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The neutral type 2 sphingomyelinase (nSMase2) hydrolyzes sphingomyelin and generates ceramide, a
major bioactive sphingolipid mediator, involved in growth arrest and apoptosis. The role of nSMase2 in
apoptosis is debated, and apparently contradictory results have been observed on fibroblasts isolated
from nSMase2-deficient fragilitas ossium (homozygous fro/fro) mice. These mice exhibit a severe neo-
natal dysplasia, a lack of long bone mineralization and delayed apoptosis patterns of hypertrophic
chondrocytes in the growth plate. We hypothesized that apoptosis induced by nutrient deprivation,
which mimics the environmental modifications of the growth plate, requires nSMase2 activation. In this
study, we have compared the resistance of fro/fro fibroblasts to different death inducers (oxidized LDL,
hydrogen peroxide and nutrient starvation). The data show that nSMase2-deficient fro/fro cells resist to
apoptosis evoked by nutrient starvation (fetal calf serum/glucose/pyruvate-free DMEM), whereas wt
fibroblasts die after 48 h incubation in this medium. In contrast, oxidized LDL and hydrogen peroxide are
similarly toxic to fro/fro and wt fibroblasts, indicating that nSMase2 is not involved in the mechanism of
toxicity evoked by these agents. Interestingly, wt fibroblasts treated with the SMase inhibitor GW4869
were more resistant to starvation-induced apoptosis.

The resistance of fro/fro cells to starvation-induced apoptosis is associated with an increased ex-
pression of hyaluronan synthase 2 (HAS2) mRNAs and protein, which is inhibited by ceramide. In wt
fibroblasts, this HAS2 rise and its protective effect did not occur, but exogenously added HA exhibited a
protective effect against starvation-induced apoptosis.

The protective mechanism of HAS2 involves an increased expression of the heat-shock protein Hsp72,
a chaperone with antiapoptotic activity. Taken together, these results highlight the role of nSMase2 in
apoptosis evoked by nutrient starvation that could contribute to the delayed apoptosis of hypertrophic
chondrocytes in the growth plate, and emphasize the antiapoptotic properties of HAS2.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Sphingomyelinases are a family of enzymes implicated in the
catabolism of sphingomyelin, a major sphingolipid present in
cellular membranes, rafts and caveolae [1,2]. Several sphingo-
myelinases have been cloned and characterized, and are known to
play a major role in cell biology, via the degradation of sphingo-
myelin, which generates ceramide, a bioactive sphingolipid
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mediator involved in cell growth arrest, apoptosis, autophagy and
cell differentiation [3–6]. A variety of factors, such as nature of the
stressors, stress duration, cell and tissue specificity, subcellular
localization and metabolism of ceramide can influence its biolo-
gical effects [6,7]. Ceramide can be catabolized by ceramidases into
sphingosine, which can be converted by sphingosine kinases into
sphingosine 1-phosphate (S1P), another sphingolipid mediator
exhibiting survival and mitogenic properties [6,8].

Several evidences indicate that the balance ceramide/S1P
(ceramide/S1P rheostat) is an important determinant of cell fate
towards survival or apoptosis depending on the ability of cells to
generate S1P from ceramide [9]. The neutral sphingomyelinase 2
(nSMase2), encoded by the smpd3 gene, is a redox-sensitive [6]
enzyme that plays a key role in ceramide generation upon
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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stimulation by stress-inducing agents, including hydrogen per-
oxide (H2O2) and oxidized LDL [10–13]. We have recently reported
that nSMase2 activation by low H2O2 concentrations mediates the
proliferation and migration of smooth muscle cells (SMC) and fi-
broblasts, via a ceramide-dependent sequential signaling cascade
implicating the activation of src, and the subsequent phosphor-
ylation and activation of the PDGF receptor, that is implicated in
the activation of sphingosine kinase and the generation of S1P
[12]. In contrast, high oxidative stress inhibits sphingosine kinase
and triggers apoptotic cell death [14].

