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ABSTRACT

Adipose-derived regenerative cells (ADRCs), mesenchymal stem/progenitor cells from subcutaneous 
adipose tissue, have been shown to stimulate angiogenesis in hind limb ischemia, an effect attributed to 
paracrine action on endothelial cells (ECs) in mice. Despite promising therapeutic effects, the relevant 
molecules promoting neovascularization in this setting have not been fully elucidated. Extracellular 
vesicles, crucial mediators of intercellular communication, are recognized as a new therapeutic modal-
ity for regenerative medicine. Here, we found that GW4869, an exosome biogenesis inhibitor targeting 
neutral sphingomyelinase, impaired ADRCs-mediated angiogenesis and improvement of blood perfusion 
in a murine hind limb ischemia model. In addition, while the supernatant of ADRCs induced murine EC 
migration, this effect was attenuated by pre-treatment with GW4869. RNA analysis revealed that treatment 
of ADRCs with GW4869 reduced the expression of microRNA-21 (miR-21), miR-27b, miR-322, and let-7i 
in ADRCs-derived exosomes. Furthermore, the exosomes derived from GW4869-treated ADRCs induced the 
expression of the miR-21 targets Smad7 and Pten, and the miR-322 target Cul2, in ECs. These findings 
suggest that several miRNAs in ADRCs-derived exosomes contribute to angiogenesis and improvement of 
blood perfusion in a murine hind limb ischemia model.
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INTRODUCTION

Patients with critical limb ischemia (CLI) have ischemic pain at rest and refractory ischemic 
skin ulcers. Even after surgical or endovascular treatment, a significant number of individuals 
will experience recurrent ischemia, usually resulting in an untreatable disease state.1 Therapeutic 
angiogenesis, which promote new vessel growth in ischemic tissues by gene, protein or stem/
progenitor cell implantation, is a promising treatment strategy for severe CLI.2 

Adipose-derived regenerative cells (ADRCs), which were discovered in subcutaneous adipose 
tissue in 2001, have typical mesenchymal stem/progenitor cell characteristics.3 Implantation of 
ADRCs improves blood perfusion recovery in CLI states of animals and humans.4,5 Currently, 
the paracrine effect of ADRCs, including secretion of several growth factors, is considered to 
be the primary mechanism of these pro-angiogenic outcomes.6 Circulating microRNAs (miRNAs) 
are emerging sources of paracrine signaling in cell therapy.7 However, their contribution to the 
ADRCs-medicated angiogenesis in an ischemic limb is not fully understood.

Here, we show that pharmacological inhibition of exosomes released from ADRCs impairs the 
pro-angiogenic faculties of ADRCs in a murine model of hind limb ischemia (HLI). Furthermore, 
our findings suggest that the delivery of specific miRNAs by exosomes into endothelial cells 
(ECs) is responsible for enhancing their angiogenic behavior.

MATERIALS AND METHODS

Animal experiments
Male 8- to 10-week old C57Bl/6J mice were obtained from Charles River Laboratories, Japan. 

Mice were subjected to unilateral hindlimb ischemia surgery as described previously.8 Briefly, the 
left femoral artery and vein in C57Bl/6J mice were ligated and excised gently from the proximal 
portion of the femoral artery to the distal portion of the saphenous artery. The remaining arterial 
branches, including the perforator arteries, were also ligated. ADRCs (1×106 cells per animal) 
isolated from separate C57Bl/6J mice were pretreated for 24 h with either Dimethyl Sulfoxide 
(DMSO) (vehicle, n=5 mice), 10 μM GW4869 (Merck, Darmstadt, Germany)(n=7 mice), or 
2.5 μM manumycin A (Cayman Chemical, MI)(n=5 mice), and then phosphate-buffered saline 
(PBS)(n=6 mice) or pretreated-ADRCs were injected into the ischemic adductor muscle area 
at three different positions with 5 mm spacing starting from one day after hindlimb surgery. 
Hindlimb blood flow recovery was monitored by Moor LDI (Moor Instruments) before and days 
0, 7, 14 after surgery, and was expressed as the ratio of blood flow in left (ischemic) to right 
(non-ischemic) hindlimb.

All procedures of animal care and animal use were reviewed and approved by the Animal 
Ethics Review Board of Nagoya University Graduate School of Medicine.

