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Abstract
Background: Activins stimulate the synthesis of follicle stimulating hormone (FSH) in pituitary gonadotropes, at least in part,
by inducing transcription of its beta subunit (Fshb). Evidence from several laboratories studying transformed murine LbetaT2
gonadotropes indicates that activins signal through Smad-dependent and/or Smad-independent pathways, similar to those used
by transforming growth factor beta-1 (TGFB1) in other cell types. Therefore, given common intracellular signaling mechanisms
of these two ligands, we examined whether TGFBs can also induce transcription of Fshb in LbetaT2 cells as well as in purified
primary murine gonadotropes.

Methods: Murine Fshb promoter-reporter (-1990/+1 mFshb-luc) activity was measured in LbetaT2 cells treated with activin A
or TGFB1, and in cells transfected with either activin or TGFB receptors. The ability of the ligands to stimulate phosphorylation
of Smads 2 and 3 in LbetaT2 cells was measured by western blot analysis, and expression of TGFB type I and II receptors was
assessed by reverse transcriptase polymerase chain reaction in both LbetaT2 cells and primary gonadotropes purified from male
mice of different ages. Finally, regulation of endogenous murine Fshb mRNA levels by activin A and TGFB1 in purified
gonadotropes and whole pituitary cultures was measured using quantitative RT-PCR.

Results: Activin A dose-dependently stimulated -1990/+1 mFshb-luc activity in LbetaT2 cells, but TGFB1 had no effect at doses
up to 5 nM. Similarly, activin A, but not TGFB1, stimulated Smad 2 and 3 phosphorylation in these cells. Constitutively active
forms of the activin (Acvr1b-T206D) and TGFB (TGFBR1-T204D) type I receptors strongly stimulated -1990/+1 mFshb-luc
activity, showing that mechanisms down stream of Tgfbr1 seem to be intact in LbetaT2 cells. RT-PCR analysis of LbetaT2 cells
and whole adult murine pituitaries indicated that both expressed Tgfbr1 mRNA, but that Tgfbr2 was not detected in LbetaT2
cells. When cells were transfected with a human TGFBR2 expression construct, TGFB1 acquired the ability to significantly
stimulate -1990/+1 mFshb-luc activity. In contrast to LbetaT2 cells, primary murine gonadotropes from young mice (8–10 weeks)
contained low, but detectable levels of Tgfbr2 mRNA and these levels increased in older mice (1 yr). A second surprise was the
finding that treatment of purified primary gonadotropes with TGFB1 decreased murine Fshb mRNA expression by 95% whereas
activin A stimulated expression by 31-fold.

Conclusion: These data indicate that TGFB1-insensitivity in LbetaT2 cells results from a deficiency in Tgfbr2 expression. In
primary gonadotropes, however, expression of Tgfbr2 does occur, and its presence permits TGFB1 to inhibit Fshb transcription,
whereas activin A stimulates it. These divergent actions of activin A and TGFB1 were unexpected and show that the two ligands
may act through distinct pathways to cause opposing biological effects in primary murine gonadotropes.
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Background
Follicle-stimulating hormone (FSH) synthesis, secretion,
and action are critical for reproductive function in mam-
mals, particularly in females [1-3]. FSH production is reg-
ulated by a variety of neuroendocrine, intra-pituitary, and
gonadal factors. Arguably, the most potent and selective
stimulators of FSH synthesis are the activins, members of
the transforming growth factor beta (TGFB) superfamily.
Within the anterior pituitary, activins (activin B, in partic-
ular) act in paracrine/autocrine fashion to induce expres-
sion of the FSH beta (Fshb) subunit [4-9], the rate-limiting
step in mature FSH production.

Several other factors that regulate FSH synthesis appear to
have their actions via synergy with or perturbation of
endogenous activin signaling. For example, activins syner-
gistically stimulate rat and sheep Fshb transcription with
gonadotropin releasing hormone (GNRH1) via cross-talk
between activin and GNRH1 signaling pathways as well as
through regulation of GNRH1 receptor expression [10-
13]. Testicular androgens regulate Fshb transcription both
directly and indirectly, although these effects vary across
species [14]. In sheep, the direct actions of androgens on
transcription appear to require intact activin signal trans-
duction mechanisms [15]. Follistatins (FST) inhibit FSH
production by binding activins and blocking the latter
from interacting with their cell surface receptors [16,17].
Similarly, gonadal inhibins suppress FSH synthesis via
antagonism of activins; in this case through competition
with activins for binding to activin type II receptors [18-
22]. Thus, many of the endocrine and paracrine factors
known to affect FSH production do so through an interac-
tion with or disruption of activin signaling. These and
other data [23-25] indicate that the activins are critical for
normal FSH regulation.

