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Abstract
Training in Population Ecology asks for scalable applications capable of embarking 
students on a trip from basic concepts to the projection of populations under the 
various effects of density dependence and stochasticity. Demography _ Lab is 
an educational tool for teaching Population Ecology aspiring to cover such a wide 
range of objectives. The application uses stochastic models to evaluate the future of 
populations. Demography _ Lab may accommodate a wide range of life cycles and 
can construct models for populations with and without an age or stage structure. 
Difference equations are used for unstructured populations and matrix models for 
structured populations. Both types of models operate in discrete time. Models can be 
very simple, constructed with very limited demographic information or parameter-
rich, with a complex density-dependence structure and detailed effects of the differ-
ent sources of stochasticity. Demography _ Lab allows for deterministic projections, 
asymptotic analysis, the extraction of confidence intervals for demographic param-
eters, and stochastic projections. Stochastic population growth is evaluated using up 
to three sources of stochasticity: environmental and demographic stochasticity and 
sampling error in obtaining the projection matrix. The user has full control on the 
effect of stochasticity on vital rates. The effect of the three sources of stochasticity 
may be evaluated independently for each vital rate. The user has also full control on 
density dependence. It may be included as a ceiling population size controlling the 
number of individuals in the population or it may be evaluated independently for 
each vital rate. Sensitivity analysis can be done for the asymptotic population growth 
rate or for the probability of extinction. Elasticity of the probability of extinction may 
be evaluated in response to changes in vital rates, and in response to changes in the 
intensity of density dependence and environmental stochasticity.
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1  | INTRODUC TION

Students get lost very often with demographic models, partic-
ularly with parameter-rich models or with those with a nontriv-
ial mathematical skeleton. Teaching Population Ecology has to 
cope with an apparent atavic fear of mathematical expressions 
in Biology students. Applied Population Ecology demands con-
siderable knowledge and skills in population modeling (see, e.g., 
Botsford et al., 2019). However, learning of simple models, with a 
limited utility for management of real populations, is a useful way 
to introduce mathematical concepts and the basic procedures to 
evaluate the future of populations. In simple models, the popu-
lation state is defined by a single variable (e.g., population size), 
individuals are all considered identical, and demographic rates 
are averaged across individuals. They are unstructured models. 
Training in basic concepts includes aspects which are rarely rele-
vant in conservation. This may be the case for overcompensation 
in density dependence (e.g., Ripa & Heino, 1999). The analysis of 
replacement curves under contest or scramble competition, or 
the analysis of the conditions for the existence of cycles or even 
chaos in deterministic models, may all have a theoretical interest, 
but limited practical relevance in managing populations. It is clear 
that most of extinction of contemporary concern occurs from 
small population size after long periods of decreasing population 
abundance (Collen et al., 2011). The analysis of simple determin-
istic and/or unstructured models, however, has an interest in ex-
plaining general principles (Hastings, 2005). The consideration of 
simple models as strategic, explanatory, models dates back at least 
to Holling (1966) and May (1973). Although not used in the same 
way as null hypothesis in inferential statistics, simple models may 
be used by the students as a reference against which the behavior 
of real populations, or more realistic models, may be compared. 
Burch (2018) includes the use of simple models in his ten principles 
for teaching Demography, particularly in introductory courses. 
Evans et al. (2013), however, suggest that simple models might be 
an obstacle for the progress of Ecology. As concluded by Evans 
et al. (2013; but see also Botsford et al., 2019), to understand and 
predict the behavior of complex ecological systems, models need 
to incorporate all relevant processes. Structured population mod-
els are more realistic and include an age, size, or stage structure 
(see basic concepts in Caswell et al., 1997). Individuals at each 
class may have specific demographic rates, which might be af-
fected differently by the environment.

