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Abstract

Forty percent of American women are obese and at risk for type II diabetes, impaired immune

function, and altered microbiome diversity, thus impacting overall health. We investigated

whether obesity induced by an excess calorie, high fat diet containing hydrogenated fats, fruc-

tose, and coconut oil (HFD) altered glucose homeostasis, peripheral immunity, and urogenital

microbial dynamics. We hypothesized that HFD would cause hyperglycemia, increase periph-

eral inflammation, and alter urogenital microbiota to favor bacterial taxonomy associated with

inflammation. We utilized female Ossabaw mini-pigs to model a ‘thrifty’ metabolic phenotype

associated with increased white adipose tissue mass. Pigs were fed HFD (~4570 kcal/pig/

day) or lean (~2000 kcal/pig/day) diet for a total of 9 estrous cycles (~6 months). To determine

the effect of cycle stage on cytokines and the microbiome, animals had samples collected

during cycles 7 and 9 on certain days of the cycle: D1, 4, 8, 12, 16, 18. Vaginal swabs or cervi-

cal flushes assessed urogenital microbiota. Systemic fatty acids, insulin, glucose, and cyto-

kines were analyzed. Pig weights and morphometric measurements were taken weekly.

Obese pigs had increased body weight, length, heart and belly girth but similar glucose con-

centrations. Obese pigs had decreased cytokine levels (IL-1β, TNF-α, IL-4, IL-10), arachi-

donic acid and plasma insulin, but increased levels of vaccenic acid. Obese pigs had greater

urogenital bacterial diversity, including several taxa known for anti-inflammatory properties.

Overall, induction of obesity did not induce inflammation but shifted the microbial communities

within the urogenital tract to an anti-inflammatory phenotype. We postulate that the coconut

oil in the HFD oil may have supported normal glucose homeostasis and modulated the

immune response, possibly through regulation of microbial community dynamics and fatty

acid metabolism. This animal model holds promise for the study of how different types of obe-

sity and high fat diets may affect metabolism, immune phenotype, and microbial dynamics.
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Introduction

Obesity is at epidemic levels, particularly in western cultures such as the United States, where

recent epidemiologic statistics indicate that 40% of American women are obese [1]. Obesity is

associated with the development of metabolic syndrome, and can lead to additional health

issues such as type II diabetes, cardiovascular disease, atherosclerosis, and cancer. As such,

obesity and its sequelae cause an estimated financial burden on the United States healthcare

system of $75 billion per year [2]. Metabolic disturbances associated with obesity such as

hyperlipidemia, dyslipidemia and insulin resistance can be characterized by a loss of immune

homeostasis within the body, further perpetuating an environment of low-grade chronic

inflammation [3]. In fact, the development of insulin resistance and type II diabetes, even inde-

pendent from obesity, can be predicted by an increase in inflammatory markers like interleu-

kin 6 (IL-6) and C-reactive protein (CRP) [4, 5]. Furthermore, excess adipose tissue results in

increased numbers of macrophages within adipose tissue, which produce several pro-inflam-

matory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), and IL-

6 [6]. These excess cytokines establish a positive-feedback loop through their increased recep-

tor activation, resulting in chronic inflammation.

Early diagnosis of immunological and microbial community dysregulation could aid in

early detection of obesity-associated inflammation and thus diminished overall health. Sev-

eral studies have demonstrated the role of the microbiome in the development of the host

immune system, as mice lacking microbes in the gastrointestinal tract fail to undergo

immune cell maturation and have a dysregulated immune response [7, 8]. Disruptions in

commensal bacterial species that comprise the microbiome can lead to both metabolic and

immune diseases, emphasizing the symbiosis between these two systems necessary for physi-

ological homeostasis in the host. Observation of the types and numbers of bacterial species

that populate the urogenital mucosa permits assessment of immune balance in the female

reproductive tract. Bacterial communities associated with a ‘healthy’ urogenital microbial

profile have protective and immunologically beneficial roles in the reproductive tract. A

shift of microbial species may be indicative of immune dysfunction and possibly systemic

inflammation.

Previous studies have utilized the Ossabaw pig as an ideal model for the study of obesity

and its effects on reproductive function in females. Ossabaw pigs have a loss of function muta-

tion in the Val199! Ile region of the PRKAG3 gene, which is the γ3 isoform of AMP-activated

protein kinase. Upon activation, this kinase phosphorylates enzymes involved in insulin sig-

naling and cholesterol and fatty acid metabolism, and is therefore associated with accumula-

tion of increased subcutaneous, visceral, and intramuscular fat and a ‘thrifty’ phenotype [9].

These pigs serve as an excellent model for obesity as they naturally develop a condition that

mimics metabolic syndrome in humans when fed an excess-calorie, high-fat/cholesterol/fruc-

tose diet, including visceral obesity, glucose intolerance, insulin resistance, dyslipidemia, and

hypertension [9–14].