The expression of nSMase2 is high in the brain and bones
[15,16]. Mice knockout for nSMase2 and nSMase2-deficient fro/fro
mice (homozygous smpd3fro/smpd3fro with fragilitas ossium phe-
notype) exhibit bone deformations and neonatal growth retarda-
tion [16–18]. A number of studies have been carried out on cells
and tissues isolated from these mice, to decipher the physiological
role of nSMase2 and its implication in apoptosis evoked by cell
death inducers. We recently reported that mutant fibroblasts iso-
lated from fro/fro mouse undergo apoptosis similarly to wt fibro-
blasts, when exposed to stress-inducing agents such as cytokines
(TNF-α), H2O2 or oxidized LDL [11]. Likewise, the hepatotoxicity
resulting from TNF-α injection to mice, is similar in fro/fro and
wild type mice, indicating that the nSMase2 mutation does not
confer any resistance to these acute stress-inducing agents [11].
However, other studies, including experiments done on fro/fro
cells, indicate an apoptotic role for nSMase2 [19,20]. Recently
Kavandhgar et al. [21] reported that the defect in bone miner-
alization in fro/fro mouse is associated with an accumulation of
hypertrophic chondrocytes in the growth plate and a reduced
number of TUNEL positive cells, indicating a defective apoptosis,
which is necessary for bone mineralization [22]. These reports
point out the complicated role of nSMase2 in apoptosis, which
may differ as function of the state of development, the tissue
specificity and the nature of the stress inducer.

The terminal apoptotic differentiation of hypertrophic chon-
drocytes, is necessary for bone mineralization and involves en-
vironmental modifications, including nutrient deprivation [23],
which is a known sphingolipid pathway trigger [24]. The present
study was carried out to decipher whether nSMase2 is involved in
cell death induced by nutrient starvation and to characterize the
mechanisms of resistance evoked by nSMase2 mutation in fro/fro
cells.
Materials and methods

Chemicals and reagents

Anti-HAS2 mouse monoclonal antibody (sc-365263) was from
Santa Cruz Biotechnology (Texas, USA); anti-hsp72/73 mouse an-
tibody was from Calbiochem (Merck Millipore, United Kingdom).
Anti Akt-phospho (Ser473) rabbit was from Cell Signalling. Sec-
ondary antibodies anti-mouse and anti-rabbit were from Cell
Signalling Technology (Denver, USA). SYTO-13, propidium iodide,
alexa-Fluor 488 (green)- and Alexa-Fluor 546 (red)-conjugated
secondary antibody were from Molecular Probes (Invitrogen,
Cergy-Pontoise, France). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphe-
nyl tetrazolium bromide (MTT), GW4869, KNK437 were from
Sigma-Aldrich. RPMI 1640, DMEM, fetal calf serum (FCS) were
from Invitrogen (France). Dulbecco's Modified Eagle Medium
(DMEM) without D-glucose and Sodium pyruvate was from Gibco/
Life Technology (Paisley, United Kingdom). Hyaluronan (High
Molecular Weight 4950 kDa) was from RD System (Minneapolis,
USA). C2-ceramide was from Biomol, Laboratory Research. Acry-
lamide-4� /bisacrylamide-2� solution was from Euromedex
(Souffelweyersheim, FR). The ECL chemoluminescence kit was
from Amersham Pharmacia (Velizy-Villacoublay, France).

Cell culture

Primary cultures of fibroblasts were obtained by skin biopsies
from newborn control and fro/fro mice. Briefly, skin samples were
minced and put in Petri dishes, dermis facing down. After 15 min
of dry contact with the dishes, DMEM culture medium containing
10% FCS penicillin, streptomycin, amphotericin A was added, and
the skin preparation was cultured at 37 °C, 5% CO2. After 1–
3 weeks, cells growing around the tissue pieces were expanded.

Control (wt) or fro/fro fibroblasts were grown in DMEM Glutamax
culture medium supplemented with 10% fetal calf serum and anti-
biotics (100 U/ml penicillin, 100 mg/ml streptomycin) in a 5% CO2

humidified incubator, at 37 °C. At sub-confluency, this medium was
removed and replaced by serum/glucose/pyruvate-free DMEM (nu-
trient-starvation conditions), or by serum-free RPMI-1640 containing
oxidized LDL (200 mg/ml), or H2O2 (100 mM), for 48 h.

