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Abstract

The present study investigated the effects of equol on cardiovascular K+ channel currents.

The cardiovascular K+ channel currents were determined in HEK 293 cells stably express-

ing cloned differential cardiovascular K+ channels with conventional whole-cell patch volt-

age-clamp technique. We found that equol inhibited hKv1.5 (IC50: 15.3 μM), hKv4.3 (IC50:

29.2 μM and 11.9 μM for hKv4.3 peak current and charge area, respectively), IKs (IC50:

24.7 μM) and IhERG (IC50: 31.6 and 56.5 μM for IhERG.tail and IhERG.step, respectively), but not

hKir2.1 current, in a concentration-dependent manner. Interestingly, equol increased BKCa

current with an EC50 of 0.1 μM. It had no significant effect on guinea pig ventricular action

potentials at concentrations of�3 μM. These results demonstrate that equol inhibits several

cardiac K+ currents at relatively high concentrations, whereas it increases BKCa current at

very low concentrations, suggesting that equol is a safe drug candidate for treating patients

with cerebral vascular disorders.

Introduction

Equol [7-hydroxy-3-(4’-hydroxyphenyl)-chroman] is an active metabolite of the soy isoflavone

daidzein generated in the intestinal microbial flora in some, but not all, individuals after con-

suming daidzein[1–3]. Biological activities of equol are greater than daidzein in non-vascular

systems[4, 5] with superior antioxidant activity[6–10]. An earlier study from Sobey and col-

leagues demonstrated that equol dilates carotid artery in vitro and basilar artery of normoten-

sive rats in vivo with similar potency to its parent compound daidzein. Equol retains its

vasorelaxant activity in carotid arteries from hypertensive rats, whereas effects of daidzein

were insignificant, suggesting that equol may be a useful therapeutic agent to treat cerebral vas-

cular disorders[11]. A recent study demonstrates that equol producers showed lower serum

uric acid, triglyceride, and the ratio of waist and hip, as well as higher HDL-cholesterol, sug-

gesting that equol may reduce cardiovascular risk[12]. Therefore, it is believed that equol

rather than daidzein itself may contribute to the beneficial effects of soy foods in preventing

cardiovascular disorders.

Our recent study showed that equol increases large-conductance Ca2+-activated K+

(BKCa) current by acting on its auxiliary β1-subunits and contributes to the equol-mediated
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vasodilation and increase of cerebral blood flow[13]. However, it is unknown whether equol

could affect other cardiovascular K+ currents or whether it could prolong ventricular action

potentials. The present study was therefore designed to investigate the effects of equol on

cloned hKv1.5 (encoding for IKur, ultra-rapidly-delayed rectifier K+ current), hKv4.3 (encod-

ing for cardiac Ito, transient outward K+ current), recombinant cardiac IKs (hKCNQ1/

hKCNE1, slowly-delayed rectifier K+ current), hERG (human Ether-à-go-go-related gene

encoding for cardiac IKr, rapidly-delayed rectifier K+ current), stably expressed in HEK 293

cells, and ventricular action potential of guinea pig hearts. Our results demonstrated that equol

inhibited these cardiac K+ currents at relatively high concentrations, whereas it increased

BKCa current at a low concentration range without prolonging action potential duration in

guinea pig ventricular myocytes.

Materials and methods

Cell culture

The HEK 293 cell lines stably expressing hKv4.3 (KCND3, encoding Ito)[14], hKv1.5 (KCNA5,

encoding IKur)[15], hERG (KCNH2, encoding IKr)[16], hKCNQ1/hKCNE1 (encoding IKs)

[17], Kir2.1 (KCNJ2, encoding IK1)[18] or KCa1.1/β1 (KCNMA1/KCNMB1, encoding BKCa)

[19] were generously provided by Dr. Gui-Rong Li, the University of Hong Kong, and main-

tained in Dulbecco’s modified eagle medium (DMEM, Invitrogen, Carlsbad, CA) supple-

mented with 10% fetal bovine serum and 400 μg/ml G418 (Sigma-Aldrich, St Louis, MO,

USA) for the cell line expressing hKv4.3, hKv1.5, hERG, Kir2.1 and KCa1.1/β1, or 100 μg/ml

hygromycin (Invitrogen) for the cell line expressing recombinant cardiac IKs. Cells were

seeded on a glass cover slip for electrophysiological recordings.