The goals for this study utilizing female Ossabaw pigs as a model of obesity were to: 1) mea-

sure body weight and measurements, glucose and insulin concentrations, and plasma free fatty

acid composition to assess metabolic function, 2) assess systemic immune function through

analysis of serum cytokine levels, and 3) identify bacterial communities in the urogenital tract

associated with obesity. Specifically, we hypothesized that obesity induced by a high fat diet

rich in hydrogenated fats and a plant-derived saturated fat, coconut oil, would cause hypergly-

cemia, hyperinsulinemia, decrease the immune protection of the urogenital microbial commu-

nity profile, and favor systemic inflammation.
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Materials and methods

Animal husbandry and diet

All experimental procedures performed on animals were done by a protocol approved specif-

ically by the University of Illinois at Urbana-Champaign Institutional Animal Care and Use

Committee (IACUC; protocol # 11114), and followed the guidelines as described in the

Guide for the Care and Use of Laboratory Animals [15]. Five nulliparous, sexually mature

female Ossabaw pigs were acquired from the Comparative Medicine Program of Indiana

University School of Medicine and Purdue University (West Lafayette, IN, USA). The obese

diet utilized in this study was comprised of a base pelleted pig feed (5L1G; custom formu-

lated by Purina TestDiet, Inc., Richmond, IN, USA) supplemented with hydrogenated soy-

bean oil (8.4%), coconut oil (4.7%), high fructose corn syrup (5.0%), cholesterol (2.0%), and

sodium cholate (0.7%) by weight. The lean diet fed in this study was the Rund Diet (Univer-

sity of Illinois at Urbana-Champaign, Urbana, IL, USA) comprised of corn (57.5%) and soy

(40.0%) supplemented with vitamins and minerals. During the six-month study period, lean

pigs (n = 2) were fed approximately 2000 kcal of the pelleted lean diet per pig per day, and

obese pigs (n = 3) were fed approximately 4570 kcal of obese diet per pig per day. Water was

available ad libitum. The obese phenotype was induced over three months of dietary treat-

ment (induction phase), following which the diets continued to be fed at the same levels for

an additional 3 months (maintenance phase). During the study, pigs were housed individu-

ally to ensure exact dietary dosing and were on a 12:12-hour light:dark cycle. Euthanasia was

performed by sodium pentobarbital overdose following administration of 1 ml/45 kg body

weight of a combination of telazol + ketamine + xylazine. Every effort was made to minimize

animal suffering.

Sample collection

The design of this study used repetitive sampling from each individual, which allowed for

each animal to serve as their own internal baseline control, and thus generate substantial, sig-

nificant data with a limited sample size. Heat detection was conducted in the presence of a

boar and was used to measure estrous cycle length to determine sampling time periods. Jugu-

lar blood collection, vaginal swabs, and cervical flushes were performed on day 1 (estrus,

standing heat) and on day 8 (mid-luteal phase) of the estrous cycle for the first six continuous

estrous cycles (induction phase). Samples were also collected on cycles 7 and 9 (maintenance

phase), on days 1 (estrus), 4, 8, 12, 16, 18 or until pigs stood in heat again. A Panepinto low

stress sling restraint system was used on all pigs for the purposes of restraint for blood collec-

tion [16]. Vaginal swabs were collected by inserting a sterile Dacron swab into the vagina (to

a depth of < 1 inch); the swab was then rotated for 360˚ while scraping the vaginal wall for

no more than 10 seconds, resulting in minimal discomfort to the animal. Once collected, the

swab tip was placed into a plastic tube containing 1 mL sterile saline. The tube was tightly

capped and placed immediately on dry ice. Cervical flushings were collected by sanitizing

the vulva with betadine and 70% ethanol followed by insertion of a sterile catheter through

the vagina and the cervix. After catheter placement, using sterile technique, a syringe filled

with 12 ml of sterile saline was placed on the catheter and the saline was pushed into the cer-

vix. A plunger was used to move the saline back and forth to get a good flush before with-

drawing the catheter and syringe containing the cervical flushing. Cervical flushings were

placed immediately on dry ice. Vaginal swabs and cervical flushing were stored at -80˚C

until processed for DNA extraction.

Dietary fat modulation of immune and metabolic health
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Metabolic parameters

Physical measurements were taken weekly, including weight, crown to rump length, heart

girth, belly girth, and height. Blood glucose concentrations were measured on D1, 4, 8, 12,

16, 18 for cycles 7 and 9 from blood obtained by small ear pricks. Glucose testing was per-

formed with the Precision Xtra blood glucose and ketone monitoring system (Abbott Diabe-

tes Care, Alameda, CA, USA), which has been validated for use in the Ossabaw pig [14]. Free

fatty acid analysis was performed on plasma collected on D1 and D8 from cycle 1 and cycle

7. Plasma insulin was assessed on D1 and D8 from cycle 1, 6, 7, and 9 using the Porcine Insu-

lin RIA (EMD Millipore, Billerica, MA, USA). As a proxy for insulin sensitivity in each diet

treatment group, a homeostatic model of assessment for insulin resistance (HOMA-IR =

(glucose�insulin/405)) was calculated prior to diet treatment and during the maintenance

phase (cycles 6,7,9) of diet treatment for each treatment group. For the assessment of free

fatty acids, one ml plasma was extracted in chloroform:methanol (2:1, v/v) and fatty acid

methyl esters (FAME) were prepared as described by Morrison and Smith [17], modified

to include an additional saponification step [18]. FAME were analyzed with a Varian gas

chromatograph (model CP-3800 fixed with a CP-8200 autosampler, Varian Inc., Walnut