Animals

The genetic background of fro/fro and wt mice was 129/SV.
Homozygous mice, harboring a truncating mutation in nSMase2
and fragilitas ossium (fro) phenotype were genotyped by PCR, as
previously described [17], using the following primers: 5′-
GCCCGCAGCCATGTATAGTA-3′, 5′-CTCAATGGAGGGCACACAG-3′
and 5′-CAGGTTTAGGGACCCTGACG-3′.

TUNEL assay

For detecting apoptosis in cells and tissues, we used the
ApopTags In Situ Apoptosis Detection Kit (Millipore). Apoptotic
cells were detected by labeling and by modifying DNA fragments
utilizing terminal deoxynucleotidyl transferase (TdT). Total and
apoptotic cells were counted after immunoperoxidase and DAPI
staining.

Real time quantitative PCR assay

TRI Reagent RT (Molecular Research Center) was added to cell
pellets for RNA extraction according to the manufacturer's in-
structions. RNA was quantified with Xpose (Trinean). One micro-
gram of RNA was used for reverse transcription with a high-ca-
pacity cDNA reverse transcription kit (Applied Biosystems/Life
Technologies). Fast SYBR green master mix (Applied Biosystems/
Life Technologies) and the ABI StepOneþ real-time PCR system
(Applied Biosystems) were used to evaluate mRNA levels accord-
ing to the manufacturer's recommendations. The following pri-
mers were used: For HAS2, forward, 5′-GAAACTTCCTTCCAC-
GACCC-3′, and reverse 5′-GCACCGTACAGTCCAAATGAG-3′. For Be-
clin 1, forward 5’-AATCTAAGGAGTTGCCGTTATAC-3’ and reverse 5’-
CCAGTGTCTTCAATCTTGCC-3’; for LC3b, forward, 5’-ATTGC-
TGTCCCGAATGTCTC-3’ and reverse 5’-CGTCCTGGACAAGACCAAGT-
3’; for HPRT, forward 5’- TTGCTCGAGATGTGATGAAGGA-3’ and re-
verse 5’- CCAGCAGGTCAGCAAAGAATT-3'. Incubation were 95 °C
for 20 s, followed by 40 cycles of 3 s at 95 °C and annealing/ex-
tension for 30 s at 60 °C. Each sample was done in duplicate and
data were analyzed using StepOneþ software version 2.3. Ex-
pression was normalized to HPRT.

LDL preparation and oxidation

Human LDL were isolated from pooled fresh sera by sequential
ultracentrifugation, dialyzed, sterilized by filtration, and oxidized
by UV-C irradiation. Mildly oxidized LDL were obtained by UV
oxidation as previously described [11].
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Cell viability and apoptosis

The cell viability was evaluated by the MTT assay [11]. Apop-
totic/necrotic cells were counted by fluorescence microscopy after
staining by fluorescent DNA intercaling agents SYTO-13 and pro-
pidium iodide (PI). Cells grown in 6-multiwell plates were
ns

