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Telomeresarecomplexprotectivestructures locatedat theendsof lineareukaryotic

chromosomes.Theirpurpose is topreventgenomic instability.Researchprogress in

telomere biology during the past decades has identified a network of telomeric

transcripts ofwhich the best-studied is TElomeric Repeat-containingRNA (TERRA).

TERRA was shown to be important not only for the preservation of telomere

homeostasis and genomic stability but also for the expression of hundreds of

genes across the human genome. These findings added a new level of

complexity to telomere biology. Herein we provide insights on the telomere

transcriptome, its relevance for proper telomere function, and its implications in

human pathology. We also discuss possible clinical opportunities of exosomal

telomere transcripts detection as a biomarker in cancer precision medicine.

KEYWORDS
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Introduction

Telomeres

Human chromosomes end with telomeres, the structures comprised of hundreds to

thousands of hexameric DNA repeats (5´-TTAGGGn-3´ in vertebrates) and terminated

by a single-stranded guanine-rich (G-rich) overhang (1). Telomeres are approximately 6

to 20 kilobases long in humans (2), with considerable length heterogeneity between
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tissues of an individual and even between distinct chromosomes

within a cell (3). Due to the abundance of guanine, telomeres

facilitate the formation of the structures called “G-quadruplexes”

where guanines alignments are stabilized by hydrogen bonds (4).

Furthermore, telomeres form lariat-like structures called T- and

D-loops by invading the 3´ single-stranded (ss)DNA overhang

into the double-stranded telomeric site (5). These structures are

indispensable for the proper function of telomeres, and their

formation has to be strictly regulated during the cell cycle by

proteins of the shelterin multimeric complex (6, 7).

Shelterin consists of six protein subunits, namely TRF1,

TRF2, RAP1, TIN2, TPP1, and POT1 (8). TRF1 and TRF2

subunits are recruited to canonical double-stranded telomeric

DNA (9). Both proteins, along with RAP1 are connected via the

TIN2 protein bridge, which binds TPP1, an interacting partner of

the POT1 shelterin subunit (10). POT1 has a high affinity to the 3´

ssDNA G-rich overhang. Overall, shelterin mediates the proper

formation of telomeric chromatin following DNA replication (8).

The key function of the shelterin complex is to assist the T-loop

formation, repression of 5´ end hyper-resection, and avert

inappropriate activation of DNA damage response (DDR)

pathways at the ends of chromosomes (8). Emerging evidence

indicates that the shelterin function and proper telomere

homeostasis, in general, are regulated by telomere transcripts

known as TERRA “TElomeric Repeat-containing RNA” (11).

Telomeres naturally become progressively shorter with each cell

division due to the end-replication problem (7). Critically shortened

telomeres elicit a DDR pathway which may trigger apoptosis or a

replicative senescence state (12) also known as the M1 stage (13).

Additionally, the accumulation of DNA damage at the ends of

chromosomes was observed in non-dividing differentiated somatic

cells (14) presumably due to the action of DNA damaging agents

(15). Such DNA damage is accumulated in the form of Telomere-

associated DDR foci (16). Bypass of the senescence, occurring for

example via de-activation of tumor suppressors such as p53 (17),

p21 (18), Rb (19), along with telomere uncapping potentially result

in massive genomic instability, and ultimately in malignant

transformation. To avoid apoptosis and acquire an immortal

phenotype, premalignant cells have to stabilize telomeres via the

reactivation of telomerase or by alternative lengthening of telomeres

(ALT), the two pivotal telomeremaintenancemechanisms (TMMs)

(2, 20). Currently known TMMs have recently been shown to

harbor distinct TERRA expression patterns (11). In the present

article, we also discuss differences in TERRA expression between

telomerase and ALT-positive tumors.
TElomeric repeat-containing RNA
(TERRA) and its functions

Telomereswere historically viewed as generally heterochromatic

and thus creating a transcriptionally repressive chromatin
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environment (21). In 1989 Rudenko and Van der Ploeg identified

a heterogeneous population ofRNA transcripts containing telomeric

repeats in protozoa (Trypanosoma brucei) (22). The evidence of

telomeric transcription in mammals was provided in 2007 when

Azzalin et al. discovered TERRA molecules in a human cervical cell

line (HeLa) (23). As shown by northern blot and RT-PCR, telomeric

and subtelomeric regions are actively transcribed into TERRA

molecules which are made of subtelomeric-derived RNA and

UUAGGG repeats (23). In 2008 Schoeftner and Blasco

characterized TERRA molecules as a novel structural component

of telomeric chromatin having the capacity to regulate telomerase

activity (24).

