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ABSTRACT: Cannabinoid receptor type 1 (CB1) is an important
modulator of many key physiological functions and thus a compelling
molecular target. However, safe CB1 targeting is a non-trivial task. In
recent years, there has been a surge of data indicating that drugs
successfully used in the clinic for years (e.g. paracetamol) show CB1
activity. Moreover, there is a lot of promise in finding CB1 ligands in
plants other than Cannabis sativa. In this study, we searched for
possible CB1 activity among already existing drugs, their metabolites,
phytochemicals, and natural-like molecules. We conducted two
iterations of virtual screening, verifying the results with in vitro
binding and functional assays. The in silico procedure consisted of a wide range of structure- and ligand-based methods, including
docking, molecular dynamics, and quantitative structure−activity relationship (QSAR). As a result, we identified travoprost and
ginkgetin as CB1 ligands, which provides a starting point for future research on the impact of their metabolites or preparations on
the endocannabinoid system. Moreover, we found five natural-like compounds with submicromolar or low micromolar affinity to
CB1, including one mixed partial agonist/antagonist viable for hit-to-lead phase. Finally, the computational procedure established in
this work will be of use for future screening campaigns for novel CB1 ligands.
KEYWORDS: cannabinoid receptor, phytocannabinoids, travoprost, ginkgetin, docking, QSAR

1. INTRODUCTION
The endocannabinoid system (ECS) is one of the most
important regulatory systems in the human organism. It is
responsible for the control of a vast array of physiological
processes and functions, including nociception, mood regu-
lation, appetite, fat and glucose metabolism, neurogenesis and
neurodegeneration, cell proliferation and many others.1 The
most important protein of the ECS, cannabinoid receptor type
1 (CB1), is a well-established molecular target. Compounds
acting via this receptor are present in approved drugs, clinical
trial candidates or are under consideration at various
preclinical levels.2

CB1 ligands with different intrinsic activities are valuable for
various therapeutic purposes. CB1 agonists or partial agonists
are useful among others as analgetics3 and anti-emetic agents.4

CB1 antagonists/inverse agonists may act as anorectics5 or
antifibrotic agents.6 However, effective and safe CB1 targeting
is a non-trivial task, as the ECS is a multi-purpose system.2

Although CB1 agonists, including phytocannabinoids, are
generally well tolerated,7 their pharmacotherapeutic profile is
not perfect. For example, long-term use of Cannabis sativa may
come with a risk of cognitive impairment.8 On the other hand,
CB1 antagonists/inverse agonists usage may cause serious
psychiatric disorders, such as anxiety or depression.5

To date, multiple ways to overcome the aforementioned
obstacles have been proposed. Most of the adverse effects

related to the modulation of CB1 activity are caused by the
subpopulation of this receptor localized in the central nervous
system.9 Thus, one of the possible solutions is to design
peripheral CB1 ligands.10 Another prominent strategy is to
utilize CB1 neutral antagonists instead of inverse agonists.11

CB1 allosteric modulation may be a promising direction as
well.12

It is often not realized that the most successful compounds
acting via CB1 in a safe manner are among already known
drugs. Paracetamol (acetaminophen), one of the most often
used active substance all over the world, was proved to owe its
analgesic activity in major part to anandamide reuptake
inhibition and CB1 activation by its active metabolite�N-
arachidonoylphenolamine (AM404).13,14 Other notable exam-
ples of pharmacologically relevant substances acting via CB1 or
interacting with this receptor include metamizole (dipyrone),15

fenofibrate16 and raloxifene.17 Is is possible that there may be
other active drug ingredients with considerable affinity toward
CB1. If so, recognizing their mechanism of action may lead to
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more rational and thus safer use of those substances in
pharmacotherapy. In addition, rational repurposing of drugs
with known safety profiles may be implemented.

One of the most successful strategies of targeting the ECS is
based on Cannabis sativa or its specific phytocannabinoids.
While they have proved effective in many indications18,19 and
are generally well tolerated, the therapy comes with a risk of
addiction and adverse effects, such as memory impairment or
cognitive dysfunctions caused by the long-term use.8 Thus,
there is still room for improvement in this therapeutic area.
Indeed, in recent years there have been numerous attempts to
find phytocannabinoids in other plants.20 Alas, so far the
results are not satisfactory enough, as the revealed compounds
have only low or moderate affinities toward CB1, unsat-
isfactory intrinsic activity and their pharmacological relevance
has not been fully determined.20 Therefore, there is a huge
potential in finding new non-Cannabis phytocannabinoids with
a more favorable pharmacological profile.

Because of its importance in the human organism and
possible medical applications, CB1 has been a subject of great
scientific interest. Many drug design projects, aimed at this
crucial molecular target, were hindered by insufficient
knowledge of its structure. In 2016, Hua et al.21 crystallized
CB1 and elucidated its tertiary structure (Figure 1A). This
allowed for better understanding of CB1 action and created a
possibility for rational drug design. As of today, there are eight
CB1 structures deposited in the Protein Data Bank

(PDB)21−27 (Table 1). They bind six different ligands (Figure
1B) from four chemotypes and in some cases are complexed
with G-protein or allosteric modulators. Accordingly, they
represent diverse binding site conformations, providing a
suitable ground for structure-based (SB) design or screening.
Moreover, there are over 4000 records on Ki values measured
for CB1 ligands in the ChEMBL database,28,29 which
correspond to over 2500 unique compounds with known
binding affinities. Such quantity allows for rational utilization
of ligand-based (LB) methods.

The aim of this study was to identify novel CB1 ligands
among drugs, drug metabolites, phytochemicals, and related
compounds. The elucidation of CB1 structure provided an
excellent opportunity to screen a large number of compounds
in a short time, using in silico methods. In this study, we
utilized a wide range of computational techniques, combining
both SB and LB approaches and evaluated the results of our
predictions with in vitro binding and functional assays. As a
result, we identified a drug active ingredient and a
phytochemical compound as new CB1 ligands. Also, we
found several hits among natural-like compounds, one of them
being a suitable candidate for hit-to-lead stage. Moreover, the
in silico procedure established in this study could be utilized in
other future projects focusing on search for novel CB1 ligands.

Figure 1. (A) CB1 binding site with bound AM-6538. Based on PDB ID: 5TGZ. (B) Structural formulas of six ligands present in CB1 structures
deposited in the PDB. ECL2, extracellular loop 2; TM, transmembrane helix.