There are some well-known, excellent, and respected programs 
to evaluate the future of populations. Just to mention some of the 
most widespread used and cited, Vortex (Lacy & Pollak, 2020), 
Ramas (Akçakaya et al., 1999) or popBio (Stubben & Milligan, 2007). 
Another alternative for teaching demography may be the use of gen-
eral purpose software for modeling, particularly R and MATLAB. A 
large number of functions are available for demographic analysis in 
both environments (e.g., Bernstein, 2003). However, the learning 
curve is steeper as this software is not particularly friendly for the 
beginner. And it is important to separate learning of demographic 

concepts from the learning of programs, applications or code. 
Demography _ Lab is an educational application aimed at grad-
uate and postgraduate students which was designed to serve as 
a help in teaching Population Ecology. Demography _ Lab is not 
intended to be an alternative to those programs. It allows for step 
learning, scaling up from the most basic, albeit unrealistic, models 
to very complex models. Demography _ Lab is written in MATLAB 
code (The MathWorks Inc.). The application is a training tool with a 
double function, learning of concepts of demography of wild popu-
lations and to serve as an introduction to the management of spe-
cies with an interest in conservation. Demography _ Lab has been 
routinely used in introductory and advanced courses of Ecology at 
the University of Oviedo (Spain) for the last 8 years. Demography _

Lab covers a gap because while ending in full immersion in the anal-
ysis of complex models, it permits step-by-step learning for the 
beginner; and no previous knowledge of programing languages is re-
quired. Additional interest of Demography _ Lab relies in that it is 
free; allows for complete control of all conditions in the simulations, 
particularly the sources of stochasticity; and is more user-friendly 
than working directly with R or MATLAB.

Three sources of variability are influencing the output of popula-
tion models: environmental stochasticity, demographic stochasticity, 
and sampling error in obtaining demographic data (see a summary in 
Lande et al., 2003). Widely defined, environmental stochasticity re-
fers to temporal variation in extrinsic factors to the populations with 
some effect in vital rates (Legendre, 2020). Factors may be of very 
diverse nature, such as density of predators, weather, or food avail-
ability. In general, increased environmental variance has a negative 
effect on population growth (e.g., Legendre, 2020), in part due to a 
mere Jensen's inequality effect due to geometric averaging of popu-
lation growth (Denny, 2017; Ruel & Ayres, 1999). The exact influence 
of environmental stochasticity might only be correctly evaluated if 
correlation among vital rates in the projection matrix is considered 
(Doak et al., 2005). The possibility of including temporal correlation 
of environments also merits attention, as it may have dramatic effects 
on population growth (Johst & Wissel, 1997; Ripa & Lundberg, 1996; 
Schwager et al., 2006). Demographic variance has been defined as 
expected variance in individual fitness within a projection interval 
(Lande et al., 2003). Demographic variance is a consequence of the 
random nature of the processes affecting individuals during the pro-
jection interval or a consequence of nonpermanent and random dif-
ferences among individuals (e.g., May, 1973; Shaffer, 1981; Kendall & 
Fox, 2003; see Legendre, 2020, for a recent description and defini-
tions). Sampling error refers to measurement error or uncertainty in 
vital rates due limited sample sizes, or nonrepresentative samples, 
used to extract demographic information from populations. Sampling-
related errors and bias may be increased in populations with a conser-
vation concern as very often these populations are rare and difficult to 
find (e.g., Thompson, 2004). Availability of data influences uncertainty 
in the estimation of parameters in stochastic demographic models 
(Doak et al., 2005). Including observation errors in models consid-
erably influences intervals for parameter estimates (e.g., Newman & 
Lindley, 2006). Seasonal or periodic environments assume predictable 
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variation in vital rates with time and may be included in both determin-
istic and stochastic simulations (Caswell, 2001).

Models in Demography _ Lab are always stochastic, but deter-
ministic simulations are possible to serve as background dynamics. The 
user always retains a direct and full control on all demographic and 
environmental variables. Inputs are a set of demographic parameters 
and environmental conditions. Demography _ Lab operates by eval-
uating the changes in population size with time after projecting the 
population for a number of time steps. The application calculates a 
very large number of trajectories and from these, it extracts the prob-
ability of reaching user-given density thresholds. Demography _ Lab 
uses difference equations or projection matrices operating in discrete 
time. The models are solved numerically by iteration for a fixed num-
ber of time steps. Demography _ Lab has two modules. Both allow 
for the evaluation of future growth and the probability of extinction 
of populations. The elementary module, Unstructured, is aimed at 
basic learning, working with populations lacking an age or stage struc-
ture. Basic effects of environmental and demographic stochasticity 
may be evaluated with the Unstructured module. The advanced 
module, Structured, may be used to evaluate populations with dif-
ferent classes of individuals. More advanced options and the effect of 
sampling error are evaluated in the Structured module. The student 
may do a complete trip, with major gains which may be summarized 
as: (a) the understanding of population parameters and the practical 
implications of population size, and their ranges of variation, on the 
future of the populations; and (b) the understanding of how variability 
in vital rates and the role of different sources of stochasticity influence 
the viability of the populations.