TERRA is a long non-coding (lnc) RNA, with transcription

starting in the subtelomeric regions and terminating within the

region of telomeric repeats. The telomeric C-rich strand is

utilized as a template for TERRA transcription (25). TERRA is

heterogeneous in its length ranging from 100 bases up to 10

kilobases (16, 17), while the majority of TERRA contains a

(UUAGGG)n telomeric repeat tract with an average length of

200 bases. Therefore, the length heterogeneity of TERRA is

probably due to the subtelomere-derived sequences (25)

Deciphering the role of TERRA was a major unresolved

question of telomere biology in the past decade as TERRA loci

were unknown, preventing further functional studies (26) and

because of unsuccessful efforts to fully deplete TERRA molecules

(27). However, in 2017, new insights in a complex landscape of

TERRA functions were achieved by successful degradation of

TERRA in vivo (27). The following chapter summarizes the key

roles of TERRA in physiological and pathological processes

(summarized in Figure 1).
TERRA as a regulator of
chromatin structure

Though the specific functions of lncRNAs remain ill-defined,

the molecules are linked with modulation of chromatin structure

and recruitment of chromatin-modifying proteins to distinct

genome regions. Based on the TERRA-protein interactome, an

extensive network of TERRA-associated proteins has been

identified in mouse embryonic stem cells (27). One of the crucial

proteins identified in the study was ATRX, a chromatin remodeler

frequently mutated in ALT-positive cancer cells. TERRA

antagonizes ATRX localization at telomeric sites, having an

impact on telomeric chromatin structure (27). Furthermore,

TERRA and ATRX foci are not restricted to telomeres. TERRA

and ATRX were shown to share genomic targets and modulate the

expression of hundreds of genes across the genome (27), such as

downregulation of genes involved in TOR signaling and

upregulation of those with positive effects on telomere capping

and organ morphogenesis (27). TERRA at loci co-occupied by

ATRX promotes gene expression while the ATRX protein exerts
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the opposite function (27). Overall, TERRA molecules along with

ATRX and other chromatin remodeling proteins bind to chromatin

on a global scale with the highest density at chromosome ends and

regulate chromatin structure and expression of hundreds of genes.

Thus, TERRA is both cis- and trans-acting at telomeric sites and on

the global genome, respectively (27).
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TERRA as a scaffold for shelterin subunits

TERRA also constitutes a hub for shelterin protein subunits.

The nucleotide repeats of TERRA enable the formation of G-

quadruplexes within TERRA itself similarly as in telomeric

regions. TERRA G-quadruplexes are bound to telomeric DNA
B

C

D
E

F

A

FIGURE 1

TERRA and its functions. (A, B) TERRA presumably binds to Telomerase RNA component through base-complementary pairing and blocks
telomerase binding to telomeric ssDNA. In yeasts, Telomerase RNA component-TERRA clusters are localized at short telomeres where they
coordinate telomerase activity, (C) TERRA and shelterin are implicated in chromosome-end protection by assembling secondary protective
structures including R- and T-loops and G-quadruplexes (D, E) Regulation of telomeres by TERRA can induce either a shortening (by inhibition
of telomerase activity and repressing TERT expression) or elongation (by homologous recombination promotion), (F) TERRA remodels
chromatin structure through an antagonistic interaction with ATRX.
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via the TRF2 shelterin subunit and physically interact also with