Cell culture
Isolation and culture of ADRCs was performed as previously described with slight modifica-

tion.4 Subcutaneous inguinal adipose tissue from C57Bl/6J mice was isolated, minced and digested 
with 2 mg/mL type I collagenase (Wako, Japan) at 37°C for 1 h, followed by filtration through 
a 100-μm filter (BD Falcon, Bedford, MA) and centrifugation at 200 × g for 5 minutes. The 
precipitated cells were used as ADRCs, maintained in DMEM (D6046, Sigma) supplemented with 
10% fetal bovine serum (FBS) and used until passage 5. The supernatant from ADRCs incubated 
in serum-free DMEM with DMSO or with 10 μM GW4869 for 48 h was used as conditioned 
medium (CdM). MS1 cells, murine immortalized ECs isolated from pancreas, were obtained from 
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American Type Culture Collection (ATCC). MS1 cells were cultured in DMEM supplemented 
with 5% FBS. Cultured cells were maintained at 37°C in a humidified 5% CO2 atmosphere.

Western blot analysis
ADRCs were treated with DMSO or with 10 μM GW4869 for 24 h, washed with PBS, lysed 

with Cell Lysis Buffer (#9803, Cell Signaling), and quantified with BCA protein assay reagent 
(Thermo Fisher Scientific). Equal amounts of protein per condition were subjected to sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene 
difluoride (PVDF) membranes. Membranes were incubated with the indicated antibodies, followed 
by incubation with secondary antibodies conjugated with horseradish peroxidase. Protein signals 
were detected with SignalFire ECL Reagent (#6883, Cell Signaling) using the ChemiDoc imaging 
system (BIO-RAD). The blots were quantified with the gel analysis function in Fiji software.9,10 
The antibodies are shown in Table 1.

Table 1 List of primers and antibodies used in the present study

mRNA Forward Reverse
Amplicon 

Length

Cul2 TGAGTGTCAGCAGCGGATGGTA CACTGGACACAGCACGGAGTAA 128 bp

Gapdh AAAGGGTCATCATCTCCGCC GCCCTTCCACAATGCCAAAG 171 bp

Pten TGAGTTCCCTCAGCCATTGCCT GAGGTTTCCTCTGGTCCTGGTA 138 bp

Smad7 GTCCAGATGCTGTACCTTCCTC GCGAGTCTTCTCCTCCCAGTAT 143 bp

miRNA Product information Catalog number

miR-21 Mm_miR-21_2 miScript Primer Assay MS00011487

miR-27b Mm_miR-27b_1 miScript Primer Assay MS00001358

miR-30b Mm_miR-30b_1 miScript Primer Assay MS00001386

miR-126 Mm_miR-126-5p_1 miScript Primer Assay MS00006006

miR-130a Mm_miR-130a_1 miScript Primer Assay MS00001547

RNU6B Hs_RNU6-2_1 miScript Primer Assay in the miScript PCR Starter Kit

miR-210 Mm_miR-210_2 miScript Primer Assay MS00032564

miR-296 Mm_miR-296-5p_1 miScript Primer Assay MS00016436

miR-322 Mm_miR-322_2 miScript Primer Assay MS00029218

let-7f Mm_let-7f_1 miScript Primer Assay MS00005866

let-7i Mm_let-7i_1 miScript Primer Assay MS00001253

miR-39 Ce_miR-39_1 miScript Primer Assay MS00019789

Name Company (Catalog number) Dilution

anti-Alix (E69PB) Rabbit mAb Cell Signaling (#92880) 1:1000

anti-beta-Actin (C4) Mouse mAb Santa Cruz (#sc-47778) 1:2000

anti-rabbit IgG HRP-linked Cell Signaling (#7074) 1:2000

anti-mouse IgG H&L (HRP) Abcam (#ab6728) 1:2000
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Cell Migration assay
MS1 cells were seeded at 2.1 × 104 cells per well into silicon culture inserts with two 

individual wells (#ib80209, Ibidi, Munchen, Germany) on cell culture slides (Ibidi) for 24 h. The 
culture inserts were removed, and cells were incubated with DMSO- or GW4869-treated CdM. 
Images were acquired using a BZ-X710 microscope (Keyence, Osaka, Japan) at 0, 24 and 36 h 
after cell migration, and were analyzed with Fiji software. 