ns

Fig. 1. Resistance of fro/fro fibroblasts to apoptosis induced by serum starvation, but not t
were incubated for 48 h in standard medium DMEM containing 10% FCS, 4.5 g/l glucose
glucose/pyruvate-free DMEM culture medium containing L-glutamine (ref. 11966-025, Li
free RPMI, supplemented with oxidized LDL (200 mg apoB/ml) (oxLDL) or H2O2 (100 mM
(B) Counting of apoptotic vs living cells after staining with Syto13/PI fluorescent probe
(primary apoptosis and post-apoptotic necrosis) (orange bars for wt, red bars for fro/f
unstimulated control. C, Representative pictures of syto13/PI-stained wt and fro/fro fibro
serum-free medium, and stained with the ApopTags In Situ Apoptosis Detection Kit
expressed as percent of the total cell number counted as DAPI stained fibroblasts. (E) W
These data are a mean 7 SEM of 5 separate experiments, npo0.05.
incubated with permeant DNA intercalating green fluore-
scent probe SYTO-13 (0.6 mM) and the non-permeant DNA inter-
calating red fluorescent probe PI (15 mM), using an inverted
fluorescence microscope (Fluovert FU, Leitz). Intact, apoptotic and
necrotic cells were characterized on the basis of their morpholo-
gical features.
o oxidized LDL and H2O2. Sub-confluent fibroblasts from fro/fro (fro) or wt mice (wt)
, pyruvate and GlutaMAX (ref. 61965-026, Life Technologies) (compl) or in serum/
fe Technologies) (nutrient deprivation condition) (starv, stripped bars), or in serum
). At the end of 48 h incubation, cell viability was evaluated by the MTT assay (A).
s which allow to distinguish between living cells (green bars), and apoptotic cells
ro fibroblasts). Apoptotic cells were counted, and are expressed as percent of the
blasts. (D) TUNEL positive wt and fro/fro fibroblasts. Cells were incubated for 48 h in
(Millipore), and counterstained with DAPI. The number of TUNEL positive cells is
estern-blot showing the degradation of procaspase-3, indicative of its activation.



Fig. 2. Modulation of nSMase2 activity by the GW4869 inhibitor and ceramide
level by C2Cer alters the cell viability under nutrient depletion conditions. Sub-
confluent fibroblasts from wt (A) or fro/fro (B) mice were incubated in standard
medium containing 10% FCS (compl) or in nutrient deprivation serum/glucose/
pyruvate-free DMEM culture medium (depriv), or in serum free RPMI, supple-
mented with oxidized LDL (oxL, 200 mg apoB/ml). In A, protective effect of the
nSMase inhibitor GW4869 (GW, 10 mM) on cell death evoked by starvation (depriv)
or oxidized LDL (oxLDL). In (B) effect of C2 ceramide (C2Cer, 5 mM). After 48 h, the
toxicity was evaluated by the MTT test. The results are mean7SEM of
6 experiments. npo0.05.
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Western blot analysis

Cultured cells were washed and scrapped in PBS, then dis-
rupted at 4 °C in the extraction buffer (20 mM HEPES, 1 mM EDTA,
1 mM Na3VO4, 250 mM sucrose, 5 mM digitonin, 1 mM DTT, and
1 mM PMSF) for 15–30 min on ice. Cell extracts were centrifuged
at 12,000g for 15 min (Beckman Optima) and the supernatant was
used for Western-blot experiments. Protein concentration was
determined using the Bradford reagent (Biorad). 50 mg of protein
cell extracts were resolved by SDS-polyacrylamide gel electro-
phoresis, transferred onto PVDF membranes (Millipore). Then
membranes were probed with the primary antibodies and re-
vealed with secondary antibodies coupled to horseradish perox-
idase using the ECL chemoluminescence kit (Amersham). β-actin
was used to control equal loading of proteins.

SiRNA transfection

Murine fibroblasts were transfected with murine HAS2 or
control siRNA using OptiMEM (Invitrogen) and HiPerFect reagent
according to the manufacturer’s recommendations.

Statistical analysis

Data are given as mean7SEM. Estimates of statistical sig-
nificance were performed by One Way Anova followed by multiple
comparison analysis by Holm-Sidak method (SigmaStat software).
Values of po0.05 were considered significant.
Results

nSMase2 and Cer are involved in the apoptotic process triggered by
nutrient starvation, but not by hydrogen peroxide or oxidized LDL:
fro/fro fibroblasts resist to cell death induced by nutrient deprivation