Preparation of guinea pig ventricular myocytes

Guinea pigs weighing 250–300 g of either sex were used in the present study. The experimental

procedure was approved by the Institutional Ethic Committee of Animal Use for Teaching

and Research. After anesthetization of the animal with sodium pentobarbital (40 mg/kg, i.p.),

ventricular myocytes were enzymatically dissociated from guinea pig hearts as described previ-

ously[20, 21]. The isolated cardiomyocytes were maintained in a high-K+ storage medium at

room temperature for 2 h before action potential recording.

Solution and chemicals

Tyrode’s solution contained (in mM): 140 NaCl, 5.4 KCl, 1 MgCl2, 1.8 CaCl2, 0.33 NaH2PO4,

10 HEPES, 10 glucose, pH was adjusted to 7.4 with NaOH. The pipette solution contained (in

mM): 20 KCl, 110 K-aspartate, 1 MgCl2, 10 HEPES, 5 EGTA, and 0.1 GTP, 5 Na2-phospho-

creatine, and 5 Mg-ATP (or K2-ATP for IKs or action potential recording), pH was adjusted

to 7.2 with KOH. MgCl2 in pipette solution was replaced by NaCl, when recording IKs.

Equol (50% R-equol and 50% S-equol) was obtained from Nanjing Laiyin Medicine Tech-

nology Limited Company (Nanjing, Jiangsu, China), and was prepared as 50 mM stock solu-

tions in dimethyl sulfoxide (DMSO, Sigma-Aldrich) and added to the bath solution at the

indicated final concentrations. The DMSO concentration in the working solution was <0.2%

and did not affect the membrane currents.

Electrophysiology

Coverslips with HEK 293 cells expressing corresponding ion channels or ventricular myocytes

were transferred to an open perfusion chamber (1 ml) mounted on the stage of an inverted

Equol and K+ channels

PLOS ONE | https://doi.org/10.1371/journal.pone.0183708 August 23, 2017 2 / 17

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0183708


microscope (IX50, Olympus, Japan), and superfused at 2–3 ml/min with Tyrode’s solution.

The whole-cell patch-clamp technique was used for electrophysiological recording. Borosili-

cate glass electrodes (1.2-mm OD) were pulled with a Brown-Flaming puller (model P-97, Sut-

ter Instrument Co., Novato, CA, U.S.A.) and had tip resistances of 2–3 MΩ when filled with

pipette solution. A 2-M KCl-agar salt bridge was used as reference electrode. The series resis-

tance was compensated by 70–80% to minimize voltage errors. The membrane currents were

recorded with an EPC-10 amplifier and Pulse software (HEKA, Lambrecht, Germany). Com-

mand pulses were controlled by Pulse software. Current signals were low-pass filtered at 5

kHz. The ionic currents were recorded at room temperature (23–25˚C), and cardiac action

potentials were recorded at 36–37˚C.

Data analysis

Group data are presented as mean±SEM. Nonlinear curve fitting was performed using Pulsefit

(HEKA) and SigmaPlot 12.0 (SPSS Science, Chicago, IL, USA). Paired and/or unpaired Stu-

dent’s t-tests were used to evaluate the statistical significance of differences between two group

means. ANOVA was used for multiple groups. Values of P<0.05 were considered statistically

significant.

Results

Effect of equol on hKv1.5 current

Fig 1A shows the time course of the hKv1.5 current recorded in a representative cell in the

absence and presence of 10 μM equol with the voltage protocol shown in the inset (300-ms

voltage step to +50 mV from −80 mV and then back to −40 mV). Equol gradually inhibited the

Kv1.5 current, and the inhibitory effect was partially reversed on washout. Similar results were

obtained in 5 other cells. Fig 1B displays the voltage-dependent hKv1.5 current recorded in a

typical experiment with the voltage protocol shown in the inset in the absence and presence of

3, 10, and 30 μM equol. Fig 1C illustrates the current-voltage (I-V) relationships of hKv1.5 cur-

rent measured at end of depolarization voltage steps during control and after application of 3,

10 and 30 μM equol. The current was inhibited by 10 and 30 μM equol (n = 7, P<0.05 or

P<0.01 vs. control at 0 mV to +60 mV). The concentration-response relationship of equol (1

to 100 μM) for inhibiting hKv1.5 current at +50 mV was fitted to a Hill equation (Fig 1D). The

IC50 of equol for inhibiting hKv1.5 current was 15.3 μM with a Hill coefficient of 2.3.

