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Abstract 

Background:  Accurate diagnosis of unexplained cervical lymphadenopathy (CLA) using medical images heav-
ily relies on the experience of radiologists, which is even worse for CLA patients in underdeveloped countries and 
regions, because of lack of expertise and reliable medical history. This study aimed to develop a deep learning (DL) 
radiomics model based on B-mode and color Doppler ultrasound images for assisting radiologists to improve their 
diagnoses of the etiology of unexplained CLA.

Methods:  Patients with unexplained CLA who received ultrasound examinations from three hospitals located in 
underdeveloped areas of China were retrospectively enrolled. They were all pathologically confirmed with reactive 
hyperplasia, tuberculous lymphadenitis, lymphoma, or metastatic carcinoma. By mimicking the diagnosis logic of 
radiologists, three DL sub-models were developed to achieve the primary diagnosis of benign and malignant, the 
secondary diagnosis of reactive hyperplasia and tuberculous lymphadenitis in benign candidates, and of lymphoma 
and metastatic carcinoma in malignant candidates, respectively. Then, a CLA hierarchical diagnostic model (CLA-
HDM) integrating all sub-models was proposed to classify the specific etiology of each unexplained CLA. The assistant 
effectiveness of CLA-HDM was assessed by comparing six radiologists between without and with using the DL-based 
classification and heatmap guidance.

Results:  A total of 763 patients with unexplained CLA were enrolled and were split into the training cohort (n=395), 
internal testing cohort (n=171), and external testing cohorts 1 (n=105) and 2 (n=92). The CLA-HDM for diagnosing 
four common etiologies of unexplained CLA achieved AUCs of 0.873 (95% CI: 0.838–0.908), 0.837 (95% CI: 0.789–
0.889), and 0.840 (95% CI: 0.789–0.898) in the three testing cohorts, respectively, which was systematically more accu-
rate than all the participating radiologists. With its assistance, the accuracy, sensitivity, and specificity of six radiologists 
with different levels of experience were generally improved, reducing the false-negative rate of 2.2–10% and the false-
positive rate of 0.7–3.1%.
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Background
Cervical lymphadenopathy (CLA) is a common disease 
occurring in patients of all ages, with an annual incidence 
of 0.6–0.7% for the general population [1, 2]. The most 
common etiologies are reactive hyperplasia (38–79%) 
and tuberculous lymphadenitis (4–34%) in benign cases 
and metastatic carcinoma (50–94%) and lymphomas 
(5–41%) in malignant cases [3–6]. Referral patterns and 
treatment strategies for different types of CLA are all dis-
tinct; thus, accurate identification of the specific etiology 
is essential for subsequent medical management [1, 7]. 
However, the differential diagnosis of CLA is challeng-
ing, especially in patients without reliable medical his-
tory and characteristic symptoms, which is commonly 
seen in underdeveloped areas of developing countries [8]. 
Due to the lack of a universally accepted protocol for the 
investigation of lymphadenopathy, some of these unex-
plained CLA may experience an average delay of 3 to 6 
months from the initial presentation of symptoms to the 
diagnosis of malignancy [9]. Recently, specialized lymph 
node diagnostic clinics have been established in several 
developed countries and advanced medical institutions 
to benefit unexplained CLA patients with rapid, agile, 
and scheduled systems, but same interventions are still 
impractical in many countries and regions with underde-
veloped healthcare conditions, involving a huge popula-
tion worldwide [1, 10, 11].

Imaging methods are the main tools for detection, 
diagnosis, and follow-up monitoring in unexplained 
CLA patients, including ultrasound imaging (US), com-
puted tomography (CT), and magnetic resonance imag-
ing (MRI). Compared with other imaging modalities, 
US is more convenient, economical, and radiation-free 
and has better resolution in characterizing cervical 
lymph nodes (CLNs). It consists of two basic modalities, 
B-mode ultrasound (BUS) and color Doppler flow imag-
ing (CDFI), where BUS reliably shows the size, shape, 
borders, and internal echoes of the CLN, while CDFI is 
utilized to complement BUS by detecting blood vessels 
and assessing the vascular distribution of the CLN in 
real time [12]. The importance of BUS and CDFI duplex 
ultrasound in patients with CLA is well recognized, 
and this method is recommended as the first-line diag-
nostic tool for unexplained CLA [11, 13]. However, the 

diagnostic performance of the dual-modality US strongly 
relies on the clinical and professional expertise of radi-
ologists [14, 15]. Subjective image interpretation, lack of 
effective quantification, and persistent intra- and inter-
observer variability remain the main dilemmas faced in 
US examinations. Consequently, a significant proportion 
of patients with unexplained CLA are frequently mis-
diagnosed and subsequently subjected to unnecessary 
investigations and inappropriate treatment [16].