Creek, CA, USA). Separation of FAME was accomplished on a fused silica capillary column

CP-Sil88 [100m x 0.25 mm (i.d.)] (Chrompack Inc., Middleburg, The Netherlands), with

hydrogen as the carrier gas. Column oven temperature was increased from 150 to 160˚C at

1˚C per min, from 160˚ to 167˚C at 0.2˚C per min, from 167 to 225˚C at 1.5˚C per min, and

then held at 225˚C for 16 min. The injector and detector were maintained at 250˚C. Total

run time was 60 min. Individual fatty acids were identified using genuine external standards

(Nu-Chek Prep, Inc., Elysian, MN, USA). Insulin and fatty acid levels were measured and

compared within each individual and also across all pigs to minimize variability and to assess

the effect of the diet over time.

Immune phenotype

The levels of seven cytokines (Interleukin 1-beta (IL-1β), Interleukin 10 (IL-10), Interferon

alpha (IFN-α), Interferon gamma (IFN-γ), Tumor necrosis Factor alpha (TNF-α), Interleukin

4 (IL-4), and Interleukin 8 (IL-8)) in serum from days 1, 8, 12, 16, and 18 of cycles 1, 7 and 9

of each pig were analyzed simultaneously using the Swine Cytokine Magnetic 7-Plex Panel

assay (Novex1, Life Technologies Ltd., UK). Analysis of the assay was performed on a Lumi-

nex1100/200™ in the Research Services Core at Southern Illinois University School of Medi-

cine. Cytokine levels were measured and compared within each individual and also across all

pigs to minimize variability. Samples were taken at multiple time points during cycles 7 and 9

(maintenance) to gauge whether reproductive cyclicity had an effect on the levels of each

cytokine.

Microbial assessment

DNA was extracted from the vaginal swabs and cervical flushings of all pigs using the Power-

Soil1 DNA Isolation Kit (Mo Bio Laboratories, Inc., Carlsbad, CA, USA) according to the

manufacturer’s instructions. After extraction the DNA stock concentration was measured

using a NanoDrop-2000 spectrophotometer (Thermo Scientific, Inc., Wilmington, DE, USA),

with samples ranging from 12.6 to 510 ng/μl.

A 584 bp fragment of the hypervariable V3-V5 region of the 16S rRNA gene was amplified

by a polymerase chain reaction (PCR) as follows: 25 μl Kapa HiFi (Kapa Biosystems, Woburn,

MA, USA), 25 μM forward primer, 25 μM reverse primer, 50 ng of DNA, and molecular grade

water to reach a final volume of 50 μl per reaction. The 357F forward primer was used (read 1:

Dietary fat modulation of immune and metabolic health
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5’TATGGTAATTGTCCTACGGGAGGCAGCAG3’; read 2: 5’AGTCAGTCAGCCCCGTCAATT
CMTTTRAGT3’; index: 5’ACTYAAAKGAATTGACGGGGCTGACTGACT3’). The universal

reverse primer was 926R (5’CCGTCAATTCMTTTRAGT3’). One of 96 specific barcodes con-

sisting of 12 base pairs was also added to the reverse primer. These unique barcodes serve as a

genetic ID for each sample to be sequenced. The PCR cycle was as follows: 45 seconds at 98˚C

followed by 25 cycles of 15 seconds at 98˚C, 30 seconds at 65˚C, and 30 seconds at 72˚C for

denaturation, and then 2 minutes at 72˚C and hold at 4˚C for final extension, as described in

the HMP [19]. The PCR products were then run on an agarose gel, where it was determined

that a nested PCR amplification was required. Following the nested PCR, the products were

then purified using the GeneJET PCR Purification Kit (Thermo Scientific, Inc., Wilmington,

DE, USA). Final DNA product concentrations were measured by the NanoDrop-2000 spectro-

photometer and were between 36.8 and 226.8 ng/μl. Samples were then pooled together by

mass (15 μg), with one pool consisting of samples containing reverse primer barcodes 1–96.

Total pool concentration was measured by Qubit 2.0 Fluorometer (Invitrogen, Life Technolo-

gies, Carlsbad, CA, USA). All pools were then sent to the University of Illinois at Urbana-

Champaign to be sequenced utilizing a high-throughput platform (MiSeq; Illumina Inc., San

Diego, CA,USA). Approximately 87,000,000 total sequence reads with 50,000 reads/sample

were obtained, including both dominant and poorly-represented taxa of the urogenital

microbiome.

Sequences were analyzed using the QIIME pipeline [20, 21], removing poor quality incom-

plete sequences. Sequences were then fed through the Ribosomal Database Project in order to

obtain the taxa calls that were used in later correlation analysis. This bioinformatics pipeline

allows operational taxonomical unit (OTU) assignments followed by microbial community

analyses including sequence alignment, phylogenetic trees, phylogenetic- and taxon-based

analysis of diversity, and network analysis, as well as Unifrac analysis for clustering into OTUs,

generating rarefaction curves and calculating the species diversity.