Cell proliferation assay
MS1 cells were seeded at 7.5 × 103 per well in a 96-well plate for 24 h, followed by 

incubation with DMSO- or GW4869-treated CdM. After 24 h, cells were incubated with Cell 
Count Reagent SF (#07553-15, NACALAI TESQUE, Kyoto, Japan) for 2.5 h. Cell viability was 
measured by determining the absorbance at 450 nm (reference: 650nm).

Isolation of exosomes 
After 48 h incubation with 6 ml of serum-free DMEM in 100 mm dish, 6 ml (for MS1 cell 

culture) or 12 ml (for RNA isolation) of the supernatant was collected, filtered through Millex-
GP 0.22 μm filter unit (#SLGVM33RS, Merck Millipore), and centrifuged at 10000 × g for 60 
min. The supernatant was transferred into Amicon Ultra-15 filter (10kDa MWCO) (Merck) and 
centrifuged at 5000 × g for 40 min. The concentrated medium was washed twice with PBS and 
used for MS1 cell culture or RNA isolation.

Quantitative RT-PCR analysis
To analyze mRNA expression, total RNA was extracted from MS1 using miRNeasy Micro Kit 

(Qiagen). Complementary DNA (cDNA) was generated with a ReverTra Ace qPCR RT Master 
Mix (TOYOBO, Osaka, Japan). The quantitative PCR (qPCR) was performed on a CFX96 real-
time PCR detection system (BIO-RAD) using THUNDERBIRD SYBR qPCR Mix (TOYOBO). 
Primer pairs are listed in Table 1. Data are presented following normalization with Gapdh.

For miRNA expression analysis, total RNA was isolated from ADRCs or exosomes obtained 
using the miRNeasy Micro Kit. Briefly, 200 μl exosomes solution was lysed by 1 ml QIAzol 
Lysis Reagent. After 5 minutes incubation for homogeneity, 3.5 μl of Spike-In control (Ce-
miR-39, RNA Spike-in Kit for RT, Qiagen) were added, mixed thoroughly and RNA isolation 
was performed following manufacturer’s instructions. cDNA synthesis and qPCR were performed 
using miScript PCR Starter Kit (Qiagen). All miScript Primer Assays are listed in Table 1. 
RNU6B was used to normalize gene expression for ADRCs. Ce-miR-39 Spike-In control was 
used as an internal control for exosomes.

Statistical analysis
Data are presented as the mean ± SEM for given experiments. All statistical analyses for 

experiments were performed using GraphPad Prism 8 (GraphPad Software Inc, San Diego, USA). 
Comparisons between two groups were performed using unpaired two tailed student’s t-tests. For 
more than two groups, we performed one-way ANOVA with Tukey’s multiple comparison test to 
assess statistical significance with a 95% confidence interval. Significance was defined as P<0.05.

RESULTS

GW4869 inhibits ADRCs-mediated blood perfusion recovery in hind limb ischemia
To evaluate the effect of exosomes derived from ADRCs on angiogenesis in hind limb 
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ischemia, we utilized a surgical ligation of the femoral artery approach, the most commonly 
used mouse model of HLI as described above. Before implantation into HLI mice, ADRCs 
were exposed to either of two pharmacological exosome inhibitors, GW4869 and manumycin A. 
GW4869 inhibits neutral sphingomyelinase to regulate ceramide synthesis,11 while manumycin A 
targets farnesyltransferases resulting in the inhibition of Ras activity.12 ADRCs were injected into 
the ischemic muscles one day after femoral artery ligation, followed by the assessment of blood 
perfusion seven and fourteen days after injection with laser Doppler imaging (Fig. 1A). Mice 
treated with ADRCs showed robust improvement in tissue perfusion compared with controls (Fig. 
1B, C). Interestingly, the ischemic limbs injected with GW4869-pretreated ADRCs, but not with 
manumycin A-pretreated ADRCs, showed impaired limb perfusion (Fig. 1B, C), suggesting that 
a subpopulation of ADRCs-derived exosomes plays an essential role in pro-angiogenic effects 
in vivo. 

ADRCs-derived exosomes facilitate EC migration
Angiogenesis is a highly dynamic and coordinated process of endothelial cell behaviors 

including migration, proliferation, sprouting and adhesion.13 To investigate the paracrine effects 

Fig. 1 Treatment of an exosome inhibitor, GW4869, attenuates pro-angiogenic effects of adipose-derived 
regenerative cells (ADRCs) in a murine hind limb ischemia model

Fig. 1A:  Scheme showing the time points of surgical femoral artery ligation, ADRCs implantation, and laser 
Doppler imaging (LDI) for the blood perfusion recovery analysis. 