Inhibition of hKv4.3 current by equol

Fig 2A shows the time course of hKv4.3 current recorded in a HEK 293 cell stably expressing

KCND3 in the absence and presence of 30 μM equol. Equol reversibly inhibited Kv4.3 current.

Similar results were obtained in another typical cell for voltage-dependent Kv4.3 current

recorded with the voltage protocol shown in the inset (Fig 2B). I-V relationships of equol (10,

30, and 100 μM) for inhibiting hKv4.3 current are illustrated in Fig 2C. Equol inhibited hKv4.3

current in a concentration-dependent manner. Significant inhibition of Kv4.3 current was

seen at test potentials of −10 mV to +60 mV (n = 7, P<0.05 or P<0.01 vs. control). The IC50 of

equol for inhibiting hKv4.3 current was 29.2 μM with a Hill coefficient of 1.3 (Fig 2D).

Equol remarkably increased hKv4.3 inactivation (or decay) (Fig 2A and 2B), indicating a

typical of open channel blocking effect as described previously[22, 23], and charge area of

hKv4.3 current was decreased more than hKv4.3 peak current. We therefore analyzed the

charge area[24] of hKv4.3 current at +50 mV by integrating the area under current curve (Fig
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2E) with different concentrations of equol. The IC50 of equol for reducing the current charge

area was 11.9 μM with a Hill coefficient of 1.5 (Fig 2F).

Fig 3A illustrates the representative current and voltage-protocol used for determining the

availability of hKv4.3 current in the absence and presence of 30 μM equol. The variables (Fig

3B) of I/Imax and g/gmax were fitted to a Boltzmann equation: g = 1/{1+exp[(V1/2−Vt)/K]},

where V1/2 is the voltage of 50% channel availability or maximal activation of the channel, Vt

is the test potential, and K is slope factor. The V1/2 of hKv4.3 inactivation was −43.8±2.1 mV

in control, and was negatively shifted to −50.4±1.9 mV by 30 μM equol (n = 7, P<0.01), while

the slope factor K was −5.7±1.2 mV in control and −6.2±1.5 mV in the presence of 30 μM

equol, respectively (P = NS). Steady-state activation of hKv4.3 was determined using tail

Fig 1. Effect of equol on hKv1.5 current. (A) Time course of hKv1.5 current recorded in a representative

HEK 293 cell stably expressing KCNA5 in the absence and presence of 10 μM equol. Original current traces

at corresponding time points are shown in the right. (B) Voltage-dependent hKv1.5 current recorded in a

typical experiment in control and in the presence of 3, 10 and 30 μM equol. (C) I-V relationships of hKv1.5

current in the absence and presence of 3, 10 and 30 μM equol (n = 7, *P<0.05, **P<0.01 vs. control). (D)

Concentration-response relationship for inhibiting hKv1.5 current by equol at +50 mV. The data were fitted to

the Hill equation: E = Emax/[1+(IC50/C)b], where E is the inhibition of current in percentage at concentration C,

Emax is the maximum inhibition, IC50 is the concentration for 50% of maximum inhibition effect, and b is the Hill

coefficient. The numbers in the parentheses represent experimental number.

https://doi.org/10.1371/journal.pone.0183708.g001
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current at −40 mV after a brief depolarization step (8 ms) to between −40 and +60 mV from

holding potential of −80 mV as described previously[15]. The V1/2 of hKv4.3 activation con-

ductance was positively shifted from 0.7±1.5 mV in control to 9.8±1.7 mV by 30 μM equol

(n = 7, P<0.01 vs. control).