Statistical analysis

As a means to control for individual variability, free fatty acid concentrations on cycle 1 day 1

(induction) and cycle 7 day 1 were used to calculate the change in free fatty acids within each

animal over time. Insulin concentrations on cycle 1 days 1 and 8 and cycles 6, 7, and 9 days 1

and 8 were used to calculate the change in insulin within each animal over time while on their

respective diet. This same comparison was made for the HOMA-IR parameter across treat-

ment groups. This type of calculation was not performed on glucose concentrations, because

glucose concentration initially was affected by the stress of handling, which resulted in glucose

levels being high in both treatment groups at the onset of the study.

All metabolic data were assessed using PROC GLM (SAS, Inc, Cary, NC, USA) for normal-

ity and transformed as needed for non-normal samples prior to analysis. A repeated measures

in time ANOVA was conducted (SAS, Inc., Cary, NC, USA). The Akaike criterion was used to

determine the best fit covariance matrix, which was the autoregressive matrix, and all parame-

ters were run using this matrix.

Cytokine concentrations at each time point within each animal were normalized to the ani-

mal’s own estrous cycle 1, day 1 (induction), meaning that statistical differences for each indi-

vidual were calculated as the change between sampling timepoints (i.e. cycle 1, day 1 vs. cycle

7, day 1), and then this difference was compared between all individuals. All samples were nor-

malized to the background fluorescent intensity (no serum control) from the unknown sample

fluorescent intensity, which was calculated from the standard curves provided in the assay kit,

which yielded average concentrations across treatment groups. A Wilcoxin signed rank test

Dietary fat modulation of immune and metabolic health
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was conducted to determine significance between treatment groups throughout the treatment

timeline.

To determine the relationship between microbiomes, data were visualized with 2D or 3D

non-metric multidimensional scaling (NMDS) plots, which were constructed by assigning a

non-parametric monotonic relationship to the Bray-Curtis dissimilarities using isotonic

regression to produce a two- or three-axis representation of the relationships between data.

Subsequently, a permutational MANOVA test was used to assess the factors driving bacterial

community composition. Bray-Curtis distance analysis, coordinate, and statistical analyses

used to cluster microbial profiles were determined as previously described [22].

All results are presented as the least squared mean ± standard error of the mean. In all sta-

tistical tests, p<0.05 was the criterion to indicate statistical significance unless otherwise noted.

Results

Metabolic parameters

Weight (lean, 57.8 ± 5.4 kg; obese, 73.5 ± 1.8 kg), crown to rump length (lean, 84.8 ± 1.3 cm;

obese, 92.7 ± 1.3 cm), heart girth (lean, 85.6 ± 1.3 cm; obese, 99.3 ± 1.3 cm), and belly girth

(lean, 87.1 ± 1.3 cm; obese, 102.9 ± 1.3 cm) were all significantly (P� 0.05) greater in obese

pigs compared with lean (Table 1). Height (lean, 58.6 ± 1.1 cm; obese, 58.5 ± 1.5 cm) was not

different between lean and obese pigs (Table 1). No differences were detected in glucose con-

centrations between the two treatment groups (Table 2). Obese pigs developed lower plasma

insulin concentrations while on diet compared with lean pigs, which developed higher plasma

insulin concentrations while on diet (Table 2). However, there was no significant difference

between the change in HOMA-IR between the two diet groups (Table 2). Pigs that consumed

the high fat diet developed decreased levels of arachidonic acid (P = 0.04) while on the diet as

compared with lean pigs (Table 2). There was a trend for obese pigs to develop increased levels

of cis-vaccenic acid (P = 0.10) while on the obese diet as compared to lean pigs (Table 2).

Immune phenotype

Results of the cytokine analysis for IL-1β, TNF-α, IL-4, and IL-10 of all pigs are displayed in

Fig 1. When compared to lean pigs, obese pigs tended to show lower levels of IL-1β, TNF-α,

IL-4, and IL-10, although this varied by cycle day. Obese pigs also had lower concentrations of

IFN- α and IFN- γ, and higher levels of IL-8 than lean pigs, however this did not reach signifi-

cance criteria (data not shown). Values were lower in obese pigs for the following cytokines:

IL-1β levels between groups on day 12; IL-10 on day 1, day 16, and day 18; and IL-4 on day 8,

day 12, day 16 and day 18. Concentrations had a tendency to be highest on day 12 and lowest

on days 1 and 18, indicating the possibility of a cyclical effect.

Microbial assessment

The microbial communities isolated from vaginal swabs and cervical flushes were clustered

into OTUs, which were then visualized, on principal coordinates analysis (PCoA) plots (Fig 2).

Table 1. Morphometric measurements for lean and obese Ossabaw pigs.