TRF1 (28, 29). It has been documented that inhibition of

TERRA-TRF2 interaction results in an altered localization of

TERRA and induction of DDR (11). Depletion of TRF2 was

shown to induce massive DDR at telomeres and formation of

telomere dysfunction-induced foci (30). These cellular events

result in an increased level of TERRA which in turn associates

with lysine demethylase LSD1 (30). In this study, TERRA was

also shown to enhance binding affinity between LSD1 and the

nuclease MRE11, both crucial for the processing of uncapped

telomeres (30). Another study demonstrated changes in TERRA

expression and the interaction between TERRA and SUV39H1

H3K9 histone methyltransferase at damaged telomeres following

TRF2 depletion. The accumulation of H3K9me3 at damaged

telomeres promotes chromosome end-to-end fusion (31). The

results define the critical role of TERRA during pathological

telomere dysfunction events and indicate that TERRA does not

function only as a scaffold for shelterin but at the same time,

shelterin can affect TERRA expression as well. Thus, TERRA is

critical for telomere protection, preservation of proper telomeric

chromatin architecture, and prevention of inappropriate DDR

events at telomeric loci (32–34).

In addition, shelterin recognizes and regulates many genes

adjacent to interstitial telomere sequences (ITS) spread across

the human genome by telomere looping (35–38). For example, it

has been suggested that long telomeres with enriched TRF2

silence the telomerase reverse transcriptase (TERT) locus via

Telomere Position Effect-Over Long Distances (TPE-OLD) (39).

If telomeres are too short, telomere length-dependent loops are

not possible, which, in turn, may increase TERT expression (39).
TERRA and telomerase activity

TERRA was found to bind core telomerase components

including the telomerase RNA template (TERC) through base

pair interaction and TERT polypeptide, acting as a direct

regulator of telomerase activity (40). hTERC forms several

domains within its 451 nucleotides such as the scaRNA domain

(binds Dyskerin), CR4/CR5 domain, and Pseudoknot/template

domain which is associated with TERT polypeptide (41). The

Template Region within TERC contains 3´-CAAUCCCAAUC-5´

nucleotides. Indeed, the 3′ end of TERRA is complementary to the

telomerase RNA template region (25, 42), although it is currently

unclear whether TERRA binds the TERC template region (40, 43).

Redon et al. demonstrated that synthetic TERRA molecules

containing 5´-UUAGGG-3´ repeats base pair with the TERC and

also interact with telomerase catalytic subunit TERT [possibly

binds to so-called anchor site in TERT (40)]. Redon et al.

suggested a more complex effect of TERRA on telomerase than

mere competition with telomeric DNA substrates (40).

An in vivo study onmouse embryonic stemcells demonstrated a

2-fold upregulation of telomerase activity following TERRA
Frontiers in Oncology 04
depletion (27). Furthermore, TERRA and TERC were shown to

colocalize in vivo (27). Therefore, it has been surmised that TERRA

negatively controls telomerase in vivo (27). In vitro study

demonstrated that (UUAGGG)3 RNAs mimicking TERRA

molecules inhibit telomerase activity (42). TERRA, on the other

hand, was reported to promote telomerase-mediated telomere

elongation in yeast Schizosaccharomyces pombe (44). Also, TERRA

was shownto formTERRA-TLC1, ayeast telomeraseRNAsimilar to

hTERC,clusters,whichare in turnrecruited toshort telomereswhere

thoseRNAfoci help coordinatenucleationandactivity of telomerase

(45). However, whether the interactions between TERRA and

telomerase have positive or negative effects on the activity of the

latter in humans needs to be further elucidated (46).
TERRA and its effect on telomere length

Another TERRA function is associated with direct regulation

of telomere length (47, 48). As described in budding yeast

Saccharomyces cerevisiae, TERRA transcription stimulates the

5′-3′ activity of Exonuclease 1 at chromosome ends, by which it

regulates the telomere shortening rate (47).