Wt and fro/fro fibroblasts were exposed to toxic concentrations
of oxidized LDL (200 mg apoB/ml), hydrogen peroxide (H2O2,
100 mM) in serum-free RPMI (5 g/l glucose) or to nutrient depri-
vation in (glucose/pyruvate/serum)-free DMEM culture medium,
for 48 h. As shown in Fig. 1A, cytotoxicity experiments, using the
MTT assay, indicate that the cytotoxic effect of oxidized LDL or
H2O2 is comparable in fro/fro and wt fibroblasts. In contrast, fro/fro
fibroblasts strongly resisted to cell death evoked by nutrient
starvation, showing more than 90% viability vs less than 30% for
wt, after 48 h of contact with nutrient-free medium (Fig. 1A). Live-
dead experiments using syto13/PI staining confirmed the re-
sistance of fro/fro cells to apoptosis evoked by nutrient deprivation,
in contrast to oxidized LDL that induced similar apoptosis in wt
and in fro/fro cells (Fig. 1B and C). TUNEL staining (Fig. 1D) and
procaspase 3 cleavage (Fig. 1E), confirmed that nSMase2-deficient
fro/fro fibroblasts are more resistant to nutrient starvation in-
duced-apoptosis than wt fibroblasts. It is to note that i/ the serum-
free RPMI medium, in which oxidized LDL and H2O2 were added,
was not toxic to wt fibroblasts for the period of the experiment,
indicating that glucose and pyruvate starvation is the main trigger
of cell death in wt fibroblasts, and ii/ oxidized LDL were toxic for
fro/fro fibroblasts in the nutrient-free culture medium (data not
shown).

The role of nSMase2 in cell death induced by nutrient starva-
tion was confirmed by the effect of the sphingomyelinase inhibitor
GW4869, which prevented (or delayed) the apoptotic effect of
nutrient deprivation of wt fibroblasts (Fig. 2A). In contrast,
GW4869 had no effect on cell death evoked by oxidized LDL in
agreement with previously reported data [11]. In the same way,
the resistance of fro/fro fibroblasts was reversed by the addition of
the permeant C2-ceramide (5 mM) to the nutrient-starved medium
(less than 25% cell viability) (Fig. 2B). No toxicity of C2-ceramide
was observed in complete culture medium (Fig. 2B).

Altogether, these data indicate that i/ nSMase2 and ceramide
are involved in cell death of wt fibroblasts evoked by nutrient
starvation, but not by oxidized LDL, ii/ nSMase2-deficient fro/fro
fibroblasts resist to nutrient-starvation induced cell death, but not
to oxidized LDL.

Autophagy is not involved in the resistance to apoptosis induced by
nutrient starvation in fro/fro fibroblasts

Autophagy and apoptosis processes are often associated, either
through a cross inhibitory signaling, or sometimes through inter-
connected pathways [25,26]. Generally, autophagy is a survival
system that blocks the induction of apoptosis, whereas activated
caspases inhibit the autophagic process [26]. Moreover, ceramide
is a potent autophagy inducer [27], via a downregulation of nu-
trient transporters [28]. This led us to investigate whether Cer
generated by nSMase2 plays a role in autophagy induced by nu-
trient deprivation and in the mechanism of resistance of fro/fro
fibroblasts.

As reported in Fig. 3, in fro/fro and wt cells, nutrient starvation
elicited a strong conversion of LC3-I into LC3-II and an increase of
Beclin-1 expression, both parameters being characteristic markers
of autophagy activation. In contrast, the autophagic machinery
was not activated by oxidized LDL, in fro/fro and wt cells (Fig. 3A
and B). No difference was observed between fro/fro and wt fibro-
blasts, in the induction of autophagy parameters by nutrient
starvation, this indicating that autophagy evoked by nutrient
starvation does not require the nSMase2 activity.

Finally, autophagy markers are similarly induced by nutrient
deprivation in wt and fro/fro cells, while these cells exhibit a great
difference in their resistance to apoptosis induced by starvation.
Thus, it may be concluded that, in this model, i/ ceramide is not
required for autophagy marker induction by nutrient deprivation,
ii/ autophagy alone plays no major role in the resistance of fro/fro
cells to nutrient deprivation.