Measurement Lean Obese P-value

Crown to Rump Length (cm) 84.8 ± 1.3 92.7 ± 1.3 <0.0001

Heart Girth (cm) 85.6 ± 1.3 99.3 ± 1.3 <0.0001

Belly Girth (cm) 87.1 ± 1.3 102.9 ± 1.3 <0.001

Height (cm) 58.6 ± 1.1 58.5 ± 1.5 >0.05

Body weight (kg) 57.8 ± 5.4 73.5 ± 1.8 <0.0001

https://doi.org/10.1371/journal.pone.0179542.t001
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The axes represent 22.26% (axis 1) and 10.39% (axis 2) of the data variance. These plots dem-

onstrate that samples clustered separately dependent on the phase of the dietary intervention

(Fig 2B) and that obese animals had greater diversity in both induction and maintenance

phases of the diet compared to lean animals (Fig 2A). Surprisingly we also did not observe dif-

ferences in clustering patterns by stage of estrous cycle, as measured by days throughout the

estrous cycle (data not shown). When analyzing vaginal swabs and cervical flushes separately,

we found that in lean animals there was not a shift in microbial dynamics during different

phases of the diet (Fig 3A). However, in obese animals there was a shift in microbial communi-

ties between diet induction and maintenance and that this shift was more prevalent in vaginal

swabs then cervical flushes (Fig 3B). Alpha diversity measures indicated no significant differ-

ence in the number of OTUs observed (P>0.5; Fig 4) between obese and lean animals for

either cervical fluid or vaginal swabs, indicating that the copy of expression within each bacte-

rial taxonomy was driving diversity differences between the induction and maintenance phase

of the diet period.

To analyze taxonomical diversity, we measured the percent abundance of level 6 taxonomy.

The three most abundant phyla across all animals were Bacteroidetes (lean, 51.07%; obese,

53.23%), Firmicutes (lean, 21.81%; obese, 17.53%), and Proteobacteria (lean, 18.93%; obese,

16.40%) (Fig 5A). The level 6 taxon summary revealed a total of 84 genera identified between

the two treatment groups after sequencing and OTU clustering (Fig 5B). Seventy-six genera

were identified in obese animals, whereas 64 genera were identified in lean animals. Out of the

84 total genera identified, 56 were observed in both treatment groups, 8 genera were unique to

the lean group, and 20 were unique to the obese animals. The top three bacterial genera that

were expressed in obese animals but not lean were Incertae_Sedis_XI;Anaerosphaera (1.11%

Table 2. Average glucose concentration and change in insulin, HOMA-IR, and free fatty acids from beginning to end of trial for lean and obese

pigs.

Common name Lipid Numbers Lean Obese P-value

Glucose (mg/dL) N/A 64.0 ± 2.1 66.2 ± 1.7 0.38

Insulin (μU/ml) N/A 3.1 ± 1.9 -7.9 ± 3.1 0.006

HOMA-IR N/A -0.401 ± 0.5781 0.265 ± 0.425 0.5

Myristic acid C14:0 -0.20 ± 0.13 -0.19 ± 0.10 0.95

Myristoleic acid C14:1 0.00 ± 0.25 0.40 ± 0.21 0.3

Palmitic acid C16:0 -13.12 ± 5.09 -0.48 ± 4.16 0.15

Palmitoleic acid C16:1 0.00 ± 0.30 0.64 ± 0.24 0.19

Stearic acid C18:0 -0.46 ± 4.00 -2.36 ± 3.27 0.74

Oleic acid C18:1 3.99 ± 7.77 1.83 ± 6.34 0.84

cis-Vaccenic acid C18:1n-7 -0.23 ± 0.45 1.12 ± 0.37 0.10

Linoleic acid C18:2 3.14 ± 3.31 0.76 ± 2.70 0.62

γ-Linolenic acid C18:3 0.00 ± 0.11 0.17 ± 0.09 0.33

Arachidic acid C20:0 0.00 ± 0.06 0.02 ± 0.05 0.81

Paullinic acid C20:1 0.00 ± 0.00 0.00 ± 0.00 1

Eicosadienoic acid C20:2 -0.03 ± 0.10 0.07 ± 0.08 0.53

Arachidonic acid C20:4 6.42 ± 2.62 -5.61 ± 2.14 0.04

Eicosatrienoic acid C20:3n-3 0.00 ± 0.00 0.00 ± 0.00 1

Behenic acid C22:0 0.00 ± 1.64 1.64 ±1.34 0.5

Eicosahexaenic acid C22:1+C20:5 0.00 ± 0.00 0.00 ± 0.00 1

Lignoceric acid C24:0 0.47 ± 0.36 0.03 ± 0.29 0.41

Nervonic acid C24:1 0.13 ± 0.52 -0.03 ± 0.43 0.83

Docosahexaenoic acid C22:6 -0.11 ± 0.13 0.24 ± 0.10 0.12

https://doi.org/10.1371/journal.pone.0179542.t002
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of urogenital microbiome composition), Moraxellaceae;Acinetobacter (0.31%), and Lachnos-

piraceae;Blautia (0.16%). Conversely, the top bacterial genera that were identified in lean

animals only were Ruminococcaceae;Oscillibacter (0.54% of urogenital microbiome composi-

tion), Lachnospiraceae;Clostridium_XlVa (0.40%), and Clostridiales_Incertae_Sedis_XII;

Acidaminobacter (0.38%). The three most abundant phyla as well as the genus Lactobacillus

Fig 1. Serum cytokine measurements throughout cycle 7 (dietary maintenance) in obese and lean pigs. (A) Levels of pro-

inflammatory cytokines IL-1β and TNF-α. (B) Levels of anti-inflammatory cytokines IL-10 and IL-4. Results are expressed as least squared

mean fluorescent intensity ± SEM (obese, n = 3; control, n = 2). All data have been normalized to cycle 1 day 1 for each individual animal.