Both activins and TGFBs bind hetero-tetrameric receptor
complexes consisting of ligand specific type I and type II
receptor serine/threonine kinases [26,27]. Activins bind
one of two type II receptors, ACVR2A or ACVR2B, which
then recruit and phosphorylate the activin type IB recep-
tor, ACVR1B or ALK4. In analogous fashion, TGFB1 binds
TGFBR2, which recruits and phosphorylates TGFBR1
(also known as ALK5). Once activated, ACVR1B and
TGFBR1 can phosphorylate Smad2 and Smad3 on C-ter-
minal serine residues [28,29], and can also activate TGFB-
activated kinase 1 (TAK1) [30,31]

In rodents, activins stimulate Fshb subunit gene transcrip-
tion through both immediate-early and indirect (delayed
or late) signaling pathways [30,32-34]. There is evidence
to implicate Smads in Fshb gene transcription because
they are rapidly phosphorylated and trans-located to the
nucleus rapidly following activin A treatment [32,35-37].
In rats and mice, interference with Smad2 or Smad3 sign-

aling impairs activin A-regulated Fshb transcription
[13,32,33,35,37]. However, these proteins seem to play
less important roles in activin A-induced Fshb transcrip-
tion in sheep and humans [30,33], where Smad-inde-
pendent mechanisms mediated by TGFB-activated kinase
1 (TAK1) appear to be critical for the former.

Like activins, the TGFB isoforms 1, 2, and 3 also phospho-
rylate and activate Smad2, Smad3 and TAK1 [28,29,31].
TGFB1 is produced within rat pituitary lactotropes
[38,39]. Therefore, it is possible that TGFBs, acting in a
paracrine manner, may also stimulate rodent Fshb tran-
scription in gonadotropes via a similar Smad2/3- and/or
TAK1-dependent mechanism. If this occurs, however,
how could gonadotrope cells discriminate intracellularly
between activin and TGFB-generated signals, specifically
with respect to FSH regulation? This is an important ques-
tion, in light of the fact that various physiological mecha-
nisms that have evolved to spatially and temporally
restrict activin's actions do not affect TGFB signaling
[16,40]. For example, ovarian inhibin B production and
action during metestrus and diestrus are critical for the
suppression of activin-stimulated FSH production at these
times of the rat estrous cycle [41,42]. Inhibin B may play
a similar role during the follicular phase of the human
menstrual cycle [43,44]. In addition, FST is dynamically
regulated in the pituitary across the rat estrous cycle and
its patterns of expression appear to be critical for the
proper timing of the secondary FSH surge on the morning
of proestrus [45,46]. Neither the inhibins nor FST sup-
press TGFB1 actions [19,47-49]. Therefore, antagonism of
activins' stimulation of FSH by these proteins could theo-
retically be circumvented by unfettered TGFB1 stimula-
tion of Smad2/3- and/or TAK1-dependent signaling
mechanisms. We, therefore, examined TGFB1-regulated
expression of murine Fshb subunit transcription to deter-
mine whether or not gonadotropes have evolved a mech-
anism to discriminate between the activin and TGFB
ligands.

Methods
Reagents and constructs
Human recombinant (rh-) TGFB1, rh-activin A, recom-
binant mouse (rm)-follistatin 288 were purchased from
R&D systems (Minneapolis, MN). Dulbecco's modified
Eagle medium (DMEM), Lipofectamine/Plus, Lipo-
fectamine 2000, gentamycin, and Trizol were from Invit-
rogen (Carlsbad, CA). Fetal bovine serum (FBS) was from
JRH Biosciences (Lenexa, KS). The anti-Smad3 affinity
purified rabbit polyclonal antibody was purchased from
Zymed (South San Francisco, CA). Anti-Smad2/3 and
phospho-Smad2 affinity purified rabbit polyclonal anti-
bodies were purchased from Upstate Biotech (Waltham,
MA). The phospho-Smad3 rabbit polyclonal antibody
was a generous gift of Dr. Michael Reiss (Robert Wood
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Johnson Medical School). Protease inhibitor tablets
(CompleteMini) were purchased from Roche (Indianapo-
lis, IN). Deoxynucleotide triphosphates (dNTPs), MMLV
reverse transcriptase, random primer hexamers, and Taq
polymerase were from Promega (Madison, WI). The -
1990/+1 mFshb-luc reporter and constitutively active HA-
rat ALK4 (Acvr1b) were described previously [32]. HA-
human TGFBR1(T204D) was provided by Dr. Peter
Scheiffele (Columbia University). The 3TP-luc reporter
and HA-human TGFBR2 expression construct were gifts of
Dr. Joan Massague (Memorial Sloan Kettering Cancer
Center).