Table 1. CB1 Structures Deposited in the PDBa

PDB ID ligand intrinsic activity additional features method resolution (Å) references
5TGZ AM-6538 antagonist XRD 2.80 21
5U09 taranabant inverse agonist XRD 2.60 22
5XR8 AM-841 agonist XRD 2.95 23
5XRA AM-11542 agonist XRD 2.80 23
6N4B MDMB-Fubinaca agonist G-protein Cryo-EM 3.00 24
6KPG AM-841 agonist G-protein Cryo-EM 3.00 26
6KQI CP-55,940 agonist ORG27569 (NAM) XRD 3.25 25
7V3Z CP-55,940 agonist XRD 3.29 27

aCryo-EM, cryoelectron microscopy; NAM, negative allosteric modulator; XRD, X-ray diffraction.
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2. RESULTS AND DISCUSSION
2.1. Double Iterative Screening. In order to find CB1

ligands among drugs, drug metabolites, and natural com-
pounds, we conducted iterative screening that consisted of two
major parts. The first iteration included initial virtual screening
(VS) of small ligand libraries (∼10,000 compounds total), with
the focus on SB methods. This strategy was adopted to test
whether SB techniques alone would be suitable for such non-
trivial, hydrophobic molecular targets as CB1 (Figure S1) and
to possibly increase chances for the identification of new CB1
ligands with considerably distinct chemotypes. The best
candidates were evaluated in a cell-based displacement binding
assay. The second iteration was planned based on the
conclusions derived from the first one. Herein, we decided
to combine LB and SB methods. This time, we screened a
more vast chemical space of ∼230,000 compounds, which also
included the previously mentioned 10,000. The top scored
molecules were verified in the in vitro binding assay.
2.1.1. First Iteration. The first iteration relied heavily on SB

methods, mainly docking and molecular dynamics (MD).
From the four CB1 structures available at the time (PDB IDs:
5TGZ, 5U09, 5XR8, and 5XRA), we selected one active CB1
conformation for this part of the study. As two such PDB
entries, 5XR8 and 5XRA, are of similar quality and possess
ligands from the same chemotype (Table 1 and Figure 1B), we
chose 5XR8, because of its less truncated N-terminus,
providing more complete structure for the sake of MD
simulations. We screened three ligand libraries: DrugBank-
approved, HMDB Drug Metabolites, and Biopurify Phyto-
chemicals subsets from the ZINC database (∼10,000
compounds). Initially, the molecules were docked to CB1
model based on PBD ID: 5XR8 using CDOCKER. The
energies of the ligands were minimized in situ and the

complexes were scored with PMF04 function. According to
docking results and subsequent analysis, 40 ligands were
selected for MD verification of their putative binding poses.
The CB1−ligand complexes were embedded in lipid bilayer
and full-atom MD simulations were conducted using
GROMACS. In each case, we performed three repetitions
per complex (see Methods). Based on the docking scores and
root-mean-square deviation (rmsd) of the ligands’ heavy atoms
from their initial geometries across MD simulations, we
selected 22 drugs and phytochemical compounds for the in
vitro binding assay (Table S1, Figures S2 and S3).
2.1.2. Second Iteration. In the second iteration, we

combined SB and LB methods. The LB techniques were
implemented to allow for the efficient screening of larger
ligand libraries and to alleviate the inaccuracy of the SB
approach when used alone for such a hydrophobic molecular
target as CB1. In this part of the study, we screened ∼230,000
compounds, including drugs, drug metabolites, phytochem-
icals, and natural-like compounds from the following libraries
derived from the ZINC database: DrugBank-approved, HMDB
Drug Metabolites, SMPDB, and ZINC biogenic subset (the
libraries comprised all compounds from the first iteration).
Based on the conclusions derived from the first iteration, we
established and followed a multi-step workflow (Figure 2).

The first major part of the computational procedure
involved filtration of physicochemical properties. The ligands
were prepared using Schrödinger LigPrep, including generation
of possible ionization states and tautomers, which resulted in
∼300,000 structures. Then, their physicochemical properties
were computed with QikProp. For the filtration, we adopted
our own criteria, mainly based on Lipinski’s and Veber’s rules,
with less strict cutoffs for molecular weight (MW) (≤600 g/
mol) and the number of rotatable bonds (≤20) as well as an

Figure 2. Computational workflow used in the second iteration of screening. (A) Main steps of the procedure with the approximate numbers of
compounds left after each phase. The number of compounds initially increased because of the generation of possible ionization states and
tautomers during ligand preparation. (B) Detailed order of the methods used, along with the branching off the workflow for potential agonists and
antagonists.
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altered range for log P (3−8). The first two changes were
introduced due to multiple CB1 ligands, mainly antagonists,
possessing MW above 500 g/mol and endocannabinoids
having in some cases even up to 25 rotatable bonds. The
modified criterion for log P was meant to account for high
hydrophobicity of CB1 orthosteric binding site and thus also
CB1 ligands (Figure S4). The filtration allowed for
considerable reduction of compounds pool to ∼120,000.

In the next part of the second iteration, we estimated the pKi
values of the remaining compounds with machine learning
quantitative structure−activity relationship (QSAR) models.
This phase of the screening was conducted using Schrödinger
AutoQSAR. We based our models on ChEMBL-deposited
compounds with known Ki values toward human CB1 (nearly
5000 entries at the time of the study). Those molecules were
prepared in Schrödinger suite and then we applied the same
criteria for the physicochemical properties as for the screening
libraries. This filtration resulted in 2355 non-redundant
compounds, based on which ten QSAR models were prepared.
They exhibited desired binding affinity prediction capability,
based on the statistical parameters (Table S2 and Figure S5).
We utilized them to perform a consensus prediction of pKi
values for the screening compounds. We retrieved molecules
that were within the applicability domains of all QSAR models,
as labelled by built-in function of Schrödinger AutoQSAR, and
obtained the estimated average pKi value ≥6.5.

The resulting ∼33,000 potential CB1 ligands were subjected
to the next stage of the VS procedure, employing mainly SB
methods. At this point, we divided the workflow into two
branches. The first was aimed to identify potential CB1
agonists and the second�antagonists or inverse agonists
(Figure 2B). In both branches, the remaining compounds were
once again filtered based on their computed physicochemical

properties, this time with specific criteria modified for potential
agonists and antagonists (Table S3). In the case of agonists, we
altered the cutoffs for MW (≤500 g/mol) and log P (3.5−8).
For antagonists, we reduced the maximal number of rotatable
bonds to 10 (see Comments on the Virtual Screening
Procedure).

The next step consisted of docking the two sets to specific
CB1 models using Schrödinger Glide with standard precision
(SP). Based on prior validation of binding affinity prediction
(see Methods), we selected one active CB1 conformation for
potential agonists (PDB ID: 5XR8) and one inactive for
potential antagonists (PDB ID: 5TGZ). For each set, we
performed two versions of docking�standard one and one
with constraints on forming an H-bond with Ser383 hydroxyl
group (Figure 2B), as this interaction was shown to be
important for ligand binding in three out of four ligand
chemotypes present in PDB-deposited CB1 structures (Figure
3). We retained the compounds with docking score values
≤−10. Then, the potential agonists were redocked using Glide
extra precision (XP). In turn, due to differences in the binding
site conformation (see Comments on the Virtual Screening
Procedure), in the case of potential antagonists, we calculated
the molecular mechanics-generalized Born surface area (MM-
GBSA) binding free energies of the CB1−ligand complexes
obtained from the Glide SP docking.