Fig. 1B:  Representative laser Doppler images of mice in the supine position. White arrows indicate the ligated 
limb.

Fig. 1C:  Quantification of blood perfusion recovery in the ischemic limbs showed significant decreased blood 
perfusion in mice injected with GW4869-treated ADRCs, but not with another exosome inhibitor, 
manumycin A-treated ADRCs, compared with DMSO-treated ADRCs at day 14 post-injection. PBS 
was used as vehicle.

(At day 14 post-injection, **P<0.01 ADRCs vs. vehicle or GW4869-treated ADRCs, manumycin A-treated ADRCs 
vs. vehicle or GW4869-treated ADRCs, n=5–7, one-way ANOVA with Tukey’s multiple comparison post hoc 
test.) Data presents mean±SEM.
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of ADRCs on EC behavior, a wound healing assay was performed to monitor proliferation and 
coordinated migration. Mouse vascular MS1 endothelial cells were exposed to supernatant from 
ADRCs treated with vehicle or GW4869 (Fig. 2A). Treatment with supernatant from GW4869-
treated ADRCs significantly impaired collective EC migration compared with that from DMSO-
treated ADRCs (Fig. 2B, C). In contrast, no significant differences of MS1 cell proliferation 
were seen between the supernatant from ADRCs treated with vehicle and GW4869 (Fig. 2D), 
suggesting that exosomes from ADRCs are important for EC migration in vitro. 

ADRCs-derived exosomes impact gene expression in donor ECs
Recent studies have shown that exosomes transfer miRNAs to modulate the function of target 

cells.14 To gain more insight into the molecular mechanisms of ADRCs-derived exosomes in 
angiogenesis, we performed quantitative reverse transcription PCR (RT-qPCR) analysis to quantify 
the expression levels of 10 established pro-angiogenic miRNAs. The expression of miR-21, 
miR-27b, miR-322, and let-7i was reduced in exosomes isolated from GW4869-treated ADRCs 
in comparison with that from controls (Fig. 3A), but GW4869 treatment led to a slight, but not 
statistically significant, reduction of miR-21, miR-27b, miR-322, and let-7i expression in ADRCs 
(Fig. 3B). Immunoblotting of Alix, an exosome biogenesis marker, showed no obvious changes 
between control and GW4869-treated ADRCs (Fig. 3C). To further clarify the mechanisms by 
which miRNAs, delivered by exosomes, could act in MS1 cells, the target genes of miR-21 
and miR-322 were investigated. RT-qPCR analysis revealed that the expression levels of Smad7 
and Pten, miR-21 targets,15 and the miR-322 target Cul2,16 were increased in MS1 cells upon 
exposure to exosomes derived from GW4869-treated ADRCs, when compared to exosomes from 
controls (Fig. 3D). 

Taken together, these results suggest that paracrine effects of ADRCs on therapeutic angio-
genesis can be partly attributed to a subpopulation of exosome-mediated miRNAs. 

DISUCUSSION

The present studies show that a subpopulation of exosomes derived from ADRCs play a 
pivotal role in improving angiogenesis and blood perfusion in hind limb ischemia, and that 
this function stems in part from exosome-mediated delivery of select miRNAs which can have 
pro-angiogenic effects on ECs. 

Cell therapy is a promising approach for cardiovascular regenerative medicine for ischemic 
diseases.17 A recent meta-analysis of 19 randomized controlled trials reveals that cell therapy for 
CLI reduces the risk of amputation and improves amputation-free survival and wound healing.18 
Paracrine signaling including soluble growth factors, cytokines and chemokines released from 
implanted cells has been shown to play an important role in angiogenesis. Extracellular vesicles 
(EVs) are known to play pivotal roles in the maintenance of physiological functions, homeostasis 
and regeneration, provide a novel intercellular signaling mechanism, and are emerging as potential 
therapeutic modalities.19 It has been reported that exosomes derived from human CD34+ stem 
cells promote angiogenesis and improve limb perfusion in a rodent hind limb ischemia model.20 
Though a promising therapeutic approach, a key requirement for the safe and effective use of 
EVs in clinical settings would be unambiguous identification and quality control of the desired 
kind and cargo of such agents. EVs, which include not only exosomes but also microvesicles, 
consist of heterogeneous populations with distinct composition and function.21 Several different 
cellular mechanisms for the biogenesis of exosomes exist, and the resulting heterogeneity may be 
a function of which pathway was used to produce a particular exosome. Exosomes are generated 
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Fig. 2 Supernatant derived from ADRCs promotes endothelial cell (EC) migration
Fig. 2A:  Scheme showing the experimental procedure of ADRCs-conditioned medium (CdM) preparation and 