Primary gonadotropes
Pituitaries from mice containing the ovine FSHB-H2KK

transgene were used for gonadotrope purification. Young
mice (8–10 weeks old; 10–18 mice) or older mice (1 year
old; 12 mice) were killed and their pituitaries were dis-
persed and the gonadotropes were purified as reported
[50]. Cells that did not attach to the magnetic column
were labeled "gonadotrope-depleted," while cells eluted
from the column after removal of the magnetic field were
labeled "gonadotropes." Cell counts were obtained for all
cell types using a hemocytometer. Equal numbers of cells
were cultured in medium 199 (Gibco) with 10% charcoal-
treated sheep serum and antibiotics/antimycotics as
reported [51]. Gonadotropes and gonadotrope-depleted
cells purified from younger mice were plated in triplicate
at a density of 18,000 cells per well (first experiment) or
30,000 cells per well (second and third experiments).
Cells isolated from older mice were plated in triplicate at
a density of 50,000 cells per well in two separate experi-
ments. For treatments with activin A or TGFB1, purified
gonadotropes or whole pituitary cells were plated in trip-
licate at a density of 10,000 cells per well in three separate
experiments. Gonadotropes, gonadotrope-depleted cells,
and whole pituitary cells were cultured in 200 µl of media
in 96 well Primaria culture plates (Becton Dickinson &
Co, Franklin Lakes, NJ). Cells were incubated at 37° under
5% CO2 for 48 hrs prior to RNA isolation. All mice were
handled in accordance with the rules and regulations of
the Institutional Animal Care and Use Committee of
North Carolina State University.

Cell culture and transfection
Immortalized murine gonadotrope LβT2 cells were pro-
vided by Dr. Pamela Mellon (University of California, San
Diego) and were cultured as described previously [32].
Murine fibroblast NIH3T3 cells were obtained from Dr.
Patricia Morris (Population Council) and were cultured in
DMEM/10% FBS. Cells were plated in 6- or 24-well plates
at densities of 1 × 106 or 2 × 105 cells per well, respectively,
approximately 36 hr prior to transfection. Cells were
transfected with Lipofectamine/Plus or Lipofectamine
2000 following the manufacturer's instructions. Reporter

plasmids were transfected at 1 µg (6-well) or 450 ng (24-
well) per well. Expression plasmids were introduced at
300 ng (24-well) per well. In all experiments, the total
amount of DNA added was balanced across treatments
with empty expression vector pcDNA3.0 (Invitrogen).

In reporter experiments including ligand treatment,
activin A or TGFB1 were added at the indicated concentra-
tions for approximately 24 hr. Cells were washed with 1×
PBS and lysed in 1× Passive Lysis Buffer (Promega). Luci-
ferase assays were performed on a Luminoskan Ascent
luminometer (Thermo Labsystems, Franklin, MA) as
described [32]. All transfection conditions were per-
formed in triplicate and each experiment performed 2–3
times.

Western blotting
LβT2 and NIH3T3 cells were seeded at 7 or 4 × 105 cells
per well, respectively, in 6-well plates. After 24–48 hr.,
cells were washed with serum-free DMEM and then incu-
bated in the same medium overnight. The following day,
cells were treated with the indicated concentrations of
activin A or TGFB1 in fresh serum-free DMEM for 1 hr.
After a wash with PBS, whole cell lysates prepared in RIPA
buffer containing protease inhibitors. Equivalent
amounts of protein were separated by 8% Tris-glycine
SDS-PAGE and transferred to Protran (Schleicher &
Schuell, Keene, NH). Filters were probed with anti-phos-
pho-Smad2, anti-phospho-Smad3, anti-Smad2/3, or anti-
Smad3 using previously described methods [32].

