. Overall alpha remained significant, F(2, 15) = 4.26, p < 0.05,
as did change from resting alpha, F(2, 15) = 9.75, p < 0.0019;
(Figure 4). Duncan’s, post-hoc analysis indicated that novices
had significantly higher alpha levels compared to the other two
groups, as well as the least change in alpha during the scenario.
In addition, the experts had the greatest shift in decreasing alpha,
compared to both intermediates and novice, while intermediates
had a significant increase compared to novices. Alpha asymmetry
also remained non-significant. Frontal midline theta was signifi-
cant, F(2, 15) = 4.13, p < 0.05 (Figure 5). Post-hoc analysis found
that the Novices differed from the experts but not the interme-
diate groups. And once again, neither frontal gamma nor right
parietal gamma were significant.

Table 5 | Pass/fail counts—3 level analysis, n = 6.

Pass Fail (miss) Fail Total

Expert 139 1 3 143

Intermediate 144 4 14 162

Novice 121 8 21 150
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FIGURE 3 | (A) HR and (B) HR Deceleration (change from resting) from the
Three-Way analysis demonstrated that the Intermediate group is more similar
to the novices than the experts. Experts have the lowest overall HR, but in

contrast to literature for target marksmanship, HR deceleration was not in
evidence; HR actually increased the most during the scenario for the Expert
group. Significant differences are indicated with an asterisk (∗).

FIGURE 4 | Overall (A) Alpha, (B) change in alpha from rest to scenario, (C) alpha change shot by shot. Novices exhibit significantly greater Alpha, while
change in alpha distinguishes the three groups. Significant differences are indicated with an asterisk (∗).

B-alert classifications. Engagement and workload were examined
as additional metrics of internal cognitive processing. The 2-level
analysis found significant differences for engagement, but not
workload metrics, F(1, 22) = 6.94, p < 0.01. The 3 level analysis
revealed significant effects on both metrics, F(2, 15) = 8.45, p <

0.01 for engagement, and F(2, 15) = 5.68, p < 0.05 for workload.
Post-hoc analysis revealed that experts exhibited significantly less
engagement compared to the other two groups, while intermedi-
ate participants exhibited the least cognitive workload compared
to the novices and experts. Figures 6A,B presents these data.

Hierarchical regression
3-level. Table 6 provides the outcome Adjusted R2 values of the
hierarchical regression analyses that were conducted for the 3 level
regression analyses to examine how psychophysiological variables

Table 6 | Three level regression adjusted R2 values.

Metrics Expert Intermediate Novice Overall

Frontal-midline theta −0.23 0.25 0.03 −0.03

Change in alpha from rest 0.54 0.38 0.24 −0.08

Workload 0.73 0.59 0.28 0.09

Frontal gamma 0.96 0.94 −0.19 0.05

explain pass rate variance. The Adjusted R2 is for the model that
includes all prior variables in the table. These data indicate that
frontal midline theta is more related to success during the transi-
tion from novice to expert than once expertise is acquired. Also
indicated is the change in alpha from rest remains an important
factor, as does workload and frontal gamma.
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DISCUSSION
This paper examined the underlying psychophysiology of DFJDM
in a small scale, proof of concept study. While the findings are
promising, indicating that psychophysiology is an important
underlying mechanism in the development of expertise in
DFDJM application, the findings should be interpreted with
caution, given the small sample size. DFJDM is a complex skill
that builds on the basic constructs of: marksmanship, decision
making, situational awareness, stimuli relevance, and general
cognitive functioning (all of which also require engagement and
marshaling cognitive resources, i.e., workload). Marksmanship
expertise, specifically with known distance shooting at
non-moving targets, is associated with heart rate deceleration and

FIGURE 5 | Frontal midline (Fz) theta. Novices and Experts differed
significantly, but neither were different from intermediates. Significant
difference indicated with an asterisk (∗).