Fig 2. Effect of equol on hKv4.3 current. (A) Time course of hKv4.3 current recorded in a representative

HEK 293 cell stably expressing KCND3 with the voltage protocol shown in the inset in the absence and

presence of 30 μM equol. Original current traces at corresponding time points are shown in the right. (B)

Voltage-dependent hKv4.3 current recorded in a typical experiment in the absence and presence of 30 μM

equol and upon washout. (C) I-V relationships of hKv4.3 current in the absence and presence of 10, 30 and

100 μM equol (n = 7, *P<0.05, **P<0.01 vs. control). (D) Concentration-response relationship for inhibiting

hKv4.3 current by equol at +50 mV. The numbers in the parentheses represent experimental number. (E)

Representative hKv4.3 traces for integrating area under current curves in the absence and presence of 30 μM

equol. (F) Concentration-response relationship of hKv4.3 charge area reduction by equol at +50 mV was fitted

to the Hill coefficient. The numbers in the parentheses represent experimental number.

https://doi.org/10.1371/journal.pone.0183708.g002
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Time-dependent recovery of hKv4.3 current from inactivation was analyzed with a paired-

pulse protocol by varying P1–P2 interval as shown in the inset of Fig 3C. The normalized

recovery curves were fitted to a mono-exponential function in the absence and presence of

equol (Fig 3D). Recovery time constant was 103.4±3.7 ms in control, and 105.6±3.1 ms in the

presence of 30 μM equol, respectively (n = 6, P = NS). The result suggests that recovery of

hKv4.3 current from inactivation is not affected by equol.

Effects of equol on recombinant cardiac IKs

Fig 4A displays the time course of recombinant IKs traces recorded in a representative cell in

the absence and presence of 10, 30, and 100 μM equol using a 3-s voltage step to +30 mV every

10 s. Equol inhibited IKs in a concentration-dependent manner. Fig 4B shows the voltage-

dependent IKs in another typical experiment with the voltage protocol shown in the inset.

Equol at 30 μM substantially suppressed IKs, and the inhibitory effect was reversed by wash-

out. Fig 4C illustrates the I-V relationships of IKs.step in the absence and presence of 10, 30

and 100 μM equol. Equol significantly inhibited IKs at test potentials from 0 to +50 mV (n = 6,

P<0.05, P<0.01 vs. control). The IC50 of equol for inhibiting IKs.step was 24.7 μM with a Hill

coefficient of 1.5 (Fig 4D).

The steady-state activation (g/gmax) of cardiac IKs was determined using tail current in the

absence and the presence of 30 μM equol (Fig 4E). The values were fitted to the Boltzmann

Fig 3. Effect of equol on hKv4.3 kinetics. (A) Voltage protocol and hKv4.3 traces for assessing voltage-

dependence of hKv4.3 inactivation in the absence and presence of 30 μM equol. (B) Normalized voltage-

dependent variables of hKv4.3 current inactivation (I/Imax, n = 7) and activation (g/gmax, n = 7) were fitted to

the Boltzmann equation. (C) Voltage protocol and current traces for assessing recovery of hKv4.3 from

inactivation in the absence and presence of 30 μM equol. (D) Recovery curves of hKv4.3 current from

inactivation were fitted to a mono-exponential function.

https://doi.org/10.1371/journal.pone.0183708.g003
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function. The V1/2 of IKs activation was 14.5±3.1 mV in control and 22.3±3.7 mV in 30 μM

equol (n = 6, P<0.01 vs. control).

Effect of equol on cardiac hERG channels

Fig 5A shows the time course of hERG tail current (IhERG.tail) traces recorded in a HEK 293 cell

stably expressing (KCNH2) in the absence and presence of 10, 30, and 100 μM equol. Equol

decreased IhERG.tail in a concentration-dependent manner, and the inhibition was reversed by

Fig 4. Effect of equol on recombinant IKs. (A) Time course of IKs.step recorded in a representative HEK 293

cell stably expressing hKCNQ1/hKCNE1 with the voltage protocol shown in the inset in the absence and

presence of 10, 30, and 100 μM equol. Original current traces at corresponding time points are shown in the

right. (B) Voltage-dependent IKs traces recorded in a typical experiment with the voltage protocol shown in the

inset in the absence and presence of 30 μM equol and upon washout. (C) I-V relationships of IKs.step in the

absence and presence of 10, 30 and 100 μM equol (n = 6, *P<0.05, **P<0.01 vs. control). (D) Concentration-

response relationship of IKs.step inhibition by equol at +50 mV was fitted to the Hill equation. The numbers in

the parentheses represent experimental number. (E) Variables of normalized IKs.tail were fitted to the

Boltzmann equation in the absence and presence of 30 μM equol.

https://doi.org/10.1371/journal.pone.0183708.g004

Equol and K+ channels
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washout. Similar inhibition and washout were obtained with 30 μM equol for voltage-depen-

dent hERG current (IhERG) with the voltage protocol shown in the inset (Fig 5B). Equol at

10 μM decreased IhERG.tail at +10 mV to +60 mV (n = 6, P<0.05, P<0.01 vs. control), but not

IhERG.step (Fig 5C). Significant reduction for both IhERG.tail and IhERG.step was observed at 30

and 100 μM equol (0 mV to +60 mV, n = 7, P<0.05, P<0.01 vs. control). The IC50 of equol was

31.6 μM for inhibiting IhERG.tail, and 56.5 μM for inhibiting IhERG.step (Fig 5D).