Semi-quantitative RT-PCR
Total RNA was extracted from adult female CD-1 murine
pituitaries and LβT2 cells using Trizol following the man-
ufacturer's instructions. Four µg of total RNA were reverse
transcribed (RT) into cDNA using 100 ng random hex-
amer primers and 100 U MMLV-RT. A second set of sam-
ples was processed similarly, except the RT enzyme was
omitted (no RT) as a control for contaminating genomic
DNA in the RNA samples. One-tenth of each RT or RT-
reaction was used as template in PCRs for Tgfbr1 (503 bp)
and Tgfbr2 (536 bp). PCR was run using the following
conditions for 35 cycles: 94C for 30 sec, 53C for 30 sec,
and 72C for 30 sec. Reactions contained 0.4 pmol of each
primer, 200 µM dNTPs, 1.5 mM MgCl2, 1× PCR buffer,
and 2.5 U Taq polymerase. Following a final 7 min. exten-
sion step at 72C, one-fifth of each reaction was resolved
on a 1 % agarose gel containing ethidium bromide. Gels
were photo-documented using a digital camera interfaced
with an IBM ThinkPad computer running the Kodak Dig-
ital Science 1D software (v.2.0.2) software. Reactions with
no template (H2O only) were used to confirm the absence
of contaminating DNA in the reagents. The primer sets for
Tgfbr1 and Tgfbr2 were as follows: Tgfbr1, (forward) AAC-
CTGTTGTATTGCAGACTT and (reverse) GAGCAGAGT-
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TCCCACGGTGT; Tgfbr2, (forward)
TTGCCTGTGTGACTTCGGGCT and (reverse) CTATTT-
GGTAGTGTTCAGCGA.

Real-Time RT-PCR (RT-rtPCR)
Total RNA from primary and LβT2 cells was isolated and
converted to cDNA as reported [51]. Oligonucleotides for
Taqman real-time PCR were designed for murine cDNA
using software from Integrated DNA Technologies, Inc
(Coralville, IA) for Tgfbr1, Tgfbr2, Fshb and prolactin
(Table 1). Using the same oligonucleotides as described
previously [50], murine 18s ribosomal RNA served as the
endogenous control. All Taqman probes were 5' -labeled
with FAM and real-time PCR of all cDNA samples was per-
formed at the same time. Real-time PCR was performed in
duplicate on triplicate cDNA samples from both gonado-
tropes and gonadotrope-depleted cells using an iCycler
(Bio-Rad, Inc). Samples were incubated at 95°C for 3
min, and then for 40 complete cycles (95°C for 30 sec,
55°C for 30 sec, and 72°C for 30 sec). There was a final
extension step of 72°C for 3 min. Threshold cycle (CT)
values were determined with Bio-Rad software and used
for relative quantitation with the 2-∆∆Ct method [52].

Statistical analysis
The data from replicate luciferase assay experiments were
highly similar and were pooled (n = 6 or 9 per treatment)
for statistical analyses. Data are presented as fold-change
from the control condition in each experiment. Differ-
ences between means were compared using one- or two-
way analyses of variance followed by post-hoc Scheffe or
Bonferroni tests (Systat 10.2, Richmond, CA). Compari-
sons of relative receptor mRNA expression in gonado-
trope and gonadotrope-depleted cells in different age
groups were performed with two-way ANOVAs of log-

transformed data. Fshb mRNA levels were compared in
one-way ANOVAs of log-transformed data. In all cases,
significance was assessed relative to p < 0.05.

Results
Activin A but not TGFB1, stimulated Fshb transcription in 
LβT2 cells
LβT2 cells were transfected with a murine -1990/+1 Fshb
luciferase promoter-reporter construct (-1990/+1 mFSHB-
luc) [32] and were treated with different concentrations of
activin A or TGFB1 for approximately 24 hr. Whereas
activin A dose-dependently stimulated reporter activity,
TGFB1 had no effect at concentrations up to 5 nM (Fig.
1A). In addition, activin A, but not TGFB1, stimulated
Smad 2 and 3 phosphorylation in these cells (Fig. 1B). In
contrast, the same lot of TGFB1 at lower concentrations
(4–400 pM) dose-dependently stimulated the activin/
TGFB responsive promoter of 3TP-luc [53], and Smad2/3
phosphorylation in murine NIH3T3 fibroblast cells (Figs.
2A and 2B). Thus, the TGFB1 ligand was biologically
active, but LβT2 cells were somehow insensitive to it.