In yeasts and telomerase-positive human cancer cells, TERRA

fluctuates during the cell cycle, with the highest concentration of

TERRA in the early G1 phase and clearance of TERRA from

chromatin during the S/G2 phase (30). Dysregulation of the

TERRA through the cell cycle was documented in ALT-positive

cancer cells due to the loss of ATRX (49). Association between

TERRA and telomeric chromatin via RAD51 DNA recombinase

creates RNA : DNA hybrid structures called R-loops (50). R-loops

have to be removed from chromatin upon replication of telomeric

loci. Otherwise, their retention would lead to replicative stress,

activation of DDR, and excessive telomere shortening (18, 31). In

contrast, RNA : DNA hybrids at telomeres may induce telomere

elongation via telomeric DNA recombination events which

frequently occur in ALT-positive cancer cells. A recent study

using the U2OS osteosarcoma cell line established that TERRA

transcripts actively destabilize telomere integrity in ALT-positive

cancer cells and that the inhibition of TERRAexpression impairs the

accumulation of DDR markers at telomeric sites and reduces ALT

features (51). Therefore, TERRA transcripts seem to be a major

trigger of ALT activity. The data suggest that TERRA transcription

manipulation may be a potential therapeutic target in tumors

utilizing the ALT mechanism for telomere elongation (51).

Also, based on a systematic analysis of telomere length

carried out on more than 18 000 samples from many different

cancer types, Barthel et al. demonstrated telomere shortening in

70% of cancer tissues compared with non-cancerous mucosa

(52). The paradoxical question of telomere biology emerged

from this and previous studies: Why the majority of cancer cells

harbor short telomeres in spite of telomerase activation? One of

the reasons is probably that telomerase activity in cancer cells

enhances the level of TERRA (53) which was shown to
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negatively correlate with the expression of interferon-stimulated

gene (ISG) (54). Therefore, an increased TERRA signal represses

ISG expression and tumor growth (54). Overall, the finding

suggests that there might be a connection to cancer cells

harboring short telomeres as a beneficial state for tumor

progression (53, 55). However, further studies exploring the

role of TERRA regarding telomere homeostasis are required.
TERRA expression

Subtelomeres

TERRA expression is regulated and initiated from

subtelomeres (48), chromosomal regions adjacent to terminal

telomeric repeats (56). Thus, TERRA contains subtelomeric

sequences at its 5´ end followed by canonical tracts of

UUAGGG-3´ repeats transcribed from telomeres (50).

Subtelomeres differ greatly in size among organisms, ranging

from 10 kilobases in budding yeast to 500 kilobases in humans (48).

Putative TERRA promoter regions at multiple human

subtelomeres were first identified by Azzalin et al. and by several

independent studies (23, 50). One of the major transcription loci is

embedded at the 20q subtelomere (26, 57). Experiments based on

the ablation of approximately 8.1kb long fragment from the 20q

subtelomere using the CRISPR-Cas9 method resulted in an almost

complete downregulation of TERRA expression in 20q TERRA-

KO U2OS osteosarcoma ALT-positive cells, telomere shortening,

and the induction of massive DDR. This study was also the first to

demonstrate the crucial importance of TERRA molecules for

telomere homeostasis maintenance (57). Silva et al., who further

elaborated on the origin of TERRA in U2OS cells, showed multiple

other chromosome ends physiologically relevant for TERRA

transcription. The group engineered Transcription Activator-Like

Effectors ([TALEs], a plasmid based system) targeting consensus

sequences locatedwithin twenty putative human subtelomeres with

the purpouse to suppress TERRA expression. The group

established that TERRA transcription suppression weakens ALT

activity and suggested that the low level of TERRA molecules

previously documented in 20q-TERRA-KO cells may, besides the

20q deletion, also arise due to short telomeres or clonal

variability (51).

It is required to note that the copy number variation of the

20q13.3 subtelomeric region was identified in association with

gastric (58) and sporadic colorectal cancer (59). The 20q13.3

amplification target in the tumors is most likely ADRM1, an

integral plasma membrane protein involved in cell adhesion.

Upregulation of ADRM1 at RNA and protein levels was reported

to increase growth, proliferation, andmigration in cancer cells (58).