The steady-state activation (g/gmax) of IhERG was determined by normalizing IhERG.tail in

control and in the presence of 30 μM equol (Fig 5E). The values were fitted to the Boltzmann

Fig 5. Effects of equol on hERG channels. (A) Time course of IhERG.tail recorded in a representative HEK

293 cell stably expressing KCNH2 with the voltage protocol shown in the inset in the absence and presence of

10, 30, and 100 μM equol. Original current traces at corresponding time points are shown in the right. (B)

Voltage-dependent IhERG traces recorded in a typical experiment in the absence and presence of 30 μM equol

and upon washout. (C) I-V relationships of IhERG.tail (left) and IhERG.step (right) in the absence and presence of

10, 30, and 100 μM equol (n = 7, *P<0.05, **P<0.01 vs. control). (D) Concentration-response relationships of

equol for inhibiting IhERG.tail and IhERG.step were fitted to the Hill equation. The numbers in the parentheses

represent experimental number. (E) Variables of normalized IhERG.tail in the absence and presence of 30 μM

equol were fitted to the Boltzmann equation.

https://doi.org/10.1371/journal.pone.0183708.g005
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function. The V1/2 of IhERG activation was 0.15±2.5 mV and −10.5±2.8 mV in the absence

(control) and presence of 30 μM equol, respectively (n = 6, P<0.01 vs. control).

Effect of equol on hKir2.1 current

Fig 6A shows the typical hKir2.1 current recorded in a HEK 293 cell expressing KCNJ2 with

the voltage protocol shown in the inset in control and in the presence of 30 μM equol. Equol in

the concentration from 3 to 30 μM had no effect on Kir2.1 current (Fig 6B).

Effect of equol on BKCa current

Our recent study has demonstrated that equol induces vasodilation and increases rat cerebral

blood flow by stimulating BKCa channels by acting on its auxiliary β1-subunits[13]. However,

the efficacy of equol on BKCa channels was not determined. We therefore determined the

EC50 (50% of effective maximum concentration) of equol for increasing BKCa current in

HEK 293 cells stably expressing both the core α-subunit (KCNMA1) and the auxiliary β1-sub-

unit (KCNMB1) of the channel. Fig 7A shows the BKCa current traces recorded in a represen-

tative cell with the voltage protocol shown in the inset. BKCa current was increased by 0.1, 0.3

and 1 μM equol. The BKCa channel blocker paxilline (1 μM) almost fully suppressed the cur-

rent. Fig 7B illustrates the concentration-response curve of equol (0.01–3 μM) for stimulating

BKCa current (+70 mV) fitted to the Hill equation. The EC50 of equol for eliciting BKCa cur-

rent was 0.1 μM with a Hill coefficient of 1.3.

Effect of equol on ventricular action potential

Equol at 10 μM significantly inhibited both hERG current and IKs, which implies a potential

to cause prolongation of QT interval by increasing ventricular action potential duration, a

well-known cardiac toxicity. We therefore determined the effect of equol (1, 3 and 10 μM) on

action potential duration (APD) in guinea pig ventricular myocytes (37˚C). Fig 8A illustrates

the ventricular action potentials recorded (2 Hz) in a representative myocyte in control and in

the presence of 1, 3, and 10 μM equol. APD was clearly shortened by 10 μM equol. The effect

was partially reversed on drug washout. Fig 8B shows the individual and mean values of APD

at 50% and 90% repolarization (APD50 and APD90) in ventricular myocytes of guinea pig

hearts. Equol at 1 and 3 μM had no effect on APD50 and APD90. Although 10 μM equol

reduced APD50 and APD90 from 141.4±25.4 ms and 155.1±28.4 ms in control to 131.1±20.7

ms and 142.2±25.1 ms, no statistical significance was observed (n = 8, P>0.05). Changes in

resting membrane potential and action potential amplitude were not observed with equol (1–

10 μM, data not shown) treatment, suggesting that equol does not significantly inhibit inward

rectifier potassium current (IK1).