A
Beclin1 - 50 KDaBeclin1

- 40 KDaβ-actin 40 KDaβ-actin

LC3 ILC3-I
LC3-II

- 15 KDa

Medium    C Dp  oxL  C Dp oxL

Cells wt              fro/fro

B CB C

o)

* *
wt fbl fro/fro fbl

* *
wt fbl fro/fro fbl

A 
ra

ti

2
* * * at

io
)

4 * * * *ns

m
R

N
A 2

R
N

A 
ra 4

3

R
T 

(m

T 
(m

R 3

1/
H

P 1

H
P

R
T 2

ec
lin

-

C
3b

/H 1

B
e

0 LC 0

Fig. 3. Autophagy markers are similarly up-regulated in fro/fro and wt fibroblasts
by nutrient deprivation. Fibroblasts were incubated for 48 h under nutrient star-
vation condition, or with oxidized LDL, as reported in the legend to Fig. 1.
(A) Western-blot experiments showing the expression of Beclin-1 and the con-
version of LC3-I to LC3-II, in complete medium (C), nutrient deprivation (Dp) and
oxidized LDL (oxL) conditions. B. qPCR experiments showing the expression of LC3b
and beclin-1, normalized to HPRT. The results are mean7SEM of 3 separate
experiments. npo0.05.

S. Garoby-Salom et al. / Redox Biology 4 (2015) 118–126122
Hyaluronan synthase 2 (HAS2) and hyaluronan mediate the re-
sistance to apoptosis induced by nutrient deprivation in fro/fro
fibroblasts

Fibroblasts from fro/fro mouse secrete high amounts of hya-
luronan (HA), due to an increased expression and activity of the
hyaluronan synthase 2 (HAS2), resulting from PP2A inhibition and
Akt phosphorylation [29]. As HA and HAS2 protect fibroblasts
against environmental stress-induced apoptosis [30], we checked
whether HA, HAS2 and Akt are involved in the resistance of fro/fro
cells to apoptosis induced by nutrient starvation.

As expected, HAS2 expression was much higher in fro/fro fi-
broblasts than in wt fibroblasts (Fig. 4A and B), in agreement with
Qin et al. [29], but HAS2 expression was not (or only slightly)
dependent on culture conditions, since HAS2 was high in fro/fro
cells grown in complete medium and in nutrient starvation con-
ditions, while HAS2 of wt fibroblasts was low in both culture
media (Fig. 4A and B). HAS2 expression was dependent on Cer
generated by nSMase2, as shown by treatment with C2-ceramide
(5 mM) that decreased HAS2 expression in fro/fro fibroblasts
(Fig. 4B).

We then checked whether HAS2 plays a role in the mechanism
of fro/fro fibroblast resistance to nutrient deprivation. HAS2-spe-
cific siRNA transfected in fro/fro fibroblasts reduced the expression
of HAS2 and decreased the resistance of fro/fro cells to apoptosis
evoked by starvation (Fig. 4C and D). Likewise, methylumbellifer-
one (MU), a classical HAS2 inhibitor (1 mM), reversed the
resistance of fro/fro fibroblasts to apoptosis induced by nutrient
starvation (Fig. 4D). Conversely, the addition of HA to wt fibro-
blasts significantly improved their resistance to apoptosis induced
by nutrient starvation (Fig. 5A–C). However, HA did not protect wt
fibroblasts against cell death evoked by oxidized LDL, in ac-
cordance to the lack or resistance of fro/fro fibroblasts to oxidized
LDL toxicity.

Finally, these data suggest that the increased resistance of fro/
fro cells to nutrient starvation results from the rise of HAS2 ex-
pression and subsequent increased synthesis of HA induced by the
deficiency of Cer generated by nSMase2 (deficient in fro/fro cells).

Hsp72 is involved in the protective effect of HAS2 in fro/fro fibroblasts
Previous report from Xu et al. [31] had shown that synovial cell

death evoked by stress conditions (including serum starvation) in
an arthritis model, is suppressed by hyaluronan via upregulation of
stress-inducible heat-shock proteins of the HSP70 family. In
agreement with this report, we found that Hsp72 expression is
increased in fro/fro fibroblasts both in standard and nutrient-
starved conditions (Fig. 6A). In contrast, Hsp72 expression was
strongly decreased in cells transfected with the HAS2-specific
siRNA, thus confirming that Hsp72 expression in fro/fro fibroblasts
depends on HA and HAS2 (Fig. 6B). The protective role of Hsp72
was supported by the effect of the pharmacological Hsp70 in-
hibitor KNK437, which reversed the resistance of fro/fro fibroblasts
to apoptosis evoked by serum starvation. No increased expression
of Hsp72 was observed in wt fibroblasts and in fro/fro fibroblasts
incubated with oxidized LDL (data not shown).