MS1 cell (murine EC) migration assay.
Fig. 2B: Representative images of cell migration assay. Scale bar, 300 µm.
Fig. 2C:  Quantification of the cell-covered area showed impaired cell motility in GW4869 group compared with 

that in ADRCs group. (*P<0.05, n=4–5, unpaired t-test) 
Fig. 2D:  Cell proliferation assay using WST-8 colorimetric reagent of MS1 with ADRCs-CdM with or without 

10 µM GW4869 for 48 h revealed that there was no significant difference between the two groups. 
MS1 cells were exposed to ADRCs-CdM for 24 h. (n=6, unpaired t-test) Data presents mean±SEM.
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Fig. 3 GW4869 attenuates pro-angiogenic effects of ADRCs by inhibiting miRNA transfer
Fig. 3A:  Quantitative reverse transcription PCR (RT-qPCR) analysis of miRNAs in exosomes isolated from 

ADRCs-conditioned medium (CdM). The expression levels of miR-21, -27b, -322 and let-7i were 
significantly decreased in GW4869 group, whereas the expression of other angiogenic miRNAs was 
unchanged. ADRCs were treated with DMSO or 10 µM GW4869 for 48 h. (*P<0.05 in miR-21 and 
let-7i; **P<0.01 in miR-27b and miR-322, n=4, unpaired t-test) N.D.: not detectable.

Fig. 3B:  RT-qPCR analysis of miRNAs in total ADRCs lysates revealed that there were no significant differences 
of miR-21, -27b, -322 and let-7i expression between control and GW4869 group. ADRCs were exposed 
to DMSO (control) or 10 µM GW4869 for 48 h. (n=4, unpaired t-test)

Fig. 3C:  Western blot analysis of ALIX and ACTB expression in total ADRCs lysates. ADRCs were treated with 
DMSO (control) or 10 µM GW4869 for 24 h. (n=3) Data presents mean±SEM. 

Fig. 3D:  RT-qPCR analysis of Smad7 and Pten (miR-21 targets), and Cul2 (miR-322 target) expression in MS1 
cells. MS1 cells were exposed to ADRCs-CdM for 24 h, which was derived from ADRCs treated with 
DMSO (control) or 10 µM GW4869 for 48 h. (*P<0.05 in Pten and Cul2; **P<0.01 in Smad7, n=4, 
unpaired t-test)
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in an endosomal sorting complex required for transport (ESCRT)-dependent or -independent 
mechanism in different cell types.22 In our study, administration of ADRCs pretreated with 
manumycin A, that inhibits the ESCRT-dependent pathway, restored the perfusion of ischemic 
limb, whereas the use of ADRCs pretreated with GW4869, inhibiting the ESCRT-independent 
pathway, did not. These results suggest that a subpopulation of exosomes might be important 
for the pro-angiogenic properties of ADRCs. 

miRNAs represent a class of small noncoding RNAs that can bind to complementary target 
sites in specific mRNA molecules and repress translation or cause mRNA degradation. Recent 
studies have shown that miRNAs are key regulators of cardiovascular functions in physiology 
and pathology.23 While we cannot exclude a possibility that growth factors and cytokines in EVs 
contribute to promoting neovascularization, VEGF and miR-126 levels in exosomes obtained from 