To enable timely and accurate diagnosis of unexplained 
CLA patients with relatively less demand for clinical 
expertise, one potentially promising approach is utilizing 
artificial intelligence (AI) technology. AI technology rep-
resented by radiomics can mine high-throughput quanti-
tative features from image data to reveal disease features 
and includes two main strategies of machine learning 
and deep learning (DL). Some inherent characteristics of 
ultrasound images (including limited image quality and 
susceptibility to operator influence) can make the manual 
definition and extraction of image features less reliable, 
limiting the performance of traditional machine learning. 
Meanwhile, DL has gradually started to become a main-
stream research method for ultrasound image analysis 
by using deep neural networks and data-driven learning 
techniques to achieve automatic extraction and quan-
tification of image features imperceptible by naked eyes 
[17–19]. Recent studies have shown that DL has achieved 
good performance in diagnosing thyroid nodules [20], 
classifying parotid gland tumors [21], identifying extra-
nodal extension of head and neck squamous cell carci-
noma [22], predicting prognosis of oral cancer [23], and 
detecting COVID-19 pneumonia [24]. However, its appli-
cation in the context of lymph node imaging is still rare, 
and only few studies reported that DL with BUS images 
of lymph nodes could identify whether relevant drain-
ing lymph nodes of breast [25], thyroid [26], and lung 
cancer [27] were metastatic or not. To the best of our 
knowledge, it has not been used in the characterization 
of unexplained CLA yet.

In this study, we developed a cervical lymphadenopathy 
hierarchical diagnosis model (CLA-HDM) based on DL 
radiomics. It used BUS and CDFI dual-modality images 
to establish a two-level diagnostic structure for unex-
plained CLA. CLA-HDM mimics the clinical diagnosis 

Conclusions:  Multi-cohort testing demonstrated our DL model integrating dual-modality ultrasound images 
achieved accurate diagnosis of unexplained CLA. With its assistance, the gap between radiologists with different 
levels of experience was narrowed, which is potentially of great significance for benefiting CLA patients in underde-
veloped countries and regions worldwide.

Keywords:  Deep learning, Cervical lymphadenopathy, Ultrasound, Reactive hyperplasia, Tuberculous lymphadenitis, 
Lymphoma, Metastatic carcinoma
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logic and divides the characterization task into three sub-
tasks. It firstly classifies unexplained CLA as benign or 
malignant and then determined the specific etiology in 
each condition. It was trained and validated (both inter-
nally and externally) in multi-center unexplained CLA 
patient cohorts. The performances of different radiolo-
gists were compared between with and without CLA-
HDM’s assistance. The model was opened for external 
validation.

Methods
Study cohorts
This multi-center diagnostic study, conducted from June 
1, 2018, and November 31, 2021, was approved by the 
ethics committee of the Second Hospital of Lanzhou 
University, and the requirement for individual consent 
for this retrospective analysis was waived. This study fol-
lowed the Standards for Reporting of Diagnostic Accu-
racy guidelines.

1906 patients were collected from three hospitals 
located in underdeveloped areas of China (hospital 1: 

Lanzhou University Second Hospital; hospital 2: Gansu 
Provincial Cancer Hospital; hospital 3: People’s Hospital 
of Ningxia Hui Autonomous Region), who all had defini-
tive CLA pathological findings by US-guided needle and/
or excisional biopsy. Excision biopsy was required only 
when the needle biopsy result was inconclusive. The fol-
lowing inclusion criteria were applied: (a) patients with-
out obvious infectious etiology or clinical symptoms 
(e.g., tenderness and fever), (b) patients without history 
of malignancy or chemoradiation, and (c) patients with 
available BUS and CDFI images. The exclusion criteria 
were as follows: (a) patients with incomplete pathological 
and clinical information and (b) patients with poor BUS 
or CDFI images. The flowchart of the patient inclusion 
criterion is shown in Fig. 1.

Image acquisition
All examinations of patients (ultrasound and LN biopsy) 
at the three hospitals involved were performed by radi-
ologists with more than 10 years of ultrasound expe-
rience, and the ultrasound images of these patients 

Fig. 1  Patient selection flowchart. CLA, cervical lymphadenopathy; US, ultrasound
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were obtained from 14 different diagnostic ultrasound 
instruments (the process of ultrasound images collec-
tion is shown in Additional file 1: Methods 1; details of 
the instruments used in each hospital can be found in 
Additional file 1: Table S1). In accordance with the clini-
cal practice, the selected lymph node for biopsy at each 
hospital was the most suspicious lymph node on images 
(the largest suspicious lymph node was selected when 
multiple suspicious lymph nodes were present) [12, 
28]. Baseline characteristics (sex, age, node longitudinal 
diameter, location, neck level, and methods of pathologic 
diagnosis) of the patients and selected lymph nodes were 
obtained from electronic medical records and biopsy 
reports.