For the final analysis, we selected compounds with Glide XP
docking score ≤−12 or MM-GBSA ΔGbind ≤−85 kcal/mol.
Additionally, we took into account several potentially
interesting drugs that obtained results close to fulfilling the
criteria. The resulting molecules were subjected to an auxiliary
structural clustering, which was of assistance especially for
potential agonists, ∼250 of which met the previous screening
criteria. Selected compounds were analyzed with the focus on

Figure 3. CB1 binding sites with ligands from four chemotypes present in PDB-deposited CB1 structures. Complexes with antagonists/inverse
agonists: (A) CB1-AM-6538 (PDB ID: 5TGZ), (B) CB1-taranabant (PDB ID: 5U09). Complexes with agonists: (C) CB1-AM-11542 (PDB ID:
5XRA), (D) CB1-MDMB-Fubinaca (PDB ID: 6N4B). Ligands are depicted in green stick representation, amino acids that are crucial or could take
part in ligand binding�grey stick representation. Parts of TM6 and TM7 not shown to increase readability.
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their binding poses and interactions formed with the receptor.
Also, we took into account docking scores, MM-GBSA ΔGbind,
and QSAR-predicted pKi values. We aimed to select
structurally diverse compounds. We identified several known
CB1 and/or CB2 ligands or their close derivatives, which we
did not take into account for further verification. Finally, the
commercial availability of the most promising candidates was
evaluated. As a result of this procedure, we hand-picked 23
compounds for the in vitro binding assay (Table 2, Table S4,
Figures S6 and S7).
2.2. In Vitro Binding Affinity and Intrinsic Activity

Assays. CB1 binding affinities of 45 compounds selected from
both iterations of virtual screening were evaluated in the
radioligand displacement assay. Seven ligands exhibited
submicromolar or low micromolar affinities toward CB1
(Figure 4A,B). Two molecules from the first iteration showed
low micromolar affinities: compound 9 (travoprost) obtained a
Ki value of 3.6 μM, while compound 15 (ginkgetin)�8.6 μM.
The most potent CB1 ligand identified during the second
iteration, compound 30, exhibited submicromolar affinity of
0.8 μM. Four other ligands from the second iteration,
compounds 32, 34, 38, and 43 obtained low micromolar Ki
values of 6.8, 2.7, 2.5, and 6.6 μM, respectively. Compounds 32
and 34 were tested as racemic mixtures. Thus, their specific
enantiomers identified during VS could possess lower Ki values
(Table 3). The other compounds obtained Ki values >10 μM
or showed no affinity toward CB1 (Tables S5 and S6).

Intrinsic activities of seven identified CB1 ligands were
evaluated in the [35S]GTPγS ([35S] guanosine 5′-[γ-thio]-
triphosphate) assay (Figure 4C,D and Table 4). Compounds 9,
15, 32, 34, 38, and 43 were determined to act as antagonists,
with 34 and 43 obtaining IC50 values of 3.7 and 1.9 μM,
respectively. Compound 30 showed interesting functional

activity of mixed CB1 partial agonist/antagonist, with EC50 =
0.42 μM and IC50 = 2.1 μM.
2.3. Analysis of the Binding Modes. Seven compounds

that exhibited the highest binding affinities toward CB1 were
analyzed in detail regarding their putative binding modes. The
ligands from the first iteration of VS were docked to CB1
active conformation based on PDB ID: 5XR8. Compound 9
forms H-bonds with Ser383 and Thr197 as well as multiple
weak hydrophobic interactions (Figure 5A,B). Interestingly,
binding mode of 9 relies heavily on H-bonds and lacks π−π
interactions with several Phe residues present in the binding
site, which are usually crucial for CB1−ligand complexes
(Figure 3). On the other hand, compound 15 creates H-bonds
with Ser383 and Cys386 but also π−π interactions with
Phe174, Phe200, Phe268, Trp279, and Phe379, and addition-
ally other weak hydrophobic interactions (Figure 5C,D). This
binding mode is more alike to those observed in PDB-
deposited structures (Figure 3), rather than the one discussed
in the case of compound 9. Notably, both ligands maintained
their putative binding modes during MD simulations (Figure
S8). Importantly, compound 9 showed also promising results
during the second iteration (Table S7). However, in this case it
achieved desired scores for the inactive CB1 conformation
(PDB ID: 5TGZ) and assumed a distinct binding mode
(Figure S9).

Compounds 30, 32, 34, 38, and 43 were docked to active
and inactive CB1 conformations, based on PDB IDs: 5XR8
and 5TGZ, respectively. Moreover, we also conducted docking
with constraints on forming an H-bond with Ser383.
Additionally, in the case of active CB1 conformation, docking
was performed with SP and XP Glide modes. Thus, we
obtained multiple CB1−ligand complexes for the candidates
from the second iteration. Compounds 30 and 32 were

Table 2. Results of the Second Iteration of Virtual Screeninga

5XR8 5TGZ
ID pred.

pKi

SP
DS

XP
DS

SP-constraints
DS

XP-constraints
DS

SP
DS

MM-GBSA ΔGbind
(kcal/mol)

SP-constraints
DS

MM-GBSA-constraints ΔGbind
(kcal/mol)

23 6.7 −11.3 −13.4 −11.3 −13.4 −9.6 −10.0
24 6.5 −10.7 −13.4 −10.2 −13.5 −8.4 −7.9
25 6.5 −11.3 −13.1 −8.7
26 6.7 −10.5 −13.1 −10.8 −13.0 −8.9 −7.4
27 6.6 −11.9 −13.0 −8.5
28 6.6 −12.2 −13.7 −12.0 −13.7 −9.3 −9.4
29 6.6 −10.1 −12.5 −10.3 −12.4 −8.8
30 6.5 −10.9 −14.0 −10.7 −13.7 −8.9
31 6.6 −10.4 −13.2
32 6.5 −12.0 −12.3 −12.1 −13.0 −9.5 −10.1 −44.8
33 6.6 −10.1 −11.6 −11.2 −59.6 −4.7
34 6.5 −9.6 −10.1 −85.0 −10.0 −86.7
35 6.6 −10.3 −93.7 −10.2 −95.5
36 6.6 −11.2 −80.7 −11.4 −91.5
37 6.8 −11.8 −93.9
38 6.6 −11.0 −11.9 −10.0 −10.2 −71.1 −10.5 −86.3
39 6.7 −10.8 −83.4 −10.2 −85.5
40 6.7 −11.9 −85.2 −12.0 −62.5
41 6.6 −10.6 −85.9 −10.3 −82.8
42 6.7 −7.4 −10.7 −89.0 −8.5
43 6.5 −9.6 −10.7 −86.0 −11.4 −82.9
44 6.8 −11.3 −10.0 −6.4 −10.3 −84.8 −8.7
45 6.6 −8.3 −11.5 −71.3 −11.5 −71.1

aDS, docking score.
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selected because of their high docking scores for CB1 active
conformation. Compounds 34, 38 and 43 achieved desired
docking scores and ΔGbind for inactive CB1 conformation.
Interestingly, 32 showed also promising results for the inactive
binding site conformation (5TGZ), while 38�for the active
one (5XR8).