Discussion

The present study demonstrates for the first time that equol inhibits cloned hKv1.5, hKv4.3,

hKCNQ1/hKCNE1, and hERG channels, while stimulating BKCa channels, stably expressed in

HEK 293 cells. Equol has no effect on hKir2.1 current. The inhibitory effect of equol on K+

channels is as follows: hKv4.3>hKv1.5>hKCNQ1/hKCNE1>hERG. Interestingly, the efficacy

of equol for stimulating BKCa channels is 150-fold greater than for inhibiting cardiac K+

channels.

Previous studies reported that plasma equol concentrations in human were ranged from ~0

to 130 nM depending upon the type of diet[25]. In a cohort study of healthy adult, serum

equol concentration was found to be from 10.3–139 nM (2.5–33.6 mg/L) after consuming

Equol and K+ channels

PLOS ONE | https://doi.org/10.1371/journal.pone.0183708 August 23, 2017 9 / 17

https://doi.org/10.1371/journal.pone.0183708


2×250 ml/d soy milk for 3 days[26]. However, little information is available in the literature for

plasma protein binding ratio of equol. A recent study reported the plasma levels of free equol

and its conjugates in a 24-h period after single oral administration of dietary daidzein (20 mg)

in ovariectomized Sprague-Dawley rats using a LC-MS/MS approach[27]. The maximum

plasma concentration (Cmax) for total equol (conjugated and unconjugated), unconjugated

equol, equol monosulfate and equol glucuronides were 3682±2675 nM, 1.21±0.64 nM, 3.15

±3.04 nM and 3349±2799 nM, respectively. This suggests that most of the circulating equol

was conjugated-equol, specifically equol glucuronides.

It is well recognized that equol is an active metabolite of daidzein and exists in two enantio-

meric forms, R-(+)equol and S-(-)equol. Although both are biologically active, only S-equol is

the natural diastereoisomer produced by intestinal bacteria in 20%–30% population in West-

ern countries and 50%–60% in Asian population consuming soy-containing diets[2, 28]. The

Fig 6. Effect of equol on hKir2.1. (A) Voltage-dependent hKir2.1 current recorded in a representative HEK

293 cell expressing KCNJ2 in the absence and presence of 30 μM equol. (B) Percentage values of hKir2.1

current at −100 mV in the absence and presence of 3, 10, 30 μM equol (n = 5).

https://doi.org/10.1371/journal.pone.0183708.g006
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potential cardiovascular benefits of equol have been widely reported[29–33]; however, infor-

mation related to ion channel involvement is limited. Only one study reported that equol

(40 μM) significantly inhibited L-type Ca2+ current (ICa.L) in guinea pig cardiac ventricular

myocytes[34]. Our recent study demonstrated that equol increased cerebral blood flow by

vasodilation via activating BKCa channels[13]. The present study provides novel experimental

information that equol decreases several cardiovascular K+ channels including hKv1.5,

hKv4.3, hKCNQ1/hKCNE1, and hERG channels.

Kv1.5 channels are expressed not only in human atrial myocytes for encoding human atrial

IKur responsible for atrial repolarization[35, 36], but also in human pulmonary artery smooth

muscle cells in which it plays an important role in regulating membrane potential and vascular

tone[37]. IKur/hKv1.5 is considered an atrial-selective target for developing anti-atrial fibrilla-

tion drug[38, 39]. The present study demonstrated that equol significantly suppressed hKv1.5

stably expressed in HEK 293 cells (IC50, 15.3 μM). The efficacy of equol for inhibiting hKv1.5

Fig 7. Stimulation of BKCa channels by equol. (A) Voltage-dependent BKCa current recorded in a

representative HEK 293 cell stably expressing KCNMA1 and KCNMB1 with voltage protocol shown in the

inset in the absence and presence of 0.1, 0.3 and 1 μM equol, and 1 μM equol plus 1 μM paxilline. (B)

Concentration-response curve of equol (0.01−3 μM) for stimulating BKCa current at +70 mV was fitted to the

Hill equation. The numbers in the parentheses represent experimental number.

https://doi.org/10.1371/journal.pone.0183708.g007
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is greater than the parent compound daidzein for inhibiting Kv current in rabbit coronary

arterial smooth muscle cells (26% inhibition with 30 μM)[40] and in mouse Schwann cells (no

inhibition with 100 μM)[41]. Whether equol can be used to treat atrial fibrillation remains to

be studied.