Model development
CLA-HDM consisted of three task-specific classification 
sub-models, including sub-model 1 for the diagnosis of 
benign and malignant unexplained CLA, sub-model 2 
for the diagnosis of tuberculous and reactive in the set 
of benign type candidates, and sub-model 3 for the diag-
nosis of metastatic and lymphoma in the set of malig-
nant type candidates (Fig.  2). Each sub-model had a 
dual branch and late-fusion structure with two attention 
blocks. The two branches took BUS and CDFI images as 
inputs respectively. A fully connected layer like channel 
attention block was applied to reweight the R, G, and 
B channels to highlight the important color informa-
tion in CDFI. Then, the BUS and channel-reweighted 
CDFI images were fed forward into their respective fea-
ture extractors (ResNet-50 [29]). Modality fusion atten-
tion was applied to the features in the CDFI branch, and 
its weights were obtained from the features of the BUS 
branch by global average pooling and fully connected 
layer, in order to mimic radiologists who read CDFI 
images primarily based on the understanding of cor-
responding BUS images. These three task-specific sub-
models shared the same structure but not parameters 
(Fig. 2a).

In the training stage, we trained three sub-models inde-
pendently on the training cohort. In the testing stage, 
we firstly evaluated the performance of the sub-models 
individually. Then, the three sub-models were assem-
bled to build CLA-HDM to diagnose every case in the 
testing cohorts. Whether CLA-HDM would output the 
diagnosis probability of sub-model 2 or sub-model 3 
was automatically determined by the diagnosis result of 
sub-model 1(Additional file  1: Method S2). Layer-CAM 
[30, 31] was applied to the final stage feature maps of the 
feature extractors to visualize the heatmaps (Additional 
file 1: Method S5). Details of the methods, including data 
preprocessing and model development, are shown in 
Additional file 1: Method S1, S3 and S4 [32–41].

Radiologist study
A two-stage radiologist study was conducted to evalu-
ate the diagnostic performance of the CLA-HDM and its 
clinical application value. Six radiologists with an average 
of 10 years of US experience (3–20 years) participated 
in this study, and they were divided into three groups 
according to the years of experience: seniors (radiolo-
gist 1 [F.N.], 20 years; radiologist 2 [Y.D.], 14 years), mid-
dles (radiologist 3 [Y.Y.J.], 9 years; radiologist 4 [T.T.D.], 
8 years), and juniors (radiologist 5 [Y.F.W.], 5 years; radi-
ologist 6 [X.F.], 3 years). The testing cohorts were shuffled 
and submitted to radiologists. Each radiologist was asked 
to interpret them blindly and independently.

In the first stage of radiologist study, the BUS images, 
CDFI images, and baseline characteristics of each patient 
were available for radiologists. Each radiologist first clas-
sifies unexplained CLA as benign or malignant, and then 
they further determined specific etiology. In the second 
stage (AI-assisted radiologist study), the correspond-
ing lymph node hierarchical diagnostic heatmaps and 
AI probabilities were provided for the radiologists. Each 
radiologist was allowed to change or maintain the ini-
tial diagnosis and gave the final diagnosis conclusions 
(Fig. 2b).

Statistical analysis
All statistical analyses were performed using SPSS soft-
ware (version 26.0) and Python (version 3.8.10). Con-
tinuous variables were expressed as means ± standard 
deviations, and comparisons between two groups were 
made using the Mann-Whitney U test or Student’s t-test. 
Categorical variables were expressed as numbers and 
percentages, and comparisons between two groups were 
made using the chi-squared test or Fisher’s exact test. 
ROC analysis was used to evaluate the diagnostic perfor-
mance of the model in the training and testing cohorts 
(micro-averaging was used to plot multi-class ROC 
[42]). 95% confidence interval (CI) was calculated using 
bootstrapping with 1000 resamples. Differences in per-
formance between CLA-HDM and six radiologists and 
among six individual radiologists without and with AI 
assistance were assessed using McNemar’s test. Diagnos-
tic performance between the CLA-HDM and three dif-
ferent levels of radiologist groups and between different 
radiologist groups was compared using a permutation 
test. Statistical significance was set at P < 0.05.

Results
A total of 763 unexplained CLA patients were success-
fully enrolled in this multi-center study (Fig.  1), and 
the detailed pathological diagnostic results are shown 
in Additional file  1: Table  S2. Of these, 566 cases from 
hospital 1 were used as the primary cohort to reduce 
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overfitting or bias in the analysis. Cases before 2021 were 
selected in the primary cohort as the training cohort (n = 
395) for model development, while cases from 2021 were 
used as the internal testing cohort (n =171) to simulate 
prospective experimental conditions. Cases from hos-
pitals 2 (n = 105) and 3 (n = 92) were used as external 
test cohorts 1 and 2, respectively. There were no clinically 
significant differences between the training and three 
testing cohorts (P > 0.05; Additional file 1: Table S3), and 
all testing cohorts were used for radiologist-machine 
comparison.