Constitutively active activin and TGFB type I receptors 
stimulated Fshb transcription in LβT2 cells
We previously showed that a constitutively active form of
rat Acvr1b (T206D), which can stimulate Smad phospho-
rylation in the absence of activins and the type II receptors
[54], stimulated murine Fshb promoter-reporter activity
[32]. Here, we asked whether a constitutively active form
of TGFBR1 (T204D; [55]) could similarly stimulate Fshb
transcription in LβT2 cells. As shown in Figure 3, both rat
Acvr1b-TD and human TGFBR1-TD potently stimulated -
1990/+1mFshb-luc. These data indicate that events down-
stream of TGFBR1 (whether Smad-dependent or Smad-
independent; [30,56]) seem to be present in LβT2 cells

Table 1: Real Time RT-PCR primer and probe sequences

Primer/Probe Set Sequence

Tgfbr1 Forward 5': CATTCACCACCGTGTGCCAAATGA
Reverse 5': ACCTGATCCAGACCCTGATGTTGT
Probe 5': AGATCGCCCTTTCATTTCAGAGGGCA

Tgfbr2 Forward 5': TCCCAAGTCGGATGTGGAAATGGA
Reverse 5': TCGCTGGCCATGACATCACTGTTA
Probe 5': 

AGCCCAGAAAGATGCATCCATCCACGTA
Prolactin Forward 5': TCTCAAGGTCCTGAGGTGCCAAAT

Reverse 5': CCATTGCACCCAAGCATGCACTGA
Probe 5': 

ACAACTGCTAAACCCACATTCAGTCCA
Fshb Forward 5': AGAGAAGGAAGAGTGCCGTTTCTG

Reverse 5': ACATACTTTCTGGGTATTGGGCCG
Probe 5': ATCAATACCACTTGGTGTGCGGGCTA

18s rRNA Forward 5': GAAACTGCGAATGGCTCATTAA
Reverse 5': GAATCACCACAGTTATCCAAGTAGGA
Probe 5': ATGGTTCCTTTGGTCGCTCGCTCC
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and therefore that the cells' insensitivity to TGFB1 likely
derives from a deficiency at the receptor level.

LβT2 cells do not express the TGFB type II receptor, Tgfbr2
We used RT-PCR to examine Tgfbr2 and Tgfbr1 mRNA lev-
els in LβT2 cells compared to adult murine pituitary
glands. Whereas both LβT2 cells and pituitary glands
expressed Tgfbr1 mRNA, only the latter expressed Tgfbr2
(Fig. 4).

Over-expression of TGFBR2 in LβT2 cells conferred TGFB1 
responsiveness in LβT2 cells
RT-PCR analysis indicated that LβT2 cells do not express
Tgfbr2 mRNA. Therefore, these cells may not respond to
TGFB1 because of a deficiency in this receptor. It is possi-
ble, however, that additional mechanisms contribute to
TGFB1 insensitivity. To address this issue, we transfected
LβT2 cells with a human TGFBR2 expression construct
and examined TGFB1-stimulated Fshb transcription.
Over-expression of the receptor alone had no effect on
basal transcription, but made it possible for TGFB1 to
stimulate -1990/+1 mFshb-luc activity (Fig. 5). Therefore,
a deficiency in Tgfbr2 expression appeared to account for
the inability of LβT2 cells to respond to TGFB1.

Primary murine gonadotropes exhibit low Tgfbr2 
expression
LβT2 cells were derived from a pituitary tumor in a female
transgenic mouse [57]. Whereas these cells show many of
the features of fully differentiated gonadotropes, they are
transformed cells and exhibit clear differences from gona-
dotropes in vivo. For example, basal Fshb expression is sub-
stantially lower in LβT2 cells than in gonadotropes
(personal observations). Therefore, it is possible that the
Tgfbr2-deficiency observed in LβT2 cells may not accu-
rately reflect receptor expression in gonadotropes in vivo,
though previous analyses in rats indicated that within the
pituitary, Tgfbr2 expression is most abundant in lac-
totropes [58,59]. In order to examine receptor expression
in murine gonadotropes, we purified this cell type from
male mice, aged eight to ten weeks (young) or 1 year of
age (old), using a recently described transgenic model
[50]. Using real-time RT-PCR, prolactin (Prl) expression
was examined to determine the level of purification of the
gonadotropes from mixed primary pituitary cultures as
described earlier [50]. The level of purity ranged from 97
% to 99% (data not shown).