Fig. 4 Model of EC angiogenic responses to ADRCs-derived exosomal miRNAs
GW4869 inhibits exosome biogenesis in the ESCRT-independent process by inhibiting membrane neutral sphingo-
myelinase (nSMase), resulting in the reduced expression of miR-21, miR-27b, miR-322, and let-7i in exosomes 
derived from GW4869-treated ADRCs. Endothelial cells (ECs) receive a reduced amount of those miRNA from 
exosomes, which leads to up regulation of Pten, Smad7, and Cul2 in ECs. These molecules act to suppress the 
angiogenic ability of ECs. 
Black dots, blue lines, and red lines indicate miRNAs.
ESCRT: endosomal sorting complex required for transport
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human placenta-derived MSCs are known to be responsible for proangiogenic effects on limb 
ischemia in a murine model.24 Administration of EVs enriched with miR-210 and VEGF from 
mouse bone marrow-derived MSCs promoted vessel formation in the ischemic limb.25 Treatment 
with exosomes from rat adipose-derived MSCs overexpressing miR-21, which were abundant 
in SDF-1, HIF-1α and VEGF, enhanced the angiogenic ability of cultured ECs.26 Our results 
indicate that the expression level of miR-126 in exosomes isolated from GW4869-treated ADRCs 
did not show significant reduction. Instead, we found reduced expression of miR-21, miR-27b, 
miR-322, let-7i in GW4869-treated ADRCs-derived exosomes. We have shown that the expression 
of Smad7, Pten and Cul2 in MS1 cells was increased by exosomes isolated from GW4869-
preconditoned ADRCs. Transforming growth factor β (TGF-β) family signaling is important 
for the regulation of angiogenesis through a variety of cellular responses, such as proliferation, 
differentiation and migration. SMAD7 is originally identified as a vascular SMAD and known 
as an antagonist of TGF-β family signaling by specifically inhibiting the phosphorylation of 
receptor-regulated SMADs.27 Smad7 has been described to attenuate peritoneal angiogenesis.28 
Likewise, Smad7-deficient mice exhibit massive growth retardation with reduced viability.29 A 
recent study showed that SMAD7 is a key regulator of EC quiescence.30 Another signaling 
pathway, the phosphoinositide 3-kinase (PI3K) signaling pathway, is a potent regulator of many 
aspects of cell function and is essential for angiogenesis downstream of a variety of receptors. 
The Ser/Thr protein kinase AKT is the major downstream effector of PI3K signaling, while 
PTEN, a lipid phosphatase, antagonizes PI3K-mediated signaling of cell growth, survival and 
migration.31 It has been shown that PTEN and SMAD7 are direct targets of miR-21 in different 
cell types, resulting in modulation of AKT- and SMAD-dependent signaling.15 Hypoxia-inducible 
factors (HIFs) control physiological and pathological angiogenesis.32 miR-424, and its murine 
orthologue miR-322, reduced CUL2 expression, a scaffolding protein involved in the assembly 
of the ubiquitin ligase system, resulting in the stabilization of HIFs.16 Taken together, our data 
suggest that miRNAs in ADRCs-derived EVs may coordinate different key signaling pathways 
in ECs to tune and promote angiogenesis in hind limb ischemia (Fig. 4). 

In summary, our study suggests that ADRCs-derived exosomes play an important role in 
improving angiogenesis and blood perfusion recovery in hind limb ischemia. These findings could 
pave the way for the application of exosomes from ADRCs as a useful, cell-free therapeutic 
agent to stimulate angiogenesis in ischemic cardiovascular diseases in the future. 

ACKNOWLEDGEMENTS

We thank the staff from the Division of Experimental Animals, Nagoya University School of 
Medicine, for assisting with animal experiments. We would like to thank Yoko Inoue for technical 
assistance. This work was supported, in part, by JST CREST (Grant Number JPMJCR19H4) (to 
T. M.), JSPS KAKENHI Grant Number JP18H02805 (to T. M.), and YOKOYAMA Foundation 
for Clinical Pharmacology (YRY-1912) (to K.K.).

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this paper.



475

ADRCs induce angiogenesis via exosome release

REFERENCES

 1 Olin JW, White CJ, Armstrong EJ, Kadian-Dodov D, Hiatt WR. Peripheral artery disease: evolving role of 
exercise, medical therapy, and endovascular options. J Am Coll Cardiol. 2016;67(11):1338–1357.

 2 Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb 
ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled 
trial. Lancet. 2002;360(9331):427–435.

 3 Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based 
therapies. Tissue Eng. 2001;7(2):211–228.

 4 Kondo K, Shintani S, Shibata R, et al. Implantation of adipose-derived regenerative cells enhances ischemia-
induced angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29(1):61–66.

 5 Lee HC, An SG, Lee HW, et al. Safety and effect of adipose tissue-derived stem cell implantation in 
patients with critical limb ischemia: a pilot study. Circ J. 2012;76(7):1750–1760.

 6 Shimizu Y, Calvert JW, Murohara T. Adipose-derived regenerative cells for cardiovascular regeneration: a 
novel therapy for the cardiac conduction system. Circ J. 2015;79(12):2555–2556.