Sub‑model performance evaluation
The performance of three sub-models was tested inde-
pendently. In the internal testing, and external testing 
cohorts 1 and 2, sub-model 1 showed AUCs of 0.932, 
0.963, and 0.896; an accuracy of 86.0%, 87.6%, and 82.6%; 
a sensitivity of 89.5%, 83.3%, and 81.8%; and a specific-
ity of 78.9%, 96.9%, and 83.8% for differentiation between 
benign and malignant unexplained CLA. Sub-model 2 
showed AUCs of 0.922, 0.857, and 0.872; an accuracy of 
84.2%, 75.8%, and 78.4%; a sensitivity of 85.7%, 76.2%, 
and 71.4%; and a specificity of 80.0%, 75.0%, and 87.5% 

Fig. 2  Proposed deep learning-based hierarchical diagnostic model (CLA-HDM) to non-invasively assess unexplained CLA. a Each sub-model takes 
BUS and CDFI images as inputs and assigns weights between different color channels in CDFI branch and pays attention to specific CDFI features 
under the guidance of BUS branch via attention mechanism. b For each test case, our model utilizes dual-modal ultrasound images as inputs each 
time, outputs hierarchical diagnostic task-related predictive probabilities and corresponding heatmaps to compare with and assist radiologists. CLA, 
cervical lymphadenopathy; BUS, B-mode ultrasound; CDFI, color Doppler flow imaging; AI, artificial intelligence
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for differentiation between tuberculous lymphadenitis 
and reactive hyperplasia. Sub-model 3 showed AUCs 
of 0.852, 0.847, and 0.827; an accuracy of 86.0%, 86.1%, 
and 83.6%; a sensitivity of 87.9%, 88.7%, and 87.2%; and a 
specificity of 73.3%, 70.0%, and 62.5% for differentiation 
between lymphoma and metastatic carcinoma (Table  1 
and Fig. 3).

CLA‑HDM performance evaluation
After integrating three sub-models together, CLA-HDM 
designed for diagnosing four common etiologies of unex-
plained CLA (reactive, tuberculosis, lymphoma, and 
metastatic) achieved the overall AUCs of 0.873 (95% CI, 
0.838–0.908), 0.837 (95% CI, 0.789–0.889), and 0.840 
(95% CI, 0.789–0.898) in three testing cohorts, respec-
tively (Table  1 and Fig.  3). More specifically, AUCs for 
reactive hyperplasia were 0.718 (95% CI, 0.595–0.856), 
0.875 (95% CI, 0.793–0.967), and 0.812 (95% CI, 0.691–
0.952); for tuberculous lymphadenitis were 0.883 (95% 
CI, 0.830–0.939), 0.860 (95% CI, 0.795–0.938), and 0.897 
(95% CI, 0.828–0.976); for lymphoma were 0.816 (95% 
CI, 0.685–0.964), 0.670 (95% CI, 0.518–0.843), and 0.936 
(95% CI, 0.884–1.006); and for metastatic carcinoma 
were 0.855 (95% CI, 0.811–0.906), 0.825 (95% CI, 0.758–
0.894), and 0.804 (95% CI, 0.730–0.882), respectively 
(Additional file 1: Fig. S1).

Heatmaps for interpreting CLA‑HDM decision‑making
After using heatmaps to visualize the decision-making of 
CLA-HDM, we found clearly different patterns for four 
etiologies in BUS and CDFI images (Fig. 4). To determine 

benign or malignancy, model tended to focus on the 
intranodal region in BUS, which is the same region as 
radiologists making diagnosis. Heatmaps showed that 
CLA-HDM concentrated on intranodal vessels, not sur-
rounding vessels for benign CLA in CDFI. However, for 
malignant CLA, it focused more closely on peripheral 
or mixed vascularity. Furthermore, the focus on CDFI 
tended towards the most abundant intranodal vessels 
for reactive hyperplasia, but towards the peripheral ves-
sels for tuberculosis. Differently, when CLA-HDM suc-
cessfully identified lymphoma, it focused on the area of 
intense hilar vascularity in CDFI, but it paid attention 
to the surrounding peripheral area for the true positive 
diagnosis of metastatic carcinoma, forming a lollipop 
shape in CDFI. Those information was notified to radi-
ologists for diagnosis assistance in this study.