* indicates P<0.05.

https://doi.org/10.1371/journal.pone.0179542.g001
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were then analyzed between treatment groups during both the induction phase and mainte-

nance phase (Fig 6). Copy number of Bacteroidetes, Firmicutes, and Proteobacteria OTUs

were calculated out of total phylum OTU sequences generated. Lactobaciulls sp. copy numbers

were calculated out of total Firmicutes OTU sequences generated. There was no statistical dif-

ference in copy number between the treatment groups.

After sequences were clustered into OTUs, bacterial taxa that either had increased abun-

dance or decreased abundance were identified in obese animals when normalized to lean ani-

mals (Table 3). Lachnospiracea and Incertae are the genera with the highest increase in copy

number in obese pigs, with a 22.47 and 18.92 fold increase compared to lean pigs, respectively.

Both of these genera are associated with protective or anti-inflammatory properties [23, 24].

Lactococcus, Paraprevotella, Streptococcus, and Pseudomonas bacterial genera all have a reduced

abundance in obese pigs (0.46, 0.34, 0.33, and 0.30 fold decrease, respectively). Of these, species

Fig 2. PCoA plots of distances between pig urogenital bacterial communities. Variances explained are

shown on the axes. Plots include all vaginal swab and cervical flush samples taken of each pig throughout the

course of the study. (A) Comparison of lean and obese animals throughout the whole study. (B) Comparison

of all samples from both obese and lean animals during the induction versus the maintenance phase of the

diet. Each point represents one sample. The color key provides information to determine the influence of

features on spatial placement.

https://doi.org/10.1371/journal.pone.0179542.g002
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within the genera Paraprevotella, Streptococcus, and Pseudomonas are associated with either

inflammatory or disease states [25–27].

Discussion

The goal of this study was to investigate the relationship between obesity induced by a high fat

diet rich in hydrogenated fats and a plant-derived saturated fat, coconut oil, on metabolism

and immune and microbial parameters using the Ossabaw mini-pig as a model for obesity.

Rodents are a common animal model used to study obesity; however these animals may not

Fig 3. PCoA plots of distances between pig urogenital bacterial communities based on sample type and phase of diet study

(A = lean and B = obese).

https://doi.org/10.1371/journal.pone.0179542.g003
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Fig 4. Alpha-diversity on number of OTUs observed. Results are expressed as least squared

mean ± SEM (control, n = 3; obese, n = 2).

https://doi.org/10.1371/journal.pone.0179542.g004
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mimic the pathogenesis of obesity observed in humans [28]. Furthermore, a longitudinal study

design would have been prohibited in a rodent model due to the required frequent sampling

and the amount of sample needed per time point. Although non-human primates more closely

resemble physiological parameters and disease pathology in humans, this animal model also

Fig 5. Taxon summary of relative abundance within urogenital microbial communities of control and

obese pigs shown as an average of all animals from each treatment group. Taxa with the highest

abundance is presented in the key. (A) Phylum-level relative abundance. (B) Genus-level relative abundance.

https://doi.org/10.1371/journal.pone.0179542.g005
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has limitations, including increased costs to house, longer times to reach adulthood, and

increased risk for zoonotic diseases. Pigs are a suitable animal model to study obesity as their

anatomy, physiology, biochemical properties, lipoprotein profile, reproductive cycle length are

similar to that of humans [29–31]. The major findings of this study are female Ossabaw pigs

fed an excess calorie, high-fat diet, high-cholesterol, high-fructose diet rich in coconut oil: 1)

developed obesity but were normoglycemic; 2) were in a state of immune homeostasis; and 3)

had a greater urogenital bacterial diversity that was driven by the high fat diet.

Although coconut oil has been shown to improve glucose homeostasis [32, 33] and to

improve cholesterol values in lean animals and humans, respectively, through increasing high

density lipoprotein (HDL) [34], to date the effects of coconut oil on metabolic parameters in

the context of obesity have not been explored. Additionally, while type II diabetes is a known

sequela to obesity, the exact mechanistic cause for this relationship remains to be elucidated

[35]. Recently, it has been suggested that the development of diabetes in obesity may be due to

endoplasmic reticulum stress [36] or systemic inflammation [37]. In previous studies of the

effects of a high fat diet on glycemic control in obese Ossabaw pigs, high fat diets that included

both fructose and partially hydrogenated soybean oil but not coconut oil resulted in hypergly-

cemia and insulin resistance as measured by HOMA-IR in the high fat fed pigs [13, 14]. The

fact that pigs in the current study that were fed a high fat diet containing coconut oil, fructose,

and partially hydrogenated soybean oil became obese but do not manifest hyperglycemia and

demonstrate decreased insulin concentrations while on the diet is intriguing and indicates a

possible role for coconut oil in the modulation of glucose homeostasis. It is possible that the

demonstrated anti-inflammatory effects of the dietary coconut oil are driving the maintenance

Fig 6. Relative abundance of prominent phyla and Lactobaciullus genus in vaginal swabs and cervical flushes of both

treatment groups during induction and maintenance phases. Data are shown as least squares mean ± SEM.

https://doi.org/10.1371/journal.pone.0179542.g006
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of normal glucose control despite the presence of obesity. However, as we did not feed lean

pigs a control diet supplemented with coconut oil we cannot unequivocally support this con-

jecture with only the current data set.