We then measured Tgfbr1 and Tgfbr2 mRNAs using real-
time RT-PCR. Tgfbr1 mRNA was significantly higher in
older than younger animals (p < 0.001), but did not differ
significantly between gonadotropes and gonadotrope-
depleted cells, nor was there a significant interaction
between these two variables (Fig. 6A). In contrast to LβT2
cell data, Tgfbr2 mRNA was detected in gonadotropes but

it was greater in older than younger animals (p < 0.001).
Tgfbr2 mRNA was also higher in gonadotrope-depleted
cells than pure gonadotropes across both age groups (p <
0.007) (Fig. 6B). In young mice, gonadotrope-depleted
cells expressed Tgfbr2 6.5-fold higher than purified gona-
dotropes, whereas in the old mice the difference was
reduced to 2.2-fold, but the interaction between cell type
and age was not statistically significant. In the same
assays, Tgfbr2 was undetectable in LβT2 cells, and Tgfbr1

TGFB1 fails to stimulate Fshb transcription or Smad2/3 phos-phorylation in LβT2 cellsFigure 1
TGFB1 fails to stimulate Fshb transcription or 
Smad2/3 phosphorylation in LβT2 cells. A) LβT2 cells 
were seeded in 6-well plates and transfected with the murine 
-1990/+1 mFshb-luc reporter. Following transfection, cells 
were treated with the indicated concentrations of activin A 
(closed circles) or TGFB1 for approximately 24 hours. 
Lysates were subjected to luciferase assays. Data points 
reflect mean (+/- SEM) fold-change in luciferase activity from 
the control condition (0 nM) in two experiments performed 
in triplicate (n = 6). Points with different letters differed sig-
nificantly. B) LβT2 cells seeded in 6-well plates were treated 
with vehicle (control), 1.2 nM activin A or TGFB1 for 1 hour. 
Immunoblots (IB) of whole cell lysates were probed with 
rabbit anti-phospho-Smad2 (top), anti-phospho-Smad3 (mid-
dle), or anti-Smad2/3 (bottom) antibodies. Treatments were 
performed in duplicate. Numbers at the left are molecular 
weight standards in kDa.
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in LβT2 cells was expressed at roughly 20% of Tgfbr1 in
purified gonadotropes in young animals (data not
shown).

Activin A increased, and TGFB1 decreased, Fshb mRNA 
levels in murine gonadotropes and whole murine pituitary 
cultures
Because purified gonadotropes express Tgfbr2, we used
real-time RT-PCR to examine the effects of activin A and
TGFB1 on endogenous Fshb mRNA levels. Treatment of
purified gonadotropes from younger mice with activin A
resulted in a 31-fold stimulation of Fshb mRNA (Fig. 7A).
Surprisingly, treatment with TGFB1 resulted in a signifi-
cant 95 % reduction in Fshb mRNA levels (Fig. 7A). Simi-
lar results were obtained in gonadotropes isolated from
older mice (data not shown). Importantly, treatment with
TGFB1 did not appear to affect cell viability since there
were no differences in the levels of 18s rRNA between con-
trol and treated cells (data not shown), and no morpho-
logical changes of treated cells relative to control were
observed (personal observations). In whole pituitary cul-
tures, activin A and TGFB1 exerted similar effects on Fshb
expression to those seen in purified gonadotropes,
although their magnitudes were reduced (Fig. 7B). Activin
A induction was 19.5-fold, and inhibition by TGFB1 was
only 56% and was not statistically significant (p = 0.175,
Scheffe post-hoc). Therefore, unlike LβT2 cells, primary
murine gonadotropes are sensitive to TGFB1 and the lig-
and inhibits Fshb mRNA levels, perhaps by repressing
transcription.

Discussion
Activins regulate rodent and ovine Fshb transcription via
Smad2/3- and/or TAK1-dependent intracellular signaling
pathways [13,30,32,33,35,37,60]. Although TGFB iso-
forms also activate these pathways, we found that TGFB1
fails to regulate murine Fshb transcription in LβT2 cells,
apparently because they do not express the TGFB type II
receptor, Tgfbr2. However, when the cells were transiently
transfected with the receptor, TGFB1 stimulated murine
Fshb transcription. In striking contrast, we observed that
gonadotrope cells purified from male mice expressed low
levels of Tgfbr2 mRNA and that TGFB1 suppressed Fshb
mRNA in these cells as well as in mixed murine pituitary
cell cultures. Because over-expression of TGFBR2 allowed
TGFB1 to stimulate the -1990/+1 mFshb-luc construct in
LβT2 cells, differences in TGFB1 responses observed
between the cell line and purified gonadotropes do not
appear to be attributable to differences in Tgfbr2 expres-
sion. Instead, the mechanisms through which TGFB1
inhibits Fshb expression in gonadotropes may be absent
from LβT2 cells.