First stage of the radiologist study
In the first stage, six radiologists without AI assistance 
and CLA-HDM were recruited for the radiologist-
machine comparison. Compared with each individual 
radiologist, CLA-HDM achieved systematically better 
accuracy, sensitivity, and specificity than all radiologists 
in the three testing cohorts, except for radiologist 1 
(a senior radiologist) in the external testing cohort 1, 
who had equivalent performance to the CLA-HDM (P 
>.05, Fig. 5 and Table 2). Moreover, CLA-HDM showed 
significantly better accuracy, sensitivity, and specific-
ity than some of these radiologists in different testing 
cohorts (P < 0.05, Table 2). Compared with three differ-
ent levels of radiologist groups, CLA-HDM also achieved 

Table 1  Performance of sub-models and CLA-HDM in the diagnosis of unexplained CLA

The data in brackets represent the 95% confidence intervals

Models Cohorts AUC​ ACC (%) SENS (%) SPEC (%)

Sub-model 1 Training cohort (n = 395) 0.986 (0.977, 0.998) 96.8 (95.2, 98.4) 97.9 (96.7, 99.7) 94.4 (91.1, 98.0)

Internal testing cohort (n = 171) 0.932 (0.901, 0.966) 86.0 (81.9, 90.1) 89.5 (85.2, 94.5) 78.9 (70.2, 88.3)

External testing cohort 1 (n = 105) 0.963 (0.939, 0.993) 87.6 (82.9, 93.3) 83.3 (76.7, 90.9) 96.9 (93.9, 103.0)

External testing cohort 2 (n = 92) 0.896 (0.846, 0.963) 82.6 (76.1, 90.2) 81.8 (73.4, 90.9) 83.8 (74.0, 95.2)

Sub-model 2 Training cohort (n = 136) 0.935 (0.902, 0.976) 86.3 (81.5, 91.9) 84.6 (78.7, 91.1) 90.9 (81.8, 100.0)

Internal testing cohort (n = 57) 0.922 (0.866, 0.986) 84.2 (77.2, 91.2) 85.7 (76.8, 94.8) 80.0 (65.6, 97.5)

External testing cohort 1 (n = 33) 0.857 (0.758, 0.981) 75.8 (63.6, 87.9) 76.2 (61.9, 93.6) 75.0 (56.7, 96.2)

External testing cohort 2 (n = 37) 0.872 (0.771, 0.986) 78.4 (67.6, 89.2) 71.4 (54.9, 87.9) 87.5 (75.0, 102.8)

Sub-model 3 Training cohort (n = 259) 0.979 (0.96, 1.012) 93.2 (90.8, 96.0) 92.6 (89.9, 95.6) 96.9 (93.8, 102.6)

Internal testing cohort (n = 114) 0.852 (0.759, 0.968) 86.0 (80.7, 91.2) 87.9 (82.8, 93.4) 73.3 (55.0, 93.3)

External testing cohort 1 (n = 72) 0.847 (0.742, 0.969) 86.1 (79.2, 93.1) 88.7 (82.2, 95.8) 70.0 (40.0, 97.1)

External testing cohort 2 (n = 55) 0.827 (0.715, 0.964) 83.6 (76.4, 92.7) 87.2 (78.9, 95.6) 62.5 (35.0, 91.7)

CLA-HDM Training cohort (n = 395) 0.964 (0.951, 0.978) 94.1 (92.6, 95.6) 88.2 (85.3, 91.2) 96.1 (95.1, 97.1)

Internal testing cohort (n = 171) 0.873 (0.838, 0.908) 87.1 (84.2, 90.1) 74.3 (68.4, 80.1) 91.4 (89.5, 93.4)

External testing cohort 1 (n = 105) 0.837 (0.789, 0.889) 82.9 (78.6, 86.7) 65.7 (57.1, 73.3) 88.6 (85.7, 91.1)

External testing cohort 2 (n = 92) 0.840 (0.789, 0.898) 85.9 (82.1, 89.7) 71.7 (64.1, 79.3) 90.6 (88.0, 93.1)
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systematically better accuracy, sensitivity, and specificity 
than all groups and was significant in at least one testing 
cohort (P < 0.05, Fig. 5 and Table 3).

Second stage of the radiologist study
In the second stage, all radiologists in the three testing 
cohorts achieved higher accuracy, sensitivity, specific-
ity with AI assistance, except for radiologist 1 (a senior 
radiologist) in the external testing cohort 2, who had a 
slightly decreased performance, but not significant (P 
>.05, Fig.  5 and Table  2). Specifically, each individual 
radiologist with AI-assisted had an equivalent or slightly 
increased specificity, while accuracy and sensitivity were 
significantly improved in at least one testing cohort (P < 
0.05, Table 2). In general, we found that in all three test-
ing cohorts, CLA-HDM helped most radiologists to 
improve their original diagnosis, especially for reactive 

hyperplasia and metastatic carcinoma. Positive and nega-
tive examples of the two-stage AI-assistance study were 
illustrated in Additional file 1: Fig. S2, S3.