It would be interesting to analyze if other human malignancies

contain similar chromosomal rearrangements. Critical information

in this topic may be obtained by further studies focusing on

systematic inhibition of specific TERRA promoters.
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Epigenetic modifications
of subtelomeres

Subtelomeres are CpG-enriched and frequently contain

heterochromatic methylation patterns of histone H3 and H4

(H3K9me3, H4K20me3). These patterns are recognized and

bound by heterochromatin protein 1 (HP1) (60). A consensus

on these histone marks and a subtelomere chromatin structure is

missing (44). The highest concentration of CpG islands is

located within two distal kilobases of subtelomeres and

gradually decreases upstream towards the distal end of the

chromosome. The disparity in subtelomeric methylation was

revealed while examining different human cell types.

Subtelomeres undergo extensive methylation during embryo

development (61). Sperm cells have hypomethylated

subtelomeres, while human peripheral blood leukocytes have a

high level of methylation in subtelomeric regions (61).

Interestingly, cancer cells, irrespectively of TMM, display

variation in methylation of subtelomeric CpG islands and

deregulated TERRA expression (42). Those CpG islands are, in

general, heavily methylated in telomerase-positive cancer cells.

This epigenetic state results in dampened TERRA expression.

The maintenance of subtelomeric heterochromatin state and low

TERRA levels may be therefore necessary for telomerase

function in telomerase-positive tumors presumably due to the

effect of TERRA on telomerase activity (62). On the other hand,

ALT-positive tumor cells show, in comparison with telomerase-

positive cells, heterogeneous methylation changes in

subtelomeric loci and a high level of TERRA transcripts,

which may be essential for the maintenance of telomeres in

those cells (62).

During and after transcription, TERRA is subject to co-/

post-transcriptional modifications. The RNA processing varies

between individual TERRA transcripts creating biochemically

different TERRA fractions with remarkably diverse biological

functions (25). TERRA is transcribed by RNA Polymerase II and

therefore has a canonical 7-methylguanosine cap structure at 5´

ends like most coding RNA species. Only a minor fraction of

TERRA has been shown to contain poly-A tail (poly(A)+),

affecting its stability and affinity to chromatin (11, 25). Poly

(A)+ TERRA population is present mainly in the nucleoplasm

and has a weak chromatin affinity, while poly(A)- TERRA, in

addition to being located at the nucleoplasm, associates with

DNA predominantly at telomeric and other chromatin sites (25).
Regulation of TERRA expression

Expression of TERRA was shown to be regulated by major

tumor suppressors (63, 64). Tutton et al. documented induction of

TERRA expression upon treatment of human colorectal cancer

(CRC) cells with etoposide, a drug producing DNA double-strand

breaks. Notably, TERRA expression under such stress conditions is
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dependent on the p53 transcription factor, which recognizes the

non-canonical p53 binding sites within subtelomeric regions. This

binding confers transcription enhancer‐like functions and results in

increased TERRA transcription. Thus, p53 provides a direct

safeguard for human telomeres (64).

Furthermore, tumor suppressor Rb1 modifies telomeric

chromatin architecture by regulating TERRA expression. Rb1

was demons t ra t ed to b ind human subte lomeres .

Haploinsufficiency of RB1 leads to reduced TERRA levels,

telomere shortening, and increased genomic instability, a

common phenotypic feature of Rb1 deficient cells (i.e.,

osteosarcoma) (63). Additionally, Rb1 deficiency is associated

with a shift in the patterns of telomeric histone modifications

which, in turn, results in relaxed and unprotected chromatin

(63). Overall, the non-canonical activity of Rb1 is associated with

telomere homeostasis via regulation of TERRA expression (63).

Vohhodina et al. observed an increased TERRA expression in

BRCA1-deficient cells. At telomeres and subtelomeres, BRCA1

depletion led to an altered chromatin architecture which resulted

in elevated RNA Polymerase II binding to these regions. Moreover,

in the absence of BRCA1, elevated R-loop levels were detected at

subtelomeric CpG-island-containing TERRA promoters. Increased

frequency of R-loops was associated with reduced recruitment of

DNA methyltransferase, hypomethylation of TERRA promoter

regions, and increased TERRA expression. Based on these

observations, it can be proposed that BRCA1 regulates TERRA

expression via the suppression of R-loop formation at

subtelomeres (65).