Compounds 30, 34, and 43 assumed consistent putative
binding modes, regardless of the docking settings, and
exhibited only small differences in conformations and
interaction patterns. Compound 32 showed the same pose in
three versions of docking (SP, SP with constraints, and XP
with constraints) while an alternative one for XP. In turn,

Figure 4. Structural formulas (A), radioligand displacement curves (B) and [35S]GTPγS functional curves (C,D) of the compounds with best Ki
values toward CB1.

Table 3. Selected Results of the Ki Determination with the In Vitro Binding Assay

ID ZINC ID name pKi ± SEM Ki (μM, 95% CI)
9 ZINC000004474682 travoprost 5.40 ± 0.14 3.6 (1.8−7.4)
15 ZINC000001531664 ginkgetin 5.06 ± 0.16 8.6 (3.8−19.2)
30 ZINC000217658088 6.07 ± 0.09 0.8 (0.6−1.1)
32a ZINC000824654462 5.20 ± 0.10 6.8 (3.8−10)
34a ZINC000001832514 5.57 ± 0.07 2.7 (1.9−3.7)
38 ZINC000006040794 5.60 ± 0.09 2.5 (1.5−4.1)
43 ZINC000263585252 5.18 ± 0.07 6.6 (4.7−9.4)

ZINC000001540228 rimonabant (reference) 8.30 ± 0.13 0.0043 (0.0023−0.0088)
aRacemic mixture.
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compound 38 adopted three different binding poses, depend-
ing on CB1 conformation and settings.

Compound 30 forms H-bonds with either Ser383 or
Phe108. Additionally, this ligand maintains multiple π−π
interactions with Phe170, Phe174, His178, Phe189, Phe268,
and Trp279 (Figure 6A−C). The binding modes of
compounds 34 and 43 are rather scarce in terms of the
number of strong contacts, especially of the π-stacking
character. Both ligands form H-bonds with Met103 and
Ser383 and, in the case of compound 34, also a π−π

interaction with Phe102 (Figure 6D−I). The more prevalent
putative pose of compound 32 forms H-bonds with Ile267,
Lys376, and Ser383 as well as π−π interactions with Phe170,
His178, Phe200, Phe268, and Phe379 (Figure 7A−D). On the
other hand, the second predicted pose displays a sparse
interaction pattern including H-bonds with Thr197 and
Ser383, and π−π interaction with His178 (Figure 7E,F).
Compound 38 is able to form a diverse set of interactions,
depending on the putative pose. As this ligand is quite
symmetrical in terms of its three phenyl groups branching from

Table 4. Results of the Intrinsic Activity Determination with the [35S]GTPγS assay

CB1 inhibition CB1 stimulation
ID ZINC ID name pIC50 IC50 (μM, 95% CI) pEC50 EC50 (μM, 95% CI) Emax (%)
9 ZINC000004474682 travoprost 3.64 ± 0.30 232 (34−782)
15 ZINC000001531664 ginkgetin 4.20 ± 0.16 63 (29−144)
30 ZINC000217658088 5.68 ± 0.06 2.1 (1.5−2.7) 6.38 ± 0.26 0.42 (0.12−1.48) 126.2 ± 5.0
32a ZINC000824654462 4.48 ± 0.11 40 (23−71)
34a ZINC000001832514 5.43 ± 0.08 3.7 (2.6−5.5)
38 ZINC000006040794 3.85 ± 0.28 140 (36−601)
43 ZINC000263585252 5.73 ± 0.09 1.9 (1.2−2.9)

ZINC000001540228 rimonabant (reference) 8.88 ± 0.18 0.0013 (0.0005−0.0032)
aRacemic mixture.

Figure 5. Two most potent CB1 ligands from the first iteration�travoprost (compound 9, ZINC000004474682) (A,B) and ginkgetin (15,
ZINC000001531664) (C,D). Putative poses and binding modes obtained from docking to PDB ID: 5XR8. Ligands are depicted in green stick
representation, amino acids that are crucial for ligand binding�grey stick representation. Part of TM6 not shown to increase readability.
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the pyridine core, some of the π−π interactions occur
consistently, including those with the side chains of Phe102,
Phe170, and Phe268. In some cases compound 38 forms H-
bond with Ser383 (Figure S10).
2.4. Prediction of Pharmacological and Toxicological

Properties. Additionally to the binding affinity and intrinsic
activity determination, for the newly identified CB1 ligands, we

assessed pharmacological and toxicological properties to gain
more insight into their potential for further optimization or
utilization. Because travoprost, as an approved drug, is a well-
inspected compound, we excluded it from this part of the
study.

Pharmacological properties were estimated using
SwissADME server. Selected properties are shown in Table

Figure 6. Putative binding modes of compounds 30 (ZINC000217658088), 34 (ZINC000001832514), and 43 (ZINC000263585252).
Compound 30 pose obtained from docking with Glide XP (A) and 2D interaction schemes from Glide XP (B) and Glide XP with constraints on
forming an H-bond with Ser383 (C). Analogically, panels (D−F) depict poses and binding modes predicted by Glide SP for compound 34, while
panels (G−I) for 43. Ligands are depicted in green stick representation, amino acids that are crucial for ligand binding�grey stick representation.
Purple arrow�H-bond; green line�π−π interaction. Parts of TM6 and TM7 not shown to increase readability.
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Figure 7. Putative binding modes of compound 32 (ZINC000824654462). (A) The more prevalent pose, obtained from docking with Glide XP
with constraints on forming an H-bond with Ser383. 2D interaction schemes from docking with Glide XP with constraints (B), SP (C), and SP
with constraints (D). Panels E, F show the second pose encountered in complex from Glide XP docking. Ligands are depicted in green stick
representation, amino acids that are crucial for ligand binding�grey stick representation. Purple arrow�H-bond; green line�π−π interaction.
Part of TM6 not shown to increase readability.

ACS Chemical Neuroscience pubs.acs.org/chemneuro Research Article

https://doi.org/10.1021/acschemneuro.2c00502
ACS Chem. Neurosci. 2022, 13, 2991−3007

2999

https://pubs.acs.org/doi/10.1021/acschemneuro.2c00502?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acschemneuro.2c00502?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acschemneuro.2c00502?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acschemneuro.2c00502?fig=fig7&ref=pdf
pubs.acs.org/chemneuro?ref=pdf
https://doi.org/10.1021/acschemneuro.2c00502?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


5. We considered water solubility, gastrointestinal (GI)
absorption, blood−brain barrier (BBB) permeation, P-
glycoprotein (Pgp) binding and inhibition of the most
important cytochrome P450 isoforms. As expected, because
of high hydrophobicity, the ligands exhibit only moderate or
poor solubility. Interestingly, all compounds were predicted to
be unable to cross the BBB, which is a very desired trait in
terms of the advantages of CB1 peripheral ligands. Such
compounds could display better safety profile while still being
effective in multiple indications.10,30 However, these predic-
tions have to be taken with caution, as ginkgetin (compound
15) was shown to exhibit cerebral activity in several in vivo
models.31,32 In the case of compound 30, potentially low GI
absorption might be a matter to address during further stages
of optimization.