Taken together, these data indicate that HAS2 expression and
HA secretion in fro/fro fibroblasts, resulting from Akt activation, are
protective against cell death evoked by nutrient starvation.
Discussion

In this article, and as summarized in the graphical abstract, we
show that nSMase2 is involved in apoptosis evoked by nutrient
starvation, and this is protected in fro/fro fibroblasts mutant for
nSMase2, via an increased expression of HAS2 and of Hsp72.

Role of nSMase2 in apoptosis induced by nutrient starvation

A first important point is that nSMase2 is involved in apoptosis
induced by nutrient starvation, but not by oxidized LDL or H2O2. A
number of studies have been focused on the apoptotic signaling of
nSMase2, with controversial responses depending on the cell type,
or the nature of the stressors [6]. We recently reported that
nSMase2-deficient fro/fro mice, characterized by a strong neonatal
growth retardation [17], do not resist to TNFα-induced hepato-
toxicity, and fibroblasts isolated from these mice, do not resist to
apoptosis evoked by oxidized LDL or TNFα ([11] and present ar-
ticle), suggesting that nSMase2 is not involved in acute stress-in-
duced cell death. Here we show that fro/fro fibroblasts resist to cell
death evoked by nutrient starvation in contrast to wt fibroblasts.
Apoptotic cell death of wt cells is evidenced by the increased
number of TUNEL positive cells, and by the morphological features
of apoptosis observed using Syto13/PI staining, all these para-
meters being reduced in fro/fro fibroblasts. These data point out
the different mechanisms of apoptosis evoked by nutrient star-
vation (protected in fro/fro fibroblasts) or by oxidized LDL (not
protected in these cells). We previously reported that ceramide is
not involved in apoptosis induced by oxidized LDL in endothelial
cells, SMC and fibroblasts [32,33], which mainly depends on the
deregulation of cytosolic calcium and the subsequent activation of
the intrinsic mitochondrial apoptotic pathway [34,35]. In contrast,
nSMase2 activation by oxidized LDL, and subsequent ceramide
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generation, are involved in SMC proliferation, via the activation of
a signaling cascade leading to the activation of sphingosine kinase-
1 and the generation of the survival and mitogenic sphingolipid
mediator, S1P [12]. Indeed, fro/fro fibroblasts and nSMase2-si-
lenced SMC do not proliferate in the presence of oxidized LDL [11].

In contrast, our data show that in our model, the mechanism of
apoptosis evoked by nutrient starvation involves nSMase2 since i/
fro/fro fibroblasts mutant for this nSMase2, resist to apoptosis, ii/
the addition of GW4869, an inhibitor of neutral SMases, protects
wt fibroblasts against cell death induced by nutrient privation, but
not that induced by oxidized LDL, iii/ the addition of C2-ceramide
to fro/fro fibroblasts, reverses their resistance to cell death. Thus it
can be hypothesized that ceramide released via the degradation of
sphingomyelin by nSMase2, elicits apoptosis in nutrient-starved
conditions.

Our data show that autophagy activation is not deficient in fro/
fro fibroblasts, thus is probably not involved in the mechanism of
cell death mediated by nSMase2. Apoptosis induced by serum or
nutrient starvation, is often associated to autophagy, which is a
survival mechanism, able to mediate a non-apoptotic cell death,
when apoptotic pathways are blocked [36]. Ceramide is a potent
autophagic cell death inducer, via a downregulation of nutrient
transporters [28], thus it was hypothesized that autophagy could
be defective in fro/fro fibroblasts, in which the ceramide genera-
tion is reduced. However, our data do not show any defect in the
activation of autophagy markers such as the conversion LC3-I to
LC3-II, or beclin-1 mRNA and protein expression, which suggests
that ceramide is either not involved in the autophagic process
evoked by nutrient starvation in these fibroblasts, or is generated
by another SMase, such as the acidic SMase which modulates
autophagy in several pathophysiological models for Alzheimer's
disease, steatosis or atherosclerosis [37–39].