Sensitivity analysis is a crucial part of the construction of a model 
(Caswell, 2001, 2019). It may serve to evaluate alternative manage-
ment strategies, to prepare more efficient sampling designs or to 
test the model itself. No explicit sensitivity analysis is included in the 
Unstructured module, though still sensitivity of the probability 
of extinction to changes in the conditions of the simulation may be 
evaluated. A variety of techniques is included in the Structured 
module, from the standard sensitivity and elasticity of asymptotic 
population growth rate, to the sensitivity of the probability of the 
extinction to changes in the level of stochasticity or intensity in 
density dependence. Sensitivity analysis may be done using realis-
tic ranges of variation for almost any demographic parameter, for 
example, assuming different potential ranges for every vital rate or 
matrix entry.

Inspiration to build the application came from Caswell (2001) 
and Lande et al. (2003). Pieces of MATLAB code to extract popula-
tion parameters and to estimate confidence intervals, the algorithms 
for the bootstrap, and the steps to construct the projection matrix 
were all extracted from Caswell's book (2001).

2  | UNSTRUC TURED MODEL S

The application evaluates the growth of populations by using sim-
ple unstructured discrete-time models. The module is a tool to 

sequentially introduce the student to variability in population 
growth rates, stochasticity, and the nature of the environment. Four 
different models are used: exponential, Ricker, Beverton–Holt, and 
ceiling. Detailed descriptions and major properties of these models 
may be found in almost any textbook in Population Ecology (e.g., 
Turchin, 2003). The exponential mode assumes unbounded popu-
lation growth, with no density-dependent regulation. The other 
models assume the existence of density dependence and a carrying 
capacity.

In all cases, R is the multiplicative population growth rate, K is 
carrying capacity, r = lnR, and Nt and Nt+1 are population sizes at 
times t and t + 1 (i.e., before and after the projection interval). In the 
ceiling model, density dependence limits the number of reproduc-
tive individuals, not the number of recruits.

A suggested sequence for training might consider, as a first step, 
the analysis of deterministic models, with a particular attention to 
the replacement curves and overcompensation effects. Allee effects 
and time lags may also be included. Next step might consider deter-
ministic seasonality or periodicity in R, by given a set of values of R 
that are applied in sequence. Finally, the effect of stochasticity may 
be evaluated. The way in which stochasticity is included in the mod-
els may have relevant consequences in the future of the simulated 
populations (discussion in Lande et al., 2003). There are two differ-
ent sources of stochasticity of R: environmental and demographic 
stochasticity. Sampling error is not considered in this module.

2.1 | Stochasticity in R

A realistic simulation would require, in a first step, the identifica-
tion of an environmental variable with a significant effect on the 
population growth rate; then, the description of a linking function 
between the environmental variable and the vital rate; and finally, 
the generation of a sequence of environmental values that mimic 
natural variability (Caswell, 2001). The sequence of vital rates that 
will be used to project the population might be then be obtained. 
No explicit environmental variable, however, is generated by the 
program. Instead, a generic standardized environmental variable is 
created. This generic variable is then used to obtain a sequence of 
population growth rates. The environmental variable may be sam-
pled from three alternative distributions of possible values: a lognor-
mal, a uniform, or a triangular probability distribution. The lognormal 
distribution is a very well-known statistical distribution used very 

(1)Exponential: Nt+1 = RNt

(2)Ricker: Nt+1 = NtR
( 1−Nt ∕K )

≡ Nte
r ( 1−Nt ∕K )

(3)Beverton − Holt: Nt+1 =
RNt

1 +
R− 1

K
Nt

(4)Ceiling: Nt+1 = Rmin (Nt,K )
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often in population models as it is a strictly positive distribution 
(e.g., Lande, 2002). The uniform and the triangular are both guess 
distributions and may be used when little information on the shape 
or nature of the distribution is available. The uniform distribution is 
adequate when complete uncertainty exists and the triangular when 
the minimum, the most likely, and the maximum values are known or 
guessed (Johnson & Kotz, 1999; Manem et al., 2015). The effective 
population growth rates would follow the same distributions. The 
users decide which distribution is more adequate for their particular 
interests.