In the case of toxicological properties prediction, given its
often limited accuracy or chemical class-dependence,33 we
utilized two programs�Toxtree and Toxicity Estimation
Software Tool (TEST), and critically analyzed the results
where possible. With the use of Toxtree, we determined Kroes
threshold of toxicological concern (TTC)34 and Ames
mutagenicity.35 In the case of TEST, we estimated
developmental toxicity and also Ames mutagenicity, for
comparison with Toxtree (Table 6).

Kroes TTC estimation showed no safety concern in four and
negligible risk in two compounds. Nearly all identified CB1
ligands were predicted to potentially exhibit developmental
toxicity and could be not suitable for pregnant women and
children. Interestingly, the Ames mutagenicity varied, depend-
ing on the software, confirming that the data should be
interpreted with caution.

Compounds 30 and 43 received “negligible risk” flags or
“structural alerts” in both Toxtree algorithms. Importantly,
both notices applied to the same structural feature for each
ligand. Compound 30 was flagged in two Toxtree tests based
on its heteropolycyclic aromatic moiety. However, this is a

structural feature encountered among many approved drugs
and thus, does not raise concerns for the suitability of
compound 30 for further optimization. Accordingly, this ligand
was not flagged as mutagenic by the TEST program, and the
low predicted Ames mutagenicity test value (0.14) suggests
that there is a low probability of such outcome. On the other
hand, compound 43 was consistently predicted as potentially
mutagenic by both programs. In this case, Toxtree algorithms
based their rating on the presence of alkyl carbamate moiety.
Although this feature is also present among some approved
drugs, it raises more substantial concerns36,37 and should be
considered for further decision making on potential
optimization. Other compounds raised no mutagenicity
concerns or were flagged by only a single method.
2.5. Significance of the Results, Future Directions,

and Limitations. Among drug active ingredients, travoprost
(compound 9) was found to possess low micromolar affinity to
CB1. However, the promising Ki value did not convert to a
relevant result in the functional assay. Nevertheless, travoprost
is a prodrug, utilized in the treatment of ocular hypertension,
including glaucoma. After topical administration it is hydro-
lyzed to its active metabolite�travoprost free acid. This
compound acts as a FP prostanoid receptor agonist. However,
its exact mechanism of action has not yet been determined.38 It
was proved that CB1 takes part in the regulation of intraocular
pressure and both CB1 agonists and antogonists could alleviate
intraocular hypertension through different mechanisms.39−41

Thus, conducting studies regarding travoprost free acid’s
impact on ECS may be a promising direction.

The most potent phytochemical encountered during the VS,
ginkgetin (compound 15), is a biflavone found most notably in
Ginkgo biloba but also in several other plants. Ginkgetin
exhibits a wide range of therapeutic properties, including
neuroprotective, anti-adipogenic, anti-inflammatory, anti-oxi-
dant, anti-microbial, and anti-cancer actions.42 Similarly to
travoprost, despite low micromolar affinity to CB1, ginkgetin

Table 5. Selected Pharmacological Parameters Estimated for Newly Identified CB1 Ligandsa

water solubility cytochrome P450 inhibition
ID ZINC ID ESOL

LogS
ESOL Class GI

absorption
BBB

permeant
Pgp

substrate
CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4

15 ZINC000001531664 −7.17 poorly soluble low no no no no yes no no
30 ZINC000217658088 −6.93 poorly soluble low no no no yes no yes no
32 ZINC000824654462 −5.01 moderately

soluble
high no yes yes yes yes yes yes

34 ZINC000001832514 −6.63 poorly soluble low no yes no no no yes yes
38 ZINC000006040794 −5.90 moderately

soluble
high no Yes yes Yes no yes yes

43 ZINC000263585252 −4.99 moderately
soluble

high no yes no yes yes yes yes

aBBB, blood−brain barrier; CYP1A2, cytochrome P450 1A2; ESOL, Estimated SOLubility; GI, gastrointestinal; Pgp, P-glycoprotein.

Table 6. Results of the Toxicity Prediction for the New CB1 Ligands Identified among Natural and Natural-like Compoundsa

Toxtree TEST
Kroes TTC Ames mutagenicity Ames mutagenicity developmental toxicity

ID ZINC ID predicted value result predicted value result
15 ZINC000001531664 0.23 0.80 positive
30 ZINC000217658088 negligible structural alert 0.14 0.73 positive
32 ZINC000824654462 0.21 0.76 positive
34 ZINC000001832514 0.19 0.59 positive
38 ZINC000006040794 0.71 positive 0.64 positive
43 ZINC000263585252 negligible structural alert 0.51 positive 0.44

aTTC, threshold of toxicological concern.
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was found to possess insignificant functional activity. However,
it is worth to bear in mind the entourage effect. Non-
cannabinoid compounds are able to improve the pharmaco-
logical profiles of cannabinoid receptor ligands when used in
combination.43−45 Thus, it is worth to conduct further research
on the extracts from specific preparations of plants containing
ginkgetin. This could be especially interesting in the context of
some properties shared by ginkgetin and CB1 antagonists,
namely anti-adipogenic and anti-inflammatory actions.46,47

Several natural-like compounds exhibited low micromolar
affinities toward CB1, but most importantly, compound 30
achieved a Ki value of 800 nM. To the best of our knowledge,
this molecule represents a new chemotype of CB1 ligands.
Moreover, it serves as a rare example of a mixed CB1 partial
agonist/antagonist. Therefore, despite moderate binding
affinity, compound 30 is an interesting hit and could be
introduced to hit-to-lead stage.

The structural distinctiveness of compound 30, with respect
to established CB1 ligands, is especially valuable in giving
prospect for safe modulation of this specific receptor. Although
multiple compounds with high affinities toward CB1 are
known, they usually struggle with various issues, most notably
with CB1-related adverse effects.48−50 Thus, multiple attempts,
and consequently�diverse chemotypes among hits and leads
might be needed to design a safe CB1 ligand.

Moreover, compound 30 is valuable due to its rare
functional activity. Mixed agonists/antagonists are known to
normalize the functions of the affected system. For example,
pindolol, a β-adrenoreceptor antagonist, acts also as a partial
agonist which is responsible for its intrinsic sympathomimetic
activity.51 Conversely, CB1 partial agonists/antagonists could
be very valuable due to the regulatory character of the ECS. In
the case of CB1, such functional activity was observed under
certain conditions for several tetrahydrocannabinol (THC)
derivatives, for example Δ9-THC52 or O-823.53 Therefore,
identification of CB1 partial agonist/antagonist representing
another chemotype is a significant step toward rational design
of such CB1 ligands.