By analyzing AI assistance in terms of different radi-
ologist groups, we found that accuracy, sensitivity, and 
specificity in three testing cohorts were all improved, 
especially for the junior and middle experience groups, 
whose improved diagnostic performance was comparable 
to that of the senior experience group without AI assis-
tance (P > 0.05, Fig. 5 and Table 3). Moreover, a reduction 
in the false-positive rate (0.7–3.1%) and false-negative 
rate (2.2–10%) in the three groups was observed (Addi-
tional file 1: Fig. S4a). If only benign and malignant differ-
entiation of CLA was considered, the false-negative rate 
of the radiologist groups with AI assistance decreased by 
3.5–13.2%, and the false-positive rate decreased by 7.6–
14.8% (Additional file 1: Fig. S4b).

Fig. 3  Diagnostic performance of three task-specific sub-models and their assembled model (CLA-HDM) in the training cohort, internal testing 
cohort, and external testing cohort 1 and 2
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Discussion
In this multi-center study, we proposed a DL model 
named CLA-HDM for accurately diagnosing unex-
plained CLA by integrating BUS and CDFI images. After 
both internal and external independent validations, it 
was proven to be effective in assisting radiologists, with 
a systematic improvement of their diagnostic accuracy 
in classifying unexplained CLA into reactive hyperplasia, 
tuberculous lymphadenitis, metastatic carcinoma, and 
lymphomas. It was especially helpful for radiologists with 
junior and intermediate experience. With AI assistance, 
their diagnoses were improved to the similar level of sen-
ior radiologists. To the best of our knowledge, this is the 
first study that uses a DL based radiomics model with 
medical images for the characterization of unexplained 
CLA patients. In total, 763 patients from three hospitals 

participated in this study, which guaranteed its credibility 
and provided a good basis for initiating larger scale per-
spective investigations in future.

CLA-HDM did not only provide a clinical judgement 
of unexplained CLA, but also visualized its decision-
making by key feature-based heatmaps. By interpreting 
these heatmaps with senior physicians, we found that 
they often showed distinct and recognizable patterns 
for different etiologies. For the BUS images, there were 
two locations valuable for CLA-HDM to diagnose unex-
plained CLA, namely the lesion margins and the inter-
nal echoes of the lymph nodes; for the CDFI images, 
the model focused on the locations of the vasculature. 
This was consistent with the clinical experience and rel-
evant studies [12, 43–45]. Specifically, malignant CLAs 
were typically associated with distinct features, such 

Fig. 4  Examples of heatmaps generated by CLA-HDM for each etiology of unexplained CLA. When ultrasound BUS and CDFI images of a case 
(first row) are input into CLA-HDM, it will firstly give first-level diagnostic heatmaps to distinguish benign from malignant CLA (second row) and 
then second-level diagnostic heatmaps to identify the specific etiologies of benign or malignant CLA (third row). Generally, the heatmaps reveals a 
corresponding regularity for each pathology category. CLA, cervical lymphadenopathy; BUS, B-mode ultrasound; CDFI, color Doppler flow imaging
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as well-defined sharp margins, extensive intranodal 
structural variations (for example, intranodal necrosis 
is common in metastases and reticulation is common 
in lymphomas), and abundant peripheral vascularity 
[43, 44]; the highlighted regions in the heatmaps were 

helpful to identify these representative characteristics 
of malignant CLAs. However, in most benign CLAs, 
the margins were ill-defined and blurry, the intranodal 
structure changed slightly, and vessels were rarely or 
only detected intranodal vessels (for example, avascular 

Fig. 5  Comparison between CLA-HDM and radiologists and between radiologists without and with AI assistance to identify four common 
etiologies for unexplained CLA. Radiologists 1 and 2 represent senior-level experience, radiologists 3 and 4 represent middle-level experience, 
and radiologists 5 and 6 represent junior-level experience. ROC, receiver operating characteristic curve; AI, artificial intelligence; CLA, cervical 
lymphadenopathy
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or hilar vascular flow is common in reactive CLAs and 
displacement vessel is common in tuberculosis) [45, 46]. 
And as a result, the entire lymph node and its peripheral 
areas on BUS images and intranodal vessels on CDFI 
images of benign CLAs is of importance in AI interpreta-
tion. These patterns were also consistent with biological 

or pathological characteristics of each etiology, which 
give a good direction for further investigation, but such 
speculations still need direct evidence to confirm. How-
ever, heatmaps undoubtedly played a good role in guid-
ing radiologists, especially when they were facing some 
challenging cases with non-negligible uncertainty. This 

Table 2  Comparison of diagnostic performance between CLA-HDM and six radiologists, and between radiologists with and without 
AI assistance

The data in brackets represent the 95% confidence intervals. * indicates a statistically significant difference between CLA-HDM and radiologist without AI assistance 
(*P < 0.05, **P < 0.01, and ***P < 0.001); # indicates a statistically significant difference between radiologist without and with CLA-HDM assistance (#P < 0.05, ##P < 0.01, 
and ###P < 0.001). The upward arrow (↑) represents indicators that improved owing to AI assistance