TERRAexpression is also tightly connected to cellular stress and

DDR. For example, in response to heat stress, TERRA is upregulated

by the heat shock factor 1 (HSF1) which was documented to bind

subtelomeric regions in HeLa cell lines. Moreover, Koskas et al.

detected a significantly higher frequency of DDR at telomeres in

HSF1-KO cells compared to wild-type cells when cultured in the

same conditions (66, 67). Interestingly, TERRA induction appeared

to be a dynamic response to oxidative stress. Upon exposure to

oxidative stress, TERRA expression is increased. If the stressor is

removed, TERRA expression reverts after (66). Therefore, it seems

that chromatin changes in subtelomeric regions displayed some sort

of transcriptional memory to secure rapid expression of genes when

stress was repeated.

TERRA expression is also influenced by cytoskeleton

reorganization. TERRA level decreases together with

decreasing surface stiffness of the cell. Cytoskeleton alterations

may be produced by treatment with paclitaxel or colcemid,

ultimately resulting in increased TERRA levels (67). Also,

telomeres are under physiological circumstances associated

with the nuclear envelope. The most recent findings on fission

and budding yeast demonstrated elevated TERRA expression

following detachment of telomeres from the nuclear envelope.

This observation remains to be established in human cells (68).

However, we can speculate whether impaired telomere-nuclear

envelope interactions in humans and thereby misregulation of
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TERRA expression are connected with telomere-associated

diseases including progeria, telomeropathies, and also cancer.
Deregulation of TERRA expression in
human pathology

Several studies have shown the association of deregulated

TERRA expression with cancer. However, the role of TERRA in

human sol id cancers remains large ly unexplored .

Downregulation of TERRA along with TRF1 and upregulation

of TRF2 was identified in tumor tissue of patients diagnosed

with hepatocellular carcinoma (HCC) (69). Decreased level of

TERRA was associated with poor prognosis of the patients and

with accelerated cell growth and metastatic progression of HCC

both in vivo and in vitro. Additionally, TERRA knockdown in

HCC cell lines led to a significant increase in telomerase activity,

telomere elongation, and increased formation of metastasis,

suggesting that depleting TERRA favors the metastatic spread

in HCC (69). Authors of another study found a significant

reduction in TERRA expression, along with high telomerase

activity and short telomeres, in endometrial cancers compared

with noncancerous endometrial tissues (70). Other studies found

downregulated TERRA expression in squamous cell carcinoma

and astrocytoma predisposing the patients to poorer clinical

outcome (71, 72). Also, in patients with astrocytoma, TERRA

level correlated with the activity of telomerase, telomere length,

and clinical stage (71). By contrast, upregulation of TERRA was

observed in a mouse model of medulloblastoma and human

cancer biopsies derived from lung, colon, ovary, breast, and

stomach (73). The authors showed that TERRA concentrates in

rapidly proliferating normal and cancer cells and forms foci in

the nuclear regions (72). To our best knowledge, only one study

has evaluated TERRA expression and the outcome of patients

diagnosed with CRC. Patients with high TERRA expression and

low preoperative carcinoembryonic antigen level had improved

disease-free survival (74). Previous observations that telomere

length may relate to cell radiosensitivity (75) were refuted by

Smirnova et al. In their article, variability in TERRA levels and

telomere length did not affect sensitivity to ionizing radiation in

different human cell lines, including breast, gastric cancer and

cervical carcinoma (76). Overall, dysregulation of TERRA was

present in various human cancer tissues. TERRA was shown to

accumulate and form foci in rapidly proliferating progenitor and

tumor cells, supporting the presumption that TERRA expression

is coupled with cell proliferation (73). The available data indicate

that variation in TERRA expression across different

malignancies may be tumor-type specific.

An epigenetic state of subtelomeric regions may play a

critical role in TERRA expression and TMM decision too.