 7 Eguchi S, Takefuji M, Sakaguchi T, et al. Cardiomyocytes capture stem cell-derived, anti-apoptotic 
microRNA-214 via clathrin-mediated endocytosis in acute myocardial infarction. J Biol Chem. 
2019;294(31):11665–11674.

 8 Murohara T, Asahara T, Silver M, et al. Nitric oxide synthase modulates angiogenesis in response to tissue 
ischemia. J Clin Invest. 1998;101(11):2567–2578.

 9 Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. 
Nat Methods. 2012;9(7):676–682.

10 Kato K, Dieguez-Hurtado R, Park DY, et al. Pulmonary pericytes regulate lung morphogenesis. Nat Commun. 
2018;9(1):2448.

11 Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular 
transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442–17452.

12 Datta A, Kim H, Lal M, et al. Manumycin A suppresses exosome biogenesis and secretion via targeted 
inhibition of Ras/Raf/ERK1/2 signaling and hnRNP H1 in castration-resistant prostate cancer cells. Cancer 
Lett. 2017;408:73–81.

13 Eilken HM, Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell 
Biol. 2010;22(5):617–625.

14 Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs 
and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659.

15 Luo M, Tan X, Mu L, et al. MiRNA-21 mediates the antiangiogenic activity of metformin through targeting 
PTEN and SMAD7 expression and PI3K/AKT pathway. Sci Rep. 2017;7:43427.

16 Ghosh G, Subramanian IV, Adhikari N, et al. Hypoxia-induced microRNA-424 expression in human endo-
thelial cells regulates HIF-alpha isoforms and promotes angiogenesis. J Clin Invest. 2010;120(11):4141–4154.

17 Lee RT, Walsh K. The Future of Cardiovascular Regenerative Medicine. Circulation. 2016;133(25):2618–2625.
18 Rigato M, Monami M, Fadini GP. Autologous cell therapy for peripheral arterial disease: systematic review 

and meta-analysis of randomized, nonrandomized, and noncontrolled studies. Circ Res. 2017;120(8):1326–
1340.

19 Merino-Gonzalez C, Zuniga FA, Escudero C, et al. Mesenchymal stem cell-derived extracellular vesicles 
promote angiogenesis: potencial clinical application. Front Physiol. 2016;7:24.

20 Mathiyalagan P, Liang Y, Kim D, et al. Angiogenic mechanisms of human CD34(+) stem cell exosomes 
in the repair of ischemic hindlimb. Circ Res. 2017;120(9):1466–1476.

21 Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of Exosome Composition. Cell. 2019;177(2):428–
445.e18.

22 Van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev 
Mol Cell Biol. 2018;19(4):213–228.

23 Das A, Samidurai A, Salloum FN. Deciphering Non-coding RNAs in Cardiovascular Health and Disease. 
Front Cardiovasc Med. 2018;5:73.

24 Du W, Zhang K, Zhang S, et al. Enhanced proangiogenic potential of mesenchymal stem cell-derived 
exosomes stimulated by a nitric oxide releasing polymer. Biomaterials. 2017;133:70–81.

25 Gangadaran P, Rajendran RL, Lee HW, et al. Extracellular vesicles from mesenchymal stem cells activates 
VEGF receptors and accelerates recovery of hindlimb ischemia. J Control Release. 2017;264:112–126.

26 An Y, Zhao J, Nie F, et al. Exosomes from adipose-derived stem cells (ADSCs) overexpressing miR-21 
promote vascularization of endothelial cells. Sci Rep. 2019;9(1):12861.



476

Tomohiro Kato et al

27 Ten Dijke P, Arthur HM. Extracellular control of TGFbeta signalling in vascular development and disease. 
Nat Rev Mol Cell Biol. 2007;8(11):857–869.

28 Peng W, Dou X, Hao W, et al. Smad7 gene transfer attenuates angiogenesis in peritoneal dialysis rats. 
Nephrology (Carlton). 2013;18(2):138–147.

29 Tojo M, Takebe A, Takahashi S, et al. Smad7-deficient mice show growth retardation with reduced viability. 
J Biochem. 2012;151(6):621–631.

30 Schlereth K, Weichenhan D, Bauer T, et al. The transcriptomic and epigenetic map of vascular quiescence 
in the continuous lung endothelium. Elife. 2018;7:e34423.

31 Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat 
Rev Mol Cell Biol. 2012;13(3):195–203.

32 Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 
2003;9(6):677–684.