Radiologists Internal testing cohort (n = 171) External testing cohort 1 (n = 105) External testing cohort 2 (n = 92)

Without AI (%) With AI (%) Without AI (%) With AI (%) Without AI (%) With AI (%)

1 Accuracy 84.2 (81.3, 87.4) 86.8 (83.9, 89.8)↑# 82.9 (79.1, 86.7) 83.8 (80.0, 87.6)↑ 83.2 (78.8, 87.0) 82.6 (78.3, 86.4)

Sensitivity 68.4 (62.6, 74.9) 73.7 (67.8, 79.5)↑ 65.7 (58.1, 73.3) 67.6 (60.0, 75.2)↑ 66.3 (57.6, 73.9) 65.2 (56.5, 72.8)

Specificity 89.5 (87.5, 91.6) 91.2 (89.3, 93.2)↑ 88.6 (86.0, 91.1) 89.2 (86.7, 91.8)↑ 88.8 (85.9, 91.3) 88.4 (85.5, 90.9)

 2 Accuracy 82.2 (79.5, 85.1) ** 85.7 (83.0, 88.3)↑## 80.5 (76.7, 84.8) 84.3 (80.5, 88.1)↑# 79.9 (76.1, 84.2) 82.6 (78.8, 87.0)↑
Sensitivity 64.3 (59.1, 70.2) * 71.4 (66.1, 76.6)↑## 60.9 (53.3, 69.5) 68.6 (61.0, 76.2)↑ 59.8 (52.2, 68.5) 65.2 (57.6, 73.9)↑
Specificity 88.1 (86.4, 90.1) 90.5 (88.7, 92.2)↑ 86.9 (84.4, 89.8) 89.5 (87.0, 92.1)↑ 86.6 (84.1, 89.5) 88.4 (85.9, 91.3)↑

 3 Accuracy 81.0 (78.1, 83.9) ** 84.8 (82.2, 87.7)↑## 80.5 (76.2, 84.8) 80.5 (76.7, 84.3)↑ 79.4 (75.0, 83.7) 81.0 (76.6, 85.3)↑
Sensitivity 62.0 (56.1, 67.8) * 69.6 (64.3, 75.4)↑# 60.9 (52.4, 69.5) 61.0 (53.3, 68.6)↑ 58.7 (50.0, 67.4) 62.0 (53.3, 70.7)↑
Specificity 87.3 (85.4, 89.3) * 89.9 (88.1, 91.8)↑ 87.0 (84.1, 89.8) 87.0 (84.4, 89.5)↑ 86.2 (83.3, 89.1) 87.3 (84.4, 90.2)↑

 4 Accuracy 81.0 (78.1, 84.2) ** 86.3 (83.6, 89.2)↑### 75.2 (71.4, 79.5) ** 81.0 (77.1, 84.8)↑## 77.7 (73.9, 82.2) 82.1 (78.3, 86.4)↑#

Sensitivity 62.0 (56.1, 68.4) * 72.5 (67.3, 78.4)↑### 50.5 (42.9, 59.1)* 61.9 (54.3, 69.5)↑# 55.4 (47.8, 64.1) * 64.1 (56.5, 72.8)↑
Specificity 87.3 (85.4, 89.5) * 90.8 (89.1, 92.8)↑ 83.5 (81.0, 86.4) 87.3 (84.8, 89.8)↑ 85.1 (82.6, 88.0) 88.0 (85.5, 90.9)↑

 5 Accuracy 78.7 (75.4, 81.9) *** 79.8 (76.9, 83.0)↑ 77.1 (72.9, 81.0) * 82.4 (78.6, 86.7)↑# 76.6 (72.3, 81.0) 79.4 (75.5, 84.2)↑
Sensitivity 57.3 (50.9, 63.7) ** 59.7 (53.8, 66.1)↑ 54.3 (45.7, 61.9) 64.8 (57.1, 73.3)↑# 53.3 (44.6, 62.0) * 58.7 (51.1, 68.5)↑
Specificity 85.7 (83.6, 87.9) ** 86.6 (84.6, 88.7)↑ 84.8 (81.9, 87.3) 88.3 (85.7, 91.1)↑ 84.4 (81.5, 87.3) * 86.2 (83.7, 89.5)↑