Apart from Ki improvement, the major challenge of
compound 30 optimization would lie in its high log P (5.2).
However, such hydrophobicity is a standard issue for CB1
ligands (e.g. 5.8 for dronabinol). Moreover, high log P is a
problem that medicinal chemistry community has been able to
successfully tackle in multiple hit-lo-lead projects.54

2.6. Comments on the Virtual Screening Procedure.
Utilization of a wide range of in silico methods across the two
VS iterations allowed us to gain a valuable insight into the
effectiveness of specific computational techniques in combina-
tion with CB1, a highly hydrophobic, non-trivial molecular
target. The first iteration showed that solely SB methods
struggle with a large amount of false positives. This issue was
expected, nevertheless we decided to take the risk in order to
increase the chances of encountering new chemotypes of CB1
ligands. The difficulties are caused mainly by the high
hydrophobicity of CB1 orthosteric binding site (Figure S1).
This hinders proper pose prediction as well as binding affinity
estimation because of limited performance of most docking
programs and scoring functions in the case of very lipophylic
pockets.

A strategy to increase the true positive rate involves a
combination of SB and LB methods. However, this approach
comes with a cost of decreasing the chances of encountering
new chemotypes and increasing the number of false negatives.

We employed this strategy in the second iteration, which
indeed allowed us to obtain a higher percentage of ligands with
relevant Ki among the finally selected compounds (22 vs 9%, in
comparison to SB only approach, respectively). Because the
ligand set screened during the second iteration was broader
than the one considered during the first iteration, a precise
comparison between both approaches can not be made.
However, focusing on in silico results of the second iteration
screening limited to compounds considered during the first
iteration shows that combination of SB and LB methods
effectively tackled the false positives’ problem, rating highly
only travoprost (Table S7).

The study also allowed us to draw conclusions regarding the
ability of specific techniques to cope with troublesome CB1
docking. During the course of both iterations we utilized two
docking programs�CDOCKER and Glide. They proved to
perform quite similarly, both struggling with the hydrophobic
binding site. Overall, Glide produced slightly better results in
terms of the identification of CB1 ligands, as shown by Ki
values obtained in the second iteration. Moreover, according to
results of the second iteration’s in silico validation, in the case
of many CB1 conformations, Glide SP exhibited similar or
even superior ability to order ligands based on their binding
affinities compared to Glide XP or MM-GBSA. Importantly,
Glide XP docking performed for the purpose of validation was
independent of SP docking, providing more adequate data for
comparison than the sequential screening. What is more, Glide
SP obtained high enrichment factors (EFs) for most of the
CB1 structures, with EF1% >20 for four and >10 for six out of
seven tested CB1 conformations (Supporting Information S2).
It is also worth to note the difficulties of docking programs in
terms of proper binding pose prediction in some cases. This
was caused mainly by non-specific π−π interactions with
numerous Phe side chains in the CB1 binding site and was
particularly evident for symmetrical-like ligands which possess
aromatic rings in two or three vertices, for example taranabant
or compound 38.

In one of the last steps of the second iteration, we applied
diverse cutoffs for physicochemical properties filtration (Table
S3) as well as utilized Glide XP or MM-GBSA for potential
CB1 agonists and antagonists (Figure 2B). The decision
regarding the thresholds change for agonists was caused by the
smaller volume of the active conformation of CB1 binding
site.23 Thus, MW above 500 g/mol is attributed mainly to CB1
antagonists/inverse agonists. Also, the smaller volume of active
CB1 conformation allows for the influx of even fewer water
molecules to the binding site compared to the inactive
conformation, which is already hardly accessible to the
extracellular solvent. This imposes usually higher minimal
hydrophobicity of CB1 agonists. Reduction of the maximal
number of rotatable bonds to 10 for potential antagonists was
caused by the occurrence of the higher values only in
endocannabinoid-like CB1 agonists.

The reasoning behind the utilization of either Glide XP or
MM-GBSA was based on validation results obtained during the
second iteration. Both methods achieved high EFs for different
CB1 models. In particular, MM-GBSA proved effective
especially in the case of inactive geometry, represented by
PDB ID: 5TGZ (EF1% = 32.0), whereas Glide XP�for several
active conformations: 5XR8 (EF1% = 32.0), 5XRA (EF1% =
24.0), and 6KQI (EF1% = 20.0) (Supporting Information S2).
This may be also explained by the disparity in the size of the
orthosteric binding site between CB1 conformations and the
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subsequent exposure to solvent, as discussed above. As MM-
GBSA is a method more accurate in terms of mimicking
realistic solvent influence, it is reasonable that it copes better
with more spacious binding site but struggles with the
exceptionally lipophylic one.

Herein, we focused only on previously unidentified CB1
ligands with moderate to low affinity. However, it is worth to
note that among the compounds placed highly by various
methods during the second iteration, we encountered several
known, potent CB1 ligands (Table 7). This includes
compounds with very high affinity, for example rimonabant
and nabilone, and the ones with moderately high affinity, such
as bazedoxifene. Moreover, we encountered a few cannabi-
noids, mainly derivatives of cannabinol, with unspecified
affinity toward CB1. This serves as an additional proof of
concept and shows that the VS procedure is suitable to identify
compounds with high affinity. Accordingly, we believe that the
VS workflow used in the second iteration is also able to detect
new, very potent compounds. To maximize the chances for
obtaining such results, the final set selected for in vitro
verification should include ligands that achieved both high
docking scores or MM-GBSA binding energies and pKi
predicted by QSAR. Within the considered libraries, apart
from already known CB1 ligands, we encountered compounds
that fully matched only the first criterion. The calculated pKi
values came around 6.5−6.8 at best for ligands that also
achieved desired SB results, whereas we would ideally expect
pKi values above 7. This suggests that there is a low probability
of encountering any other CB1 ligands among the screened
libraries but also that the procedure could be successfully
employed to seek for potent CB1 ligands among other
compound sets.

Our computational procedure was established to identify
new, possibly potent and structurally diverse CB1 ligands.
Although we utilized active and inactive CB1 conformations
and divided compounds into potential agonists and antagonists
at specific stages, these actions were taken mainly for the sake
of the aforementioned aims. It is important to state that in
silico methods utilized in this study are not suited for reliable
intrinsic activity estimation. This was confirmed by the
discrepancy between loose, computational predictions and
the [35S]GTPγS assay. Namely, out of seven identified CB1
ligands, two appeared in silico as possible agonists (com-
pounds 15 and 30), two as antagonists (34 and 43), and the
latter three (9, 32 and 38) showed ambiguous results.
Therefore, estimating functional activity based on VS methods
has to be taken with caution. Nevertheless, other, more time-
costly in silico approaches, developed specifically for the
discrimination of ligand efficacy, have been demonstrated for
CB1.57

3. CONCLUSIONS
We conducted a double-iterative, multi-step, computational
screening to seek for novel CB1 ligands among active drug
ingredients, their metabolites, phytochemicals, and natural-like
compounds. We selected 45 candidates for verification with an
in vitro binding assay and, in the case of specific compounds,
also with a functional assay. We identified travoprost and
ginkgetin as CB1 ligands with low micromolar affinity. This
finding may act as a starting point for further research on the
impact of metabolites or preparations of these compounds on
ECS. Moreover, we identified five natural-like compounds with
submicromolar or low micromolar affinity toward CB1. The T
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most potent CB1 l igand found, compound 30
(ZINC000217830653), because of its structural distinctiveness
and rare mixed partial agonist/antagonist functional activity,
could be considered in future hit-to-lead endeavours. Finally,
the computational procedure established during this work will
be of use for other VS campaigns aimed to search for novel
CB1 ligands, especially in broader, synthetic libraries.