Hypermethylated subtelomeric CpG islands in telomerase-

positive cancer cell lines were detected by Nergadze et al.,

while demethylation of these sequences reflected in increased
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TERRA expression (77). In ALT-dependent cancer cells,

f requent occurrence of ATRX/DAXX mutat ions is

accompanied by DNA hypomethylation in subtelomeric

regions (78). ATRX/DAXX mutations are found notably in

pancreat ic neuroendocrine tumors (79) , and CNS

malignancies (80). Depletion of ATRX and/or DAXX in the

presence of various genotoxic agents is sufficient to induce ALT

phenotype (81). ATRX loss induces gradual decondensation of

telomere heterochromatin leading to telomeric replication stress

and DDR (82). Consecutively, a cell is forced to switch to ALT to

secure telomere length maintenance (82). Overall, this

observation raised the possibility of distinct subtelomeric

epigenetic patterns between telomerase and ALT-positive

cancer cells (42).
Cell-free TERRA as a potential
diagnostic marker

Extracellular cell-free TERRA molecules (cfTERRA) have

been identified in exosomes secreted into body fluids. cfTERRA

is usually around 200 nucleotides in length due to post-

transcriptional processing or aborted transcription from longer

forms of intracellular TERRA. It has been suggested that

cfTERRA levels are correlated with intracellular TERRA

expression. cfTERRA is associated with histones and the

binding together with high resistance to RNase contributes to

cfTERRA stability and abundance in tissue and cells. Using

RNA-seq analyses, cfTERRA was identified among the 20 most

frequent extracellular transcripts derived from human blood

plasma (83). However, the quantity of cfTERRA does not seem

to be unique for malignancies, as no differences have been found

between healthy subjects and various cancer patients, such as

breast, colon, duct, kidney, lung, liver melanoma, ovarian,

prostate, and stomach. In addition, increased cfTERRA was

detected in extracellular exosomes following induced telomere

dysfunction (83).

cfTERRA might belong to a family of molecules known as

alarmins. These molecules (Danger Associated Molecular

Pattern – DAMP; or Pathogen Associated Molecular Pattern –

PAMP) are signaling cellular damage, or viral and bacterial

infection (84). cfTERRA was shown to modulate the expression

of the inflammatory cytokines TNFalpha and IL6 in recipient

cells which represent communication between dysfunctional

telomeres and inflammation through DAMP-like signaling

(85). This observation may provide a mechanistic explanation

of how disrupted telomere homeostasis contributes to the

inflammatory cascade reaction and senescence towards

neighboring cells, a bystander effect due to senescence-

associated secretory phenotype (83, 86). As cfTERRA is also

present at low levels in normal human plasma, it cannot stand as

a single biomarker for diagnosis in itself. However, enrichment
Frontiers in Oncology 07
of cfTERRA along with other DAMPs might serve as a potential

biomarker for the noninvasive detection of diseases associated

wi th t e lomere dys func t ion inc lud ing cancer and

telomeropathties such as familial pulmonary fibrosis,

dyskeratosis congenita or aplastic anemia.
Conclusion

In this article, we have pointed out the relevance of TERRA,

a novel and exciting field of telomere biology, in the context of

human physiological and pathological processes. Understanding

TERRA functions is of great interest in basic medicine as TERRA

regulation is altered in human diseases including cancer.

However, the expression level of TERRA varies in a tumor

type-specific manner (80). Based on the current knowledge,

TERRA is a potential therapeutic target in different

malignancies. Further studies are needed to clarify whether

cancer cells harboring different TMMs have diverse

methylation of subtelomeres and different patterns of

TERRA expression.

Increased cfTERRA have been detected in response to

telomere dysfunction, suggesting its potential use as a

biomarker for the detection of early stages of cancers and

other telomere-driven diseases. It is also important to further

elucidate the crosstalk between cfTERRA, inflammation, and

tumor microenvironment.

Overall, a deeper insight into TERRA regulation could help us

understand its role in telomere maintenance and genome stability.
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