The free fatty acid profile identified increased levels of vaccenic acid and decreased levels of

arachidonic acid in obese pigs compared to lean pigs. Vaccenic acid is a trans fatty acid, and

may have a beneficial role in reducing risk factors of cardiovascular disease [38–40]. In con-

trast, arachidonic acid is a polyunsaturated fatty acid (PUFA), and a precursor for inflamma-

tory pathways [41]. Specifically, arachidonic acid is a substrate for cyclo-oxygenase (COX)

enzymes, including COX-2, an enzyme that plays a major role in the production of specific

eicosanoids, called prostanoids, which are increased in inflammatory environments and act to

mediate inflammation typically through G protein-coupled receptors [42]. Therefore, the free

fatty acid profile of the obese pigs in the current study suggests that these animals may be more

protected from inflammatory events than lean pigs are. Future studies that examine the effect

Table 3. Bacterial taxa up-regulated and down-regulated in obese compared to lean pigs.

Upregulated

Increased Abundance Fold Increased

Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Lachnospiracea_incertae_sedis # 22.47

Firmicutes;Clostridia;Clostridiales;Clostridiales_Incertae_Sedis_XI;Finegoldia # 18.92

Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Actinobacillus * 18.20

Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae;Peptostreptococcus # 17.15

Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Parabacteroides # 15.91

Bacteroidetes;Flavobacteria;Flavobacteriales;Flavobacteriaceae;Wautersiella 11.83

Proteobacteria;Gammaproteobacteria;Xanthomonadales;Sinobacteraceae;Hydrocarboniphaga 7.83

Bacteroidetes;Sphingobacteria;Sphingobacteriales;Sphingobacteriaceae;Pedobacter # 5.91

Proteobacteria;Gammaproteobacteria;Xanthomonadales;Xanthomonadaceae;Stenotrophomonas * 5.19

Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Tannerella 4.73

Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Roseburia # 4.73

Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;Moraxella * 4.14

Firmicutes;Bacilli;Bacillales;Alicyclobacillaceae;Tumebacillus 4.08

Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Aerococcus 3.92

Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella * 3.57

Proteobacteria;Alphaproteobacteria;Rhizobiales;Hyphomicrobiaceae;Gemmiger 3.40

Bacteroidetes;Sphingobacteria;Sphingobacteriales;Chitinophagaceae;Sediminibacterium 3.35

Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Variovorax * 3.25

Firmicutes;Bacilli;Bacillales;Planococcaceae;Lysinibacillus 2.96

Proteobacteria;Alphaproteobacteria;Rhizobiales;Methylobacteriaceae;Methylobacterium 2.69

Bacteroidetes;Flavobacteria;Flavobacteriales;Flavobacteriaceae;Chryseobacterium 2.43

Decreased Abundance Fold Decreased

Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Lactococcus # 0.46

Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Paraprevotella * 0.34

Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus * 0.33

Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas * 0.30

Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Paludibacter 0.19

Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas 0.18

Firmicutes;Clostridia;Clostridiales;Clostridiaceae_1;Clostridium_sensu_stricto # 0.11

*Taxon has pro-inflammatory/pathogenic properties.
#Taxon has anti-inflammatory/commensal properties.

https://doi.org/10.1371/journal.pone.0179542.t003
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of coconut oil in a control diet fed to lean pigs are warranted to fully assess the potential benefi-

cial effect of coconut oil on inflammation and immune function.

Identification of bacterial taxa that have either increased or decreased abundance in obese

compared to lean pigs in the urogenital tract revealed that obese pigs were more protected

from inflammation within the urogenital tract. These data are novel as the influence of obesity

on urogenital microbiome community dynamics has never been reported but the influence of

obesity on gut microbial function and inflammation has been well established [43]. Therefore,

we can utilize what is already known regarding the function and abundance of specific taxa in

the gut inflammatory phenotype and extrapolate this information to the urogenital tract. As

mentioned above, the genera Lachnospiracea and Incertae have the highest increase in copy

number in obese pigs and are associated with protective or anti-inflammatory properties.

Lachnospiracea species are decreased in the gut microbiome in patients with inflammatory

bowel disease [44], and have also been shown to exhibit colonization resistance against patho-

genic C. difficile [23]. Incertae species within the gut are associated with reduced intestinal

inflammation in patients with Crohn’s disease [45]. Furthermore, Bajaj et al. observed a lower

abundance of Incertae species within the gut in patients with cirrhosis, and also that a less

robust immune response is initiated against these species, concluding that the presence of

these bacteria are associated with decreased inflammation [24]. Conversely, Paraprevotella,

Streptococcus and Pseudomonas, which have reduced abundance in the urogenital tract of

obese pigs when compared to lean pigs, contain species that are linked to inflammatory and/or

disease states. Paraprevotella is closely related to Prevotella species, which are associated with

the pathogenesis of rheumatoid arthritis [46]. The inflammatory pathway induced by Strepto-
coccus pneumoniae infection, the causative agent for bacterial meningitis, is well known [47].