an elevation in alpha and frontal midline theta compared to rest
periods/preparatory periods (Kontinnen et al., 1998; Kerick et al.,
2007; Doppelmayr et al., 2008; Berka et al., 2010). The current
study found that the HR of experts were lower than the novices
and intermediates during the scenarios, however, the change
from rest period was also greatest in the experts; indicating that
HR acceleration is part of expertise in DFJDM (in contrast to
HR deceleration associated with known distance marksmanship
(Hatfield et al., 1987)). This is consistent with the threat detection
nature of these tasks—the classic “fight or flight” response one
would expect to see in the presence of a potential threat—leading
to an elevation in HR. Similarly, alpha changes from rest were not
consistent with known distance marksmanship, where an increase
in alpha in the pre-shot period is in evidence (Kerick et al., 2007;
Behneman et al., 2012). Suppression of alpha (compared to
resting periods) and elevation in frontal midline theta (compared
to novices) were in evidence, and appear to be psychophysiolog-
ical metrics that translate from known distance marksmanship
expertise to DFJDM expertise. The suppression of alpha is
associated with an increase in focused attention (particularly on
visual stimuli), and one would expect focused attention to be
an essential aspect of DFJDM (Klimesch, 1999). Interestingly,
the change from rest alpha showed that this psychophysiological
measure also tapped into the process of developing expertise, as
the intermediates had an intermediate level on this measure.

DFDJM is associated with skills related to the following con-
structs: decision making, situational awareness, stimuli relevance,
general cognitive functioning, engagement/attention, and cogni-
tive workload (working memory) (Honig and Lewinski, 2008).
In past studies, others have found specific psychophysiological
metrics to be related to these constructs: alpha asymmetry is
related to risk taking in decision making (Davis et al., 2011);
elevated theta and gamma are associated with the situational
awareness (French et al., 2007); increased gamma power in the
right occipital-parietal area is correlated with stimuli relevance
processing (Kaiser and Lutzenberger, 2005), alpha suppression in
this region is associated with increased alertness and expectancy
(Klimesch, 1999). As these measures associated with constructs
relevant to DFDJM (along with engagement, workload, and HR),
we explored how they related to expertise in this application.

FIGURE 6 | Classifications for engagement (A), and workload (B) indicate that Experts exhibit lower engagement, while intermediates marshal fewer

cognitive resources associated with workload during the shooting scenarios. Significant differences are indicated with an asterisk (∗).
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The ANOVAs revealed that overall alpha and frontal theta
(metrics associated with the construct of situational awareness)
were significantly greater in the experts, which may speak to the
importance of the related construct of situational awareness as
expertise in DFDJM is developed. However, other metrics asso-
ciated with stimuli relevance and other aspects of situational
awareness (frontal and right parietal gamma), were not signifi-
cant. This may indicate that DFDJM reliance on the construct
of situational awareness is complex, as well as the reality that
many such constructs are related to a multiplicity of psychophys-
iological metrics, and many such metrics are related to multiple
constructs. The ANOVAs also revealed that engagement (as mea-
sured by EEG) was lowest in the experts, while workload was
higher in both novices and experts compared to intermediates.
Again, this reveals a complex relationship between psychophys-
iological metrics, cognitive constructs, and the development of
expertise in DFDJM. These findings support further applica-
tion of psychophysiology in future research of decision making,
specifically deadly force decision making skill acquisition, having
revealed the promise of these metrics in identifying some of the
internal processes associated with expertise development.

ANOVA also revealed that the intermediate level partic-
ipants are more similar to novices than experts, while the
regression indicates that like experts, intermediates may have a
tighter relationship with psychophysiology. These data are highly
exploratory, and findings could be a result of the small sample
size (n = 6), rather than true differences. However, they do reveal
the potential of psychophysiology in providing objective metrics
of expertise acquisition in DFDJM applications.

HIERARCHICAL REGRESSION
In addition to the ANOVA results, we also submitted these mea-
sures to a hierarchical stepwise regression that revealed that the
psychophysiological metrics were able to differentially explain
variance in each expertise cohort (expert vs. novice; expert vs.
intermediate, vs. novice), even though the metrics failed to do
so in the study cohort as a whole. The 2-level analysis found
that measures of marksmanship expertise (frontal midline theta
and change from rest alpha) explained ∼25% of variance in both
groups, while workload (ability to marshal cognitive resources),
frontal gamma (situation awareness), and right parietal gamma
(stimuli relevance) combined with the other metrics explained
up to 72% of the variance in performance in experts. In contrast,
for novices, psychophysiology explains a much lower amount of
variance (no more than 37%), although the metrics are similar:
change from rest in alpha, workload, and right parietal gamma.
Interestingly, the overall regression revealed very little (∼12–
13%) of variance explained by these same variables. This may
indicate that those metrics of importance in gaining skill as a
novice are not the same as those utilized once expertise is gained.