The identity of these inhibitory mechanisms is currently
unknown, though opposing actions of activin A and

TGFB1 have been noted in other cellular contexts [61,62].
Also, TGFB1 can inhibit its own prototypic signaling via
TGFBR1 and Smad2/3, through an ACVRL1 (ALK1)-
dependent pathway [63]. That is, in addition to com-
plexes containing two TGFBR2 and two TGFBR1 mole-
cules, TGFB1 can form complexes with two TGFBR2, and

TGFB1 stimulates 3TP-luc activity and Smad2/3 phosphoryla-tion in NIH3T3 cellsFigure 2
TGFB1 stimulates 3TP-luc activity and Smad2/3 
phosphorylation in NIH3T3 cells. A) Murine fibroblast 
NIH3T3 cells were seeded in 24-well plates and transfected 
with the TGFB responsive promoter-reporter 3TP-luc. Fol-
lowing transfection, cells were treated with 4–400 pM 
TGFB1 for approximately 24 hours. Luciferase assays were 
performed as described. Data points reflect mean (+/- SEM) 
fold-change in luciferase activity from the control condition 
(0 pM, not pictured) in two experiments performed in tripli-
cate (n = 6). The data are presented on a log-linear plot. 
Points with letters differed from control and points with dif-
ferent letters differed from one another. B) NIH3T3 cells 
seeded in 6-well plates were treated with vehicle (control) 
or 400 pM TGFB1 for 1 hour. Immunoblots on whole cell 
lysates were performed as described in the legend to Figure 
1, except in the bottom blot an anti-Smad3 antibody was 
used in place of anti-Smad2/3. Treatments were performed 
in duplicate. Numbers at the left are molecular weight stand-
ards in kDa.
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one molecule each of TGFBR1 and ALK1. These latter
receptor complexes can stimulate Smad1/5 phosphoryla-
tion and thereby inhibit TGFB1 actions mediated via
TGFBR1 and Smad2/3 [63]. Whether or not LβT2 and/or
gonadotropes express ALK1 has not been reported. How-
ever, it is possible that ALK1 expression in gonadotropes,
but not LβT2 cells, may provide a mechanism for TGFB1
to antagonize endogenous activin B-dependent signaling
(via Smad2/3) and hence decrease Fshb mRNA levels.

Although gonadotropes were purified to near homogene-
ity, it is possible that the inhibitory effects of TGFB1 were
mediated indirectly through ligand action on contaminat-
ing cells in the cultures. For example, TGFB1 might stim-
ulate FST synthesis by folliculostellate cells, which would
then suppress the actions of endogenous activin B in
gonadotropes [64]. However, if this were the mechanism
of TGFB1 action, one might have anticipated greater
inhibitory effects in the mixed rather than purified cul-
tures where there are more folliculostellate cells, but the
opposite was actually the case. That is, TGFB1 had greater
suppressive activity in purified gonadotropes than in
mixed cultures. Moreover, because activins stimulate FST
production in primary pituitary cultures [65], one would
predict that activin A would be less potent in stimulating

TGFBR2 over-expression rescues TGFB responsiveness in LβT2 cellsFigure 5
TGFBR2 over-expression rescues TGFB responsive-
ness in LβT2 cells. LβT2 cells seeded in 24-well plates 
were transfected with the -1990/+1 mFshb-luc reporter and 
an expression vector for the human TGFBR2. Control wells 
were transfected with an empty expression vector, 
pcDNA3.0. Half of the cells in each condition were then 
treated with 400 pM TGFB1 for approximately 24 hr (filled 
bars). Data points reflect mean (+/- SEM) fold-change in luci-
ferase activity from the control condition (pcDNA3.0, con-
trol) in three experiments performed in triplicate (n = 9). 
Bars with different letters differed significantly.
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Constitutively active activin and TGFB type I receptors stim-ulate Fshb transcription in LβT2 cellsFigure 3
Constitutively active activin and TGFB type I recep-
tors stimulate Fshb transcription in LβT2 cells. LβT2 
cells seeded in 24-well plates were transfected with the -
1990/+1 mFshb-luc reporter and expression vectors for con-
stitutively active forms of the rat activin (Acvr1b-TD) and 
human TGFB (TGFBR1-TD) type I receptors or with an 
empty expression vector (pcDNA3.0). Data reflect mean (+/
- SEM) fold-change in luciferase activity from the control con-
dition (pcDNA3.0) in two experiments performed in tripli-
cate (n = 6). Bars with different letters differed significantly.
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LβT2 cells do not express Tgfbr2 mRNAFigure 4
LβT2 cells do not express Tgfbr2 mRNA. RT-PCR anal-
ysis of TGFB receptor expression in adult female CD-1 
murine pituitary gland and LβT2 cells. Whereas Tgfbr1 
mRNA is expressed in both samples (bottom), Tgfbr2 is 
expressed in whole pituitaries but not in LβT2 cells (top). No 
amplicons were detected in negative control samples (i.e., 
H2O only or no RT).
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Fshb mRNA levels in mixed than in purified cultures and
this was in fact what we observed (Fig. 7). Collectively,
these data suggest that the effects of TGFB1 on Fshb mRNA
levels are likely not mediated via regulation of FST pro-
duction, though we cannot rule out that possibility
entirely.