The genus Pseudomonas contains the species Pseudomonas aeruginosa, the established infec-

tious agent in cystic fibrosis patients that results in a strong inflammatory response [48]. Inter-

estingly, obese pigs also had reduced abundance of Lactococcus species within the urogenital

tract, which are lactic-acid producing commensal bacteria. Lactic acid serves to protect the

vaginal canal by several mechanisms, including lowering the pH of the vaginal canal, ulti-

mately creating an environment that disallows pathogenic bacteria from flourishing and caus-

ing infection [49]. However, the exact role of the species within the genus Lactococcus in the

female urogenital tract is not as well characterized as Lactobacillus species, warranting further

investigation on the extent of the protective effects Lactococcus offers.

Obese pigs had reduced serum levels of both pro-inflammatory and anti-inflammatory

cytokines compared to lean animals. Increased TNF-α concentrations from adipose tissue are

typically observed in obese individuals, and are associated with insulin resistance [50, 51].

However, in the current study we found that both pro-inflammatory cytokines (specifically IL-

1β and TNF-α) and anti-inflammatory cytokines (IL-10 and IL-4) were down-regulated in

these obese Ossabaw pigs compared to lean pigs. Based on our results we hypothesize that the

obese pigs fed at high fat diet with coconut oil are in a state of immune homeostasis and have

more conferred immune protection from pro-inflammatory events than lean pigs fed a control

diet.

The microbial composition of the gut is associated with obesity perhaps by influencing met-

abolic function, gut permeability, and inflammation [50–53]. A second focus for this study was

on the relationship between reproductive function and inflammation by means of investigat-

ing the urogenital microbiome. Bacterial diversity is described as the number and abundance

of specific taxa within a given environment, and balance of diversity is crucial to both protect

against a pathogen breach and also maintain a stable, healthy environment. Low microbial

diversity is associated with conditions such as obesity and inflammatory bowel disease [54,

55]. On the other hand, bacterial vaginosis (BV) exhibits a high bacterial diversity. Fredricks
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et al. characterized the microbial environment of women with BV as complex and containing

a variety of infection-causing bacterial species specific to this disease [56]. Therefore, it is gen-

erally accepted that a moderately diverse microbiome confers the most protection from infec-

tion. In the current study, obese pigs had an increased bacterial diversity in the urogenital tract

as indicated by the PCoA plot. The increase in copy number of protective bacterial species in

obese pigs suggests that the diversity of bacterial species in these animals had a protective effect

from pathogenic insult. The PCoA data also suggests that bacterial diversity in the urogenital

tracts of obese pigs was driven by a high fat diet, as diversity increased once the animals

reached the maintenance phase. This finding is underscored by the fact that there were no

clustering patterns observed in the PCoA plots when looking at either sample type or day

within the estrous cycle. The data from this study indicate that there may be a distinct micro-

biome “signature” associated with obesity. While this has already been studied in humans [51,

57], our experimental model has the advantage of utilizing animals of the same genetic back-

ground, allowing us to study the effects of dietary intervention with minimization of external

variables. Thus, our study was more targeted in identifying a signature in obesity associated

with diet manipulation specifically.

The fact that obese pigs fed a high fat diet rich in coconut oil have decreased inflammation

and levels of arachidonic acid is intriguing, since obesity alone is known to drive inflamma-

tion. One key difference between the high fat in this study, the high fat diet used in previous

Ossabaw studies by Newell-Fugate et. al., and the lean diet was the inclusion of coconut oil in

the high fat diet for this current study [13, 14]. Coconut oil contains medium-chain fatty acids

and has been shown to have anti-inflammatory properties, including the ability to decrease

pro-inflammatory cytokines in vivo [58, 59]. Additionally, several studies have described the

effects of coconut oil on methanogenesis in rumen fermentation, and also on volatile fatty acid

production by bacterial species within the rumen [60, 61]. It has also been shown that supple-

mentation of coconut oil in the diet increases overall bacterial counts in the rumen [60]. More

interesting, perhaps, are the antimicrobial properties of lauric acid, which is present in high

amounts in coconut oil. Wang et al. described how the antimicrobial properties of lauric acid

inhibited several pathogenic bacterial species such as Listeria monocytogenes [62]. Based on

our results, we postulate that coconut oil in the high fat diet might modulate the peripheral

immune system, possibly through regulation of microbial community dynamics.

In conclusion, when fed an excess-calorie, high-fat/cholesterol/fructose diet rich in coconut

oil, female Ossabaw pigs developed obesity but were normoglycemic, demonstrated decreased

markers of inflammation, and had greater bacterial diversity in the urogenital tracts than lean

pigs. Obesity has been implicated as a major cause of type II diabetes and infertility. However,

our results indicate that obesity alone may not be solely responsible for these pathologies.

Instead, dietary fat source may modulate glucose homeostasis in the context of obesity,

possibly secondarily to the inflammatory environment. Our results suggest that dietary modifi-

cations may be beneficial to modulate obesity to a “healthy phenotype”. Because the develop-

ment of obesity is multifactorial, the Ossabaw pig is a useful animal model in which to study

the underlying mechanisms of this condition and the influence of diet within the context of

obesity.
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