The 3-level model regression was even more interesting
(although should be interpreted with great caution given the very
small sample sizes). Here we found that change in alpha is still
essential for all three groups, although it is the most explanatory
in the experts. We are able to see that workload (i.e., marshaling
of resources) is the most explanatory in the experts and inter-
mediates, as is frontal gamma (situational awareness). As the

workload measures for novices and experts are not different in the
ANOVA, and are lower in the intermediates, the regression find-
ings might indicate that the experts, and even intermediates, are
able to marshal the correct cognitive recourses, while the novices
are struggling trying to marshal a myriad of resources that may,
or may not, be relevant to DFJDM. Intermediates are marshal-
ing the correct resources (alpha change, situational awareness,
stimuli relevance), but are not yet able to do so at a level that
changes performance (as the intermediate performance is closer
to the novice than expert). Overall, these data indicate a much
tighter relationship for expertise performance and psychophysi-
ology than compared to novices. These results are not conclusive,
but promising. One possible explanation for this expert/novice
difference may be that experts have automated many of the tech-
nical processes related to the task (weapons handling, verbal
commands, physical stance, etc.), placing more emphasis on the
cognitive processes that affect situation awareness, stimuli rel-
evance, marksmanship and, ultimately, performance. Novices,
however, expend more mental effort on the technical aspects
of the task in addition to the cognitive aspects (Ericsson and
Charness, 1994). As novices gain experience and master task rel-
evant technical skills, it is expected that their psychophysiology
would become more consistent and would contribute more to
task outcome. This pattern was seen in prior work from this lab-
oratory on marksmanship expertise development (Berka et al.,
2010). This may indicate that the previously described degree
of coupling between cognitive processes (as reflected by psy-
chophysiological metrics) and performance may be developed as
an objective measure of where a trainee is on the novice-to-expert
continuum. Further work in this field is warranted in order to
explore the utility of psychophysiological metrics as an objective
measure of performance in fast paced, high risk, low information
operational situations such as were simulated in this experimental
research.

DISCRIMINATE FUNCTION MODEL
The discriminant function utilizing psychophysiological metrics
was able to correctly classify approximately 72.6% of the partic-
ipant’s scenario performances as “expert” or “novice,” indicating
that these measures may have value as potential objective mea-
sures of skill acquisition over time. With additional investigation,
we may be able to establish psychophysiological metrics used to
identify the cognitive processes through which DFJDM occur.
Such metrics have the potential to objectify training assessment,
and to improve the quality of trainees when they transition to the
real world.

The data presented here demonstrates the potential of psy-
chophysiology in simulation training assessment. However, it
must be noted that the current pilot study is not definitive and
further work must be done to fully examine the role of psy-
chophysiology in simulation, as well as to determine a set of “best
practices” when doing so.

LIMITATIONS
This is a proof of concept level study, with several limitations
that should be considered when evaluating and interpreting the
results, and should be considered in the design of future, similar
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studies. First, the sample size if small, n = 6 for the 3 level analy-
sis, and n = 12 for the 2 level. Future studies should benefit from
larger sample sizes. Second, while expertise was confirmed with
the performance metric in the simulations (pass rate), it was still
determined primarily based on years of experience. This becomes
more problematic with the 3 level analysis, as the intermediates
were not specifically recruited as such, but rather assigned that
condition post-hoc. Future studies examining intermediate status
should define this category carefully for the purposes of recruit-
ment and exclusion. Third, we chose to work with a random
community sample that resulted in a dataset of similarly aged par-
ticipants across the two primary conditions (expert/novice). This
limits how similar the novice group can be to normal recruits, but
balances this with the known issues of aging and changes in psy-
chophysiology (Marsh and Thompson, 1977; Polich, 1997). This
also effected the post-hoc identified intermediate group, as they
were, by default, younger than those considered “expert.” Future
studies should have some age matched controls with other charac-
teristics in common with “recruit” type novices, that can be used
to separate out the effects of aging vs. expertise in this area.

CONCLUSION
It has been shown in previous studies that psychophysiological
metrics (i.e., EEG alpha, gamma) are associated with a range
of cognitive processes including emotional processing, focused
attention, memory encoding, and retrieval, etc. Using a hierar-
chical regression analysis, the current study has demonstrated
that DFJDM performance in experts was highly coupled, whereas
novice physiology lacked these well-organized coupling effects.
These preliminary results suggest that objective, quantitative met-
rics may be developed to distinguish expert from novice outcome
and process measures (i.e., change from rest alpha combined with
workload). Such models could be used to provide feedback to the
trainee in the form of neurofeedback training in order to acceler-
ate skill acquisition, and/or be delivered to the instructor as an
objective performance measure. Advances such as these would
have broad implications for training.
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