The finding that TGFB1 inhibited Fshb expression in pri-
mary murine gonadotropes and mixed pituitary cultures
is novel, and appears to contrast with data reported previ-
ously for the rat and sheep Fshb genes. For example, TGFB
was shown to potently and dose-dependently stimulate
FSH secretion from rat primary pituitary culture [66].

However, the TGFB preparation used in that study, which
was purified from human platelets [67], did not function
similarly to recombinant TGFB1 in similar assays [39,68].
Subsequent reports have failed to show major effects of
TGFB1 on FSH in any dispersed pituitary culture. For
example, TGFB1 did not affect ovine Fshb promoter-
reporter activity in transgenic mice [51] or FSH secretion
from rat primary pituitary cultures [39]. In addition, only
minor stimulation was observed in primary ovine pitui-
tary cultures [69].

Finally, it is also notable that we observed age-dependent
increases in Tgfbr2 mRNA levels in purified gonadotropes.
These data suggest that as mice mature, their gonado-
tropes may become more sensitive to the effects of TGFBs.
The physiological significance, if any, of this change in
receptor expression is not yet known, but is the subject of
ongoing investigations. These data are nonetheless impor-
tant in that they suggest that the low levels Tgfbr2 mRNA
detected in gonadotropes from young mice are likely not
due to contamination by other cell types. Instead, it
appears that as gonadotropes age, the level of Tgfbr2
expression increases. Consistent with this notion is the
lack of this receptor in LβT2 cells, which are thought to
represent gonadotropes at an early stage of development.
However, LβT2 cells were derived from a female mouse
and the purified gonadotropes examined here were all
from male mice, so it is possible that differences in Tgfbr2
mRNA levels may also reflect sex differences in receptor
expression.

Conclusion
The data reported here show that immortalized LβT2 cells
lack the TGFB type II receptor, Tgfbr2, whereas the recep-
tor appears to be expressed and functional in gonado-
tropes from male mice. As a result, TGFB1 (and likely all
TGFB isoforms) is unable to regulate Fshb in LβT2 cells,
but can inhibit transcription in primary murine gonado-
tropes. Because activins and TGFBs similarly activate
Smads and TAK1, and both pathways contribute to activin
A's stimulation of Fshb in rodents, it is surprising that
TGFB would produce opposite effects to those of activins
in purified gonadotropes. Nonetheless, as predicted,
gonadotropes have evolved mechanisms for discriminat-
ing between the two classes of ligands. In the future, it will
be critical to determine the mechanisms through which
TGFBs inhibit Fshb in gonadotropes, particularly as ani-
mals age and Tgfbr2 expression increases. Importantly, the
data presented here suggest that LβT2 cells may not pro-
vide the best model system in which to pursue this aspect
of FSH regulation.
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Purified murine gonadotropes express Tgfbr2 at low levelsFigure 6
Purified murine gonadotropes express Tgfbr2 at low 
levels. Purified gonadotropes and gonadotrope-depleted 
pituitary cells were plated in triplicate in 96 well culture 
plates. After 48 hrs, total RNA was isolated and real-time 
RT-PCR was performed to examine Tgfbr1 and Tgfbr2 
mRNA expression. Normalized threshold cycle (Ct) values 
were averaged and used to compare receptor expression in 
the different cell types and different age groups using the 2-

∆∆Ct method for quantitation. Data are presented as mean (+ 
SD) (A) Tgfbr1 or (B) Tgfbr2 mRNA levels relative to those in 
young murine gonadotropes (set to 100%). Data from young 
and old animals were from 3 or 2 independent experiments, 
respectively. Bars with different letters differed significantly. 
When averaged across age-groups, Tgfbr2 levels were higher 
in gonadotrope-depleted cells than in gonadotropes. Note 
the different scales of the y-axes in (A) and (B).
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