The resistance of fro/fro fibroblasts to nutrient starvation involves
HAS2 increased expression

HAS2 is highly expressed in fro/fro fibroblasts, leading to an
increased secretion of HA in the extracellular medium [29]. HAS2
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protects against apoptosis evoked by environmental stress, such as
serum starvation [30]. High molecular weight HA are antiapoptotic
and protective in various pathophysiological conditions, such as
human corneal epithelial cells [40], cornea protection and oxida-
tive stress [41], trophoblasts [42], chondrocytes and synovial le-
sions [43,44]. We hypothesized that HAS2 contributes to the re-
sistance of fro/fro fibroblasts in nutrient deprivation conditions.

In fro/fro cells, the high HAS2 expression depends on Akt acti-
vation, itself resulting from the decreased activity of PP2A, due to a
reduced ceramide content [29]. Indeed, ceramide is a potent ac-
tivator of PP2Ac/ceramide-activated protein phosphatases [45,46],
which in turn inhibits Akt [47]. In fro/fro fibroblasts, the nSMase2/
Cer deficiency in fro/fro cells prevents PP2A activation, thereby
impeding Akt inactivation. Thus, Akt activation persists and sup-
ports the expression of HAS2 [29]. Under nutrient deprivation
conditions, we found that HAS2 expression remains high in fro/fro
fibroblasts. This high HAS2 expression is required for survival of
fro/fro fibroblasts under deprivation conditions, as shown by the
reversion of this resistance to deprivation by silencing of HAS2 by
specific siRNAs and by inhibiting HAS2 with MU, in agreement
with Wang et al. [30]. In the same way, the addition of HA protects
in part wt fibroblasts against apoptosis induced by nutrient star-
vation. However this protective effect was not effective against the
toxicity of oxidized LDL, which inhibited HAS2 expression in fro/fro
fibroblasts.

Hsp72 expression is involved in HAS2-induced resistance of fro/fro
fibroblasts to nutrient starvation

Heat-shock proteins (Hsps) are induced in response to various
stressors including heat stress, toxic chemicals or modifications of
cell environment, to suppress apoptosis [48]. HA are known to up-
regulate the expression of heat-shock proteins from the Hsp70
family, particularly Hsp72, which may suppress cell degeneration
and apoptosis in various models, such as canine arthritis [49],
K562 cells exposed to hyperthermia and PC12 cells in serum de-
privation conditions serum deprivation [31]. Our results show that
Hsp72 expression is increased in fro/fro fibroblasts, and its in-
hibition, either by the specific pharmacological inhibitor KNK437,
or by siRNA directed against HAS2, reversed the resistance of fro/
fro cells, indicating that Hsp72 expression depends on HAS2 and is
anti-apoptotic in nutrient-starved conditions, as reported [31].

In conclusion, the reported data show that nSMase2 is involved
in cell death induced by nutrient deprivation, through a ceramide-
dependent activation of PP2A that negatively regulates Akt activ-
ity, thereby reducing HAS2 and Hsp72 expression. In contrast, the
data on fro/fro cells confirm that oxidized LDL-induced apoptosis
occurs through ceramide-independent mechanisms, as previously
reported [35,50–52]. Moreover, nutrient starvation triggers a ro-
bust increase of autophagy markers, which is independent of
nSMase2/Cer and plays no major role in cell death induced by
nutrient deprivation.

Finally, the functional link between nSMase2/Cer, Akt and HAS2
suggests that this pathway is involved in the protection against cell
death induced by nutrient deprivation, by regulating not only the
classical anti-apoptotic mechanisms mediated by Akt, but also the
additional protective pathway mediated by HAS2, which is appar-
ently required to prevent the apoptotic effect of nutrient deprivation.
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