At the beginning of each projection interval, the application ob-
tains a deterministic population growth rate (Rdet). This is the rate at 
which the population should grow after correcting for density de-
pendence. For the exponential or the ceiling population models, Rdet 
is the default R given as input. Evaluation of density dependence 
includes both, positive (i.e., Allee effects) and negative effects. The 
second step modifies Rdet to accommodate the environmental and 
demographic stochasticity. The application obtains a distribution of 
possible values around Rdet and an effective growth rate (Reff) is ex-
tracted from that distribution. The mean of such a distribution is the 
deterministic rate (Rdet), and its variance is calculated considering the 
environmental and the demographic variances:

(see Legendre, 2020, for a recent description). Demographic stochas-
ticity acts independently on individuals and therefore tends to be ir-
relevant in large populations, as rates average out (e.g., Lande, 2002). 
The exact Reff value is extracted differently depending on the nature 
of the distribution. The exact equations used by the application are in 
Appendix 1.

Note that by using Equation (5), the effect of demographic sto-
chasticity is forced to be influenced by population size. In other 
words, the different effects of demographic and environmental sto-
chasticity to appear in the unstructured module are forced by the 
programing code. This artifact does not occur in the Structured 
module as the stochastic nature of vital rates is directly implemented 
by sampling vital rates from a feasible probability distribution (e.g., 
binomial for survivals).

An alternative way to include stochasticity in the simulations is 
by sampling a discrete distribution of possible values of the pop-
ulation growth rate, in a similar way as Åberg (1992a, b) did using 
transition matrices, one matrix for each distinct set of environmental 
conditions. This may be the only option when the only available in-
formation on a population is a limited collection of observed values 
of R. At each projection interval, one of the observed R values is 
randomly obtained by sampling a discrete uniform distribution. This 
is an obvious oversimplification, as it assumes that the observed set 
or R values are a representative sample of possible values of R and, 
therefore, includes every situation the population is going to face 
during the whole simulation run. Sometimes, however, this is the 
only possibility to evaluate the future of a population. Due to the 
strict assumptions and the paucity of data, interpretation must be 

necessarily cautious. At this respect, students should be aware that 
using a probability distribution with the mean and variance obtained 
from a small sample of R values is a naïve approach, which can lead to 
severely biased results and interpretations: Large confidence inter-
vals are expected for mean and variances for small sample sizes of R.

Environmental temporal correlation has a considerable influence 
on the output of the simulations (e.g., Tuljapurkar & Haridas, 2006). 
Temporal positive autocorrelation of environments may generate 
sequences of favorable or unfavorable periods. It has been observed 
that, on the long run, the variance in final population sizes increases 
as it does the probability of extinction, though opposite effects may 
also occur (Ruokolainen et al., 2009). Intuition suggests that the like-
lihood of series of consecutive projection intervals with unfavorable 
environments increases as the correlation coefficient increases, in-
creasing also the probability of population extinction. On the other 
hand, negative autocorrelation in R reduces the variance in final 
populations sizes (Lande et al., 2003) and also the probability of 
extinction, as extreme years are almost immediately compensated 
by years with opposite environmental conditions. Consequences of 
temporal autocorrelation, however, are far from be so simple, and 
so extinction risk has been shown to increase, but also to decrease, 
in positively correlated environments (Heino et al., 2000; Schwager 
et al., 2006). Temporal autocorrelation of temperatures has been re-
cently suggested to increase in scenarios of global change (Cecco & 
Gouhier, 2018).

To include temporal correlation in environments, the environ-
mental scores are obtained using an autoregressive model of grade 
1 (the environment is only affected by the environment one time 
step before). A detailed description and enumeration of all autore-
gressive models used by the application is in Appendix 1. The au-
toregressive models are a modification of the model described by 
Ranta et al. (2006). An example of the effect of temporal correla-
tion in population trajectories and the probability of extinction is in 
Figure 1.