 6 Accuracy 76.9 (73.7, 80.1) *** 82.2 (78.9, 85.1)↑## 77.1 (73.3, 81.0) * 81.9 (78.1, 86.2)↑# 74.5 (70.1, 78.8) * 78.3 (73.9, 82.6)↑
Sensitivity 53.8 (47.4, 60.2) *** 64.3 (57.9, 70.2)↑## 54.3 (46.7, 61.9) 63.8 (56.2, 72.4)↑ 48.9 (40.2, 57.6) ** 56.5 (47.8, 65.2)↑
Specificity 84.6 (82.5, 86.7) ** 88.1 (85.9, 90.1)↑ 84.8 (82.2, 87.3) 87.9 (85.4, 90.8)↑ 83.0 (80.1, 85.9) ** 85.5 (82.6, 88.4)↑

Table 3  Comparison of diagnostic performance between the groups of radiologists at different levels

P1 values indicate a comparison between the AI model and the different levels of radiologist groups without AI assistance. P2 values indicate a comparison between 
junior and middle experienced radiologist group with AI assistance and senior experienced radiologist group without AI assistance. The upward arrow (↑) represents 
indicators that improved owing to AI assistance

Different levels of 
radiologist group

Internal testing cohort (n = 171) External testing cohort 1 (n = 105) External testing cohort 2 (n = 92)

Without → with AI (%) P1 P2 Without → with AI (%) P1 P2 Without → with AI (%) P1 P2

Senior Accuracy 83.2 → 86.3 ↑ 0.033 / 81.7 → 84.1 ↑ 0.132 / 81.5 → 82.6 ↑ 0.291 /

Sensitivity 66.4 → 72.5 ↑ 0.032 / 63.3 → 68.1↑ 0.132 / 63.0 → 65.2 ↑ 0.314 /

Specificity 88.8 → 90.8 ↑ 0.040 / 87.8 → 89.4 ↑ 0.116 / 87.7 → 88.4 ↑ 0.292 /

Middle Accuracy 81.0 → 85.5 ↑ 0.007 0.534 77.9 → 80.7 ↑ 0.088 0.616 78.5 → 81.5 ↑ 0.096 0.628

Sensitivity 62.0 → 71.1 ↑ 0.005 0.551 55.7 → 61.4 ↑ 0.107 0.614 57.1 → 63.1 ↑ 0.087 0.647

Specificity 87.3 → 90.4 ↑ 0.004 0.537 85.2 → 87.1 ↑ 0.093 0.589 85.7 → 87.7 ↑ 0.102 0.644

Junior Accuracy 77.8 → 81.0 ↑ 0.033 0.420 77.1 → 82.1 ↑ 0.013 0.670 75.6 → 78.8 ↑ 0.075 0.783

Sensitivity 58.8 → 62.0 ↑ 0.037 0.440 54.3 → 64.3↑ 0.009 0.702 51.1 → 57.6 ↑ 0.091 0.790

Specificity 85.2 → 87.3 ↑ 0.034 0.430 84.8 → 88.1 ↑ 0.016 0.671 83.7 → 85.9 ↑ 0.080 0.759
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effective assistance was positively confirmed by all radi-
ologists involved.

Compared with other studies of classifying malignant 
draining lymph node metastasis [47, 48], our study is fac-
ing a more complex clinical scenario, but the proposed 
model still achieved a good performance in both dichoto-
mous and quadruple classification of unexplained CLA. 
More importantly, it was proved to be a good assisting 
tool for radiologists to improve their overall diagnostic 
accuracy. It revealed a great potential of helping radiolo-
gists to avoid subjective bias related to professional expe-
rience, which may reduce unnecessary investigations, 
inappropriate or delayed treatments. This especially 
holds a big significance for CLA patients in underdevel-
oped countries and regions.

There are several limitations in this study. First, the 
dataset we used for model development had a category 
imbalance across etiologies of unexplained CLA. This is 
mainly due to differences in the prevalence and clinical 
management of each etiology. When clinicians consider 
patients with unexplained CLA to be benign cases, they 
generally use follow-up rather than invasive procedures, 
resulting in a relatively small proportion of benign CLA 
cases of 34.4% included in the study. Also, the low preva-
lence of lymphoma compared to metastatic carcinoma 
resulted in a significant category imbalance within the 
group of malignant CLA. These factors affect the diag-
nostic performance of the model to some extent, and 
using more and broader data to address this issue will be 
an important direction for future work. Second, the ret-
rospective nature of this study caused inevitable devia-
tions. Our future research will incorporate the AI system 
into routine clinical workflows for perspective valida-
tions. Finally, the patients in this study were from medi-
cally underdeveloped regions of China. Therefore, the 
proposed model needs to undergo a multi-region survey 
for a more comprehensive investigation.

Conclusions
The proposed CLA-HDM based on dual-modality ultra-
sound images showed systematically better accuracy, 
sensitivity, and specificity in the diagnosis of four com-
mon etiologies of unexplained CLA than skilled radiolo-
gists. It helped to narrow the gap between radiologists 
with different levels of experience in classification, which 
is potentially of great significance for CLA patients in 
underdeveloped countries and regions.
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