4. METHODS
4.1. First Iteration of Virtual Screening. The first iteration of

virtual screening included docking with BIOVIA Discovery Studio
201858 and subsequent verification of the results with molecular
dynamics in GROMACS.59

Screening compounds were downloaded from the ZINC15
database.60 The molecules were prepared in BIOVIA Discovery
Studio 201858 using Prepare Ligands protocol with the generation of
possible ionization states in pH 7.5 ± 1. The CB1 model based on
PDB ID: 5XR823 was prepared with Prepare Proteins protocol. A
spherical gridbox with a radius of 12 Å was created around the crystal
ligand. Docking was conducted using CDOCKER61 with the
maximum of ten poses saved per compound. Ligands were scored
with PMF04 function.62 For the best pose for each docked molecule,
the energy of the ligand was minimized with In Situ Ligand
Minimization protocol. The obtained complexes were rescored with
PMF04 function.

Selected CB1−ligand complexes were subjected to MD verification.
Using Discovery Studio, we reverted the point mutations present in
PDB ID: 5XR8 crystal structure, removed the fusion protein and
reconstructed the intracellular loop 3 (ICL3) with Prepare Protein
protocol, based on the human CB1 sequence from UniProt.63 We
utilized CHARMM-GUI Membrane Builder64 to prepare the systems
for simulations. The CB1−ligand complexes were embedded in 1-
palmitoyl-2-oleoylphosphatidylcholine (POPC) lipid bilayer and the
reminder of the system was filled with explicit water molecules and
0.15 M NaCl. Parametrization of the ligands was performed with
Antechamber program from AmberTools 18 package,65 utilizing
AM1-BCC charges and General Amber Force Field (GAFF).66,67 The
reminder of the system preparation was conducted in GROMACS
2018.7.59 The Amber 99SB-ILDN force field68 was selected for the
protein, Lipid 1469 for the membrane, and water model was set to
TIP3P. We performed energy minimization with steepest descent
algorithm consisting of maximum 10,000 steps. It was followed by
several phases of equilibration with changing restraints: (1) NVT
ensemble, t = 100 ps, position restraints on protein heavy atoms, force
constant 1000 kJ/mol/nm2; (2) NPT ensemble phase 1, t = 5 ns,
position restraints on protein heavy atoms, force constant 1000 kJ/
mol/nm2; (3) NPT ensemble phase 2, t = 5 ns, position restraints on
protein heavy atoms, force constant 100 kJ/mol/nm2; (4) NPT
ensemble phase 3, three versions with t = 5−8 ns, position restraints
on protein Cα atoms, force constant 1000 kJ/mol/nm2. Temperature,
T was set to 310 K and time step, Δt to 0.002 ps. Berendsen
thermostat and pressure coupling were selected for equilibration.
Then, the systems were subjected to three independent runs of 300 ns
simulations with Δt = 0.002 ps, Nose−Hoover thermostat, and
Parrinello−Rahman semi-isotropic pressure coupling at 1 atm.

The MD trajectories were analyzed in VMD.70 We calculated rmsd
of the ligands’ heavy atoms with respect to their starting positions.
Beforehand, we had superimposed CB1 Cα atoms (excluding very
flexible ICL3) on the starting conformation.
4.2. Second Iteration of Virtual Screening. 4.2.1. Preparation

of Ligands and Proteins. Screening compounds’ libraries were
downloaded from the ZINC15 database. The classification of
compounds as ”natural-like” was based on the criteria established
by the ZINC database for the assembly of its biogenic libraries.71 Test
CB1 ligands were downloaded from PubChem.72 Compounds were
prepared in Schrödinger Maestro 2017-1 software73 using LigPrep
with generation of possible protonation states in the pH range 7.0 ±
2.0 with Epik and generation of possible tautomeric forms.

The CB1 structures were downloaded from the PDB. They were
prepared in Maestro 2017-1 with Protein Preparation Wizard. Water
molecules and other redundant, post-crystallization small molecules
were removed. The CB1 structures were preprocessed, including the
addition of hydrogen atoms and the generation of probable
protonation states using Epik in the pH 7.0 ± 2.0. The H-bond
assignment was optimized using PROPKA and structures were
minimized using the OPLS3 force field.74

4.2.2. Physicochemical Properties Filtration and QSAR. Initial
preparation of compounds for the QSAR part of the study included
the calculation of their physicochemical properties with Schrödinger
QikProp. Then, they were filtered with a custom set of criteria that
included the combination of properties from Lipinski’s75 and
Veber’s76 rules and properties observed for most of the CB1 ligands
(Figure S4): MW ≤600 g/mol; log P 3−8; number of hydrogen bond
acceptors ≤10; number of hydrogen bond donors ≤5; number of
rotatable bonds ≤20, and polar surface area (PSA) ≤140 Å2.

Generation of QSAR models and subsequent screening were
performed with Schrödinger AutoQSAR.77 Training and test
compounds for QSAR models were downloaded from the ChEMBL
database.28,29 We selected 2549 compounds with Ki values known for
human CB1. Compounds were prepared in LigPrep without
generation of protonation states or tautomers. Then, we generated
probable protonation states and tautomeric forms in a separate Epik
protocol in the pH 7.0 ± 2.0 with the maximum number of output
structures per molecule set to 1. Physicochemical properties of
prepared training/test compounds were calculated with QikProp.
Then, we filtered compounds with the same set of criteria as the
screening compounds, leaving 2355 training/test compounds. We
used AutoQSAR protocol to generate QSAR models. Random
training set was set to 75% compounds. Prediction property was set
to pKi. Consensus prediction of pKi values was performed for the
screening compounds by taking an average for all QSAR models. Only
results with Domain Alert = 0 were kept.
4.2.3. Docking and MM-GBSA. Docking was conducted in

Schrödinger Maestro 2017-1. The first step consisted of preparation
of grid files for the previously prepared CB1 structures. We utilized
Receptor Grid Generation Tool and created grids using ligands as the
grids’ centers. For each CB1 structure, two grid files were created�a
standard one and one with constraints for the formation of H-bonds
with Ser383 hydroxyl group.

The docking itself was conducted using Glide78,79 with SP and XP
modes. One best pose for ligand in each docking was saved. MM-
GBSA binding free energy calculations were preformed using Prime
MM-GBSA with VSGB solvation model80 and OPLS3 force field.