Kv4.3 (KCND3) encodes cardiac Ito (transient outward K+ current)[42, 43] or IA (voltage-

activated A-type K+ current) in smooth muscles or neuronal cells[44]. Ito is responsible for

early rapid repolarization of cardiac action potential in several mammalian species including

humans, and the gain-of-function mutation of hKv4.3 is implicated Brugada Syndrome[45].

Equol decreased hKv4.3 current stably expressed in HEK 293 cells with IC50s of 11.9 μM (for

current charge area) and 30.3 μM (for peak current), and negatively shifted the inactivation

Fig 8. Effects of equol on action potentials in isolated ventricular myocytes from guinea pig hearts.

(A) Action potentials recorded (2 Hz) in current clamp mode in a representative myocyte in the absence

(control) and presence of 1, 3, and 10 μM equol, and washout. (B) Individual (triangle symbols) and mean

(thick horizontal lines) values of APD50 and APD90 in the absence and presence of 1, 3, and 10 μM equol

(n = 8−11, P = NS vs. control).

https://doi.org/10.1371/journal.pone.0183708.g008
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potential and positively shifted activation potential of hKv4.3 current. The efficacy for inhibit-

ing hKv4.3 by equol is greater than daidzein (only 30%–40% inhibition with 300 μM)[46].

Equol, as quinidine for blocking open channel of rat cardiac Ito[22], significantly increased

inactivation phase, so that the open channel blockade of equol caused a great reduction of the

current charge area at a low concentration range (IC50 = 11.9 μM), which suggests potential

effect of treating Brugada Syndrome if plasma concentrations reach 3–10 μM.

It is interesting to note that our recent studies demonstrates that equol provides significant

neuroprotection against ischemia/reperfusion injury[33], and increases cerebral blood flow

[13] in rat models. Further experiments show that equol dilates rat ex vivo cerebral basilar

artery by eliciting BKCa channels via acting its auxiliary β1-subunits[13]. The present study

showed that the effective concentrations of equol for activating BKCa channels were as low as

0.03 to 3 μM (EC50, 0.1 μM), which is very close to equol’s plasma concentrations. The efficacy

was much greater than daidzein (little effect at 1 μM) for stimulating BKCa in vascular smooth

cells from rat cerebral basilar arteries[47]. Therefore, equol may be a promising drug candidate

for treating patients with brain ischemia.

It is well known that IKr and IKs are encoded respectively by hERG[48] and hKCNQ1/

hKCNE1[49], and both are important for repolarization in human heart[35, 50]. The genetic

or acquired dysfunction of IKr or IKs may cause cardiac arrhythmias due to prolongation of

electrocardiogram (ECG) QT interval induced by delayed ventricular repolarization; therefore,

blockade of IKr (hERG) and/or IKs is implicated to be a potential risk of cardiac arrhythmia

[51, 52]. In the present study, we found that equol significantly decreased hERG and IKs. How-

ever, the concentrations for inhibiting hERG (IC50s, 31.6 μM for IhERG.tail and 56.2 μM for

IhERG.step) and recombinant IKs (IC50, 24.7 μM) are higher than plasma concentrations[25–

27]. In addition, equol had no effect on Kir2.1 channels. Interestingly, equol did not prolong

ventricular APD at 1 and 3 μM, which are effective concentrations for increasing BKCa cur-

rent, and decreased cardiac APD at 10 μM, which may be resulted from the L-type Ca2+ cur-

rent inhibition[34]. Therefore, equol would have little cardiac toxicity potential of prolonging

ventricular APD thereby QT interval on ECG.

Conclusion

Collectively, the present study provides the novel information that equol has a stimulating

effect on BKCa channels at very low concentrations, inhibitory effects on hKv1.5 and hKv4.3 at

relatively low concentrations, and inhibitory effects on IKr and IKs at high concentrations.

These results suggest that equol may be a promising and safe drug candidate for treating

patients with cerebral vascular disorders with limited cardiac toxicity potential.
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