Before the actual screening, our docking procedure has been
validated. We conducted a test screening using two sets of active test
compounds and two sets of decoys. We prepared separate libraries of
active CB1 ligands for agonists and antagonists/inverse agonists. Each
set contained 25 compounds with Ki values toward human CB1 ≤100
nM (Tables S8 and S9). Based on these two sets, we generated two
libraries of similar decoys (1250 compounds each) using DUD-E
server.81 Active compounds and decoys were prepared using
Schrödinger LigPrep. Decoy sets were filtered based on their
physicochemical properties calculated in QikProp, using custom
criteria (Table S3). As receptor models, we used CB1 structures based
on PDB IDs: 5TGZ,21 5U09,22 5XR8, 5XRA,23 6N4B,24 6KPG,26 and
6KQI.25 We performed Glide SP and XP docking (independent of
each other) and subsequent MM-GBSA binding free energy
calculations. The agonists active and decoys sets were docked to
PDB IDs: 5XR8, 5XRA, 6N4B, 6KPG, and 6KQI, while antagonists to
5TGZ and 5U09. Using Schrödinger Enrichment Calculator, we
determined Boltzmann-enhanced discrimination of the receiver
operating characteristic (BEDROC) values and EF for docking scores
and MM-GBSA ΔGbind obtained after Glide SP and XP docking
(Table S10, Figures S11 and S12 and Supporting Information S2).

Based on the validation results, we conducted docking of the
screening compounds to PDB IDs: 5XR8 and 5TGZ. Prior to that,
the compounds had been filtered using custom physicochemical
criteria different for potential agonists and antagonists (Table S3),
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analogically to decoys. Both screening sets were processed using Glide
SP, with potential agonists docked to 5XR8 and potential antagonists
docked to 5TGZ. Finally, potential agonists were docked using Glide
XP, while in the case of CB1-potential antagonists complexes, we
conducted additional MM-GBSA binding free energy calculations.
4.2.4. Clustering and Analysis. The selected output compounds

from docking and MM-GBSA calculations were analyzed for the sake
of subsequent in vitro evaluation. We clustered them based on the
structural properties using ChemBioServer 2.082 with Hierarchical
Clustering. The properties were set to: distance selection: Soergel;
clustering linkage selection: Ward; clustering threshold: 0.3. We
analyzed compounds based on their QSAR-predicted pKi values,
docking score, and MM-GBSA binding energy. For selected
compounds, we analyzed binding poses and protein−ligand
interactions in Schrödinger Maestro. The final selection was based
on the obtained numerical values, clustering, visual analysis, and
purchasability, favoring compounds from diverse structural groups.
4.3. Pharmacological and Toxicological Properties Estima-

tion. Pharmacological properties were estimated using SwissADME
server.83 Water solubility was assessed with ESOL (Estimated
SOLubility) model.84 Toxicological properties were computed using
Toxtree 3.1.085 and TEST 5.1.186 programs. In Toxtree, the selected
models were utilized: Kroes TTC decision tree34 and in vitro
mutagenicity (Ames test) alerts,87,88 whereas in TEST�Ames
mutagenicity and developmental toxicity.
4.4. In Vitro. 4.4.1. Radioligand Displacement Assay. Com-

pounds selected for the in vitro binding assay from the first iteration
of VS were purchased via MolPort, SIA, Riga, Latvia and Biopurify
Phytochemicals Ltd., Chengdu, China. Compounds from the second
iteration were purchased from MolPort, SIA, Riga, Latvia and
Chemspace, SIA, Riga, Latvia (Supporting Information S3). [3H]CP-
55,940 and the EcoScint-20 scintillation fluid were purchased from
Perkin Elmer (USA). Membranes from cells overexpressing the
human CB1 receptor (ChemiScreen CB1 Cannabinoid Receptor
Membrane Preparation, cat. no. HTS019M) as well as MgCl2, CaCl2,
Trizma Base, NaCl, polyethylenimine (PEI) and dimethyl sulfoxide
(DMSO) were purchased from Merck (USA). Bovine serum albumin
(BSA) was obtained from Pol-Aura (Poland). WIN 55,212-2 mesylate
was provided by Tocris Bioscience (UK).

Membrane preparations (2.5 μg protein/tube) from Chem-1 cells
expressing human CB1 receptors were incubated in duplicate with 2
nM [3H]CP-55,940 (specific activity: 108.5 Ci/mmole) in a 50 mM
Tris-HCl, pH = 7.4 buffer supplemented with 5 mM MgCl2, 1 mM
CaCl2, 0.2% BSA and increasing concentrations of the compounds
tested. Compounds were dissolved in 50% DMSO and added to the
reaction mixture at 10 concentrations equally spaced on a log scale
(10−10 to 10−4.5 M). The final DMSO concentration was 5%. Non-
specific binding was determined with 10 μM WIN 55,212-2. The
reaction mixture (500 μL) was incubated for 1.5 h at 30°C . Before
harvesting, Whatman GF/B Filter Paper (Brandel, USA) was
presoaked with 0.33% PEI buffer for 30 min. and then washed with
2 ml of 50 mM Tris-HCl buffer (pH = 7.4) and 0.5% BSA to
minimize non-specific binding. The reaction was terminated by
depositing the samples onto GF/B filter paper with the Brandel M-24
Cell Harvester (Brandel, USA). Samples were then rapidly washed 3
times with 2 ml of ice-cold wash buffer (50 mM Tris-HCl pH 7.4, 500
mM NaCl) to separate the bound radioligand from free. Filters were
then air-dried for 1 h at 60°C . After drying, filter discs were placed on
a flexible 24-well plate and 500 μL of EcoScint-20 scintillant was
added to each well. Plates were counted (2 min. per well) in a Trilux
MicroBeta2 2450 scintillation counter (Perkin Elmer, USA). Data
were analyzed with GraphPad Prism 5.0 software.89 Curves were fitted
with a one-site non-linear regression model and inhibitory constants
(pKi ± SEM and Ki, 95% CI) were calculated from the Cheng−
Prusoff equation.
4.4.2. [35S]GTPγS Assay. Ten compound concentrations equally

spaced on a log scale (10−3 to 10−9 M) were incubated in triplicate
with membrane preparations from CHO-K1 cells expressing the
human CB1 receptor (5 μg per well) (Perkin Elmer, cat. no. ES-110-
M400UA) in an assay buffer containing 50 mM Tris-HCl, pH = 7.4, 1

mM EGTA, 3 mM MgCl2, 100 mM NaCl and 30 μM GDP) in the
presence of 0.08 nM [35S]GTPγS (specific activity: 1250 Ci/mmole,
Perkin Elmer). Non-specific binding was determined with 100 μM of
unlabeled GTPγS. WIN 55,212-2 (3 μM) was used as stimulating
ligand. The final DMSO concentration in the assay was 5%. The
reaction mixture was incubated for 90 min. at 30°C . Next, the
samples were deposited under vacuum with the FilterMate Harvest-
er® (Perkin Elmer, USA) onto Unifilter® GF/B Plates (Perkin
Elmer, USA) presoaked with wash buffer (50 mM Tris-HCl, pH =
7.4). The samples were then rapidly washed with 2 ml of wash buffer.
Filter plates were dried for 30 min. at 50 °C and 40 μL of MicroScint
PS (Perkin Elmer, USA) scintillation fluid was added to each well.
Radioactivity was counted in a Trilux MicroBeta2 counter (Perkin
Elmer, USA). Data were analyzed with GraphPad Prism 5.0 software.
Curves were fitted with three-parameter non-linear regression model.
Inhibitory potency (IC50) was calculated and expressed as means from
three separate experiments ± 95% confidence intervals (95% CI).
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