2.2 | Sensitivity analysis

No explicit sensitivity analysis is included in the Unstructured 
module. Perhaps the only relevant analysis is the evaluation of the 
sensitivity (or elasticity) of the probability of extinction to changes 
in demographic parameters or stochasticity details. Sensitivity (SPE) 
and elasticity (EPE) of the probability of extinction (PE) to changes 
in some parameter (ρ) may be calculated by hand by evaluating the 
probability of extinction before and after a small modification of the 
parameter used in the simulations:

where the subscripts orig and new denote original and new proba-
bilities of extinction and f is the fraction by which the parameter is 

(5)�2
R
= �2

e
+ �2

d
∕N

(6)SPE = (PEorig − PEnew ) ∕ (�orig − �new ) ,

(7)EPE= (PEorig−PEnew)∕f ⋅PEorig ,
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modified. This expression was used by Crowder et al., (1994) to esti-
mate elasticity of the asymptotic population growth rate to changes in 
lower level vital rates. The parameter might be, for example, the carry-
ing capacity, the demographic variance, or the correlation coefficient. 
If the probability of extinction is 0 for the original parameter value, its 
elasticity cannot be calculated, and the probability of reaching some 
critical density threshold might be used instead.

3  | STRUC TURED MODEL S

The structured population module includes four types of analysis 
which may be done in sequence: (a) analysis of asymptotic dynamics 

and deterministic calculations, (b) the construction of confidence 
intervals for matrix entries and basic demographic parameters, (c) 
stochastic projections and evaluation of the probability of extinc-
tion, and (d) sensitivity analysis. A simulation consists of N replicated 
evaluations of a population during T time steps. At the beginning 
of each replicate, the population is initialized and a projection ma-
trix is selected to implement sampling error. Then, an environmental 
sequence is obtained (either iid or correlated). At the beginning of 
each projection interval, the matrix is modified to accommodate en-
vironmental stochasticity. Density dependence is then evaluated on 
the environmental modified matrix and, finally, the effect of demo-
graphic stochasticity is evaluated. The population is projected one 
time step. The process continues until the time horizon is reached or 

F I G U R E  1   Effect of temporal correlation of environments. Four different simulation runs were done for a population of Chthamalus 
montagui (see Appendix 2 for details). Top to bottom are simulations for independent and identically distributed environments (correlation 
coefficient = 0), two positively correlated environments with different coefficient and for a negative environmental correlation. Note that 
coefficients were selected unrealistically large to facilitate visualization of the effects. Left panels are for a sample of trajectories, middle 
panels for the distribution of final population sizes, and right panels are a selection of representative environments randomly generated with 
different correlation coefficients. Pext, probability of extinction; EV, environmental value. Although simulations were done using a matrix 
model, identical effects of temporal correlation are obtained by using unstructured models
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the population is extinct. After completing the N replicates, the ap-
plication gives a collection of population trajectories and the prob-
ability of reaching the critical thresholds given by the user. More 
details are in Appendix 1.

3.1 | Format of input data

The input may be an already constructed, and ready to use, pro-
jection matrix, given either as a single projection matrix or, better, 
as a fecundity and a transition matrix. The latter option should be 
preferred, as more information can be extracted from the fecundity 
and transition matrices than from the projection matrix. The fun-
damental matrix (a matrix with average times spent at each stage 
by individuals), the net reproductive rate (R0), and the generation 
time (Caswell, 2001) can only be estimated if fecundity and transi-
tions matrices are available. An alternative input is the set of lower 
level parameters. For each stage, they may be survival, probability of 
promoting to any other stage (including previous stages or classes) 
and fertility. Entries of the projection matrix, with the exception of 
survivals in the Leslie matrix, are often a combination of lower level 
parameters. It is common also for the matrix entries of each stage 
to share a common lower level parameter (e.g., survival probability). 
It might be more convenient to analyze the response of the popula-
tion to changes in lower level parameters than to changes in matrix 
entries (e.g., Crowder et al., 1994).

The final input format is raw demographic data. A common 
problem I observe during practical lessons of Population Ecology is 
students getting stuck with the construction of the projection ma-
trix. This is relevant because the construction of the projection ma-
trix from census data is a critical step demanding careful thinking. 
Demography _ Lab can obtain the projection matrix from raw de-
mographic data. For each individual, during the projection interval, 
raw data describe its fate in terms of survival and growth and the 
number of recruits left. For each stage, and from individual fates, 
the application obtains the probabilities of remaining or moving to 
other stages and average fecundity and constructs the projection 
matrix. This speeds up the construction of the models and guaran-
tees a correctly derived matrix; but it is optional, and thus the ped-
agogical interest of learning how to construct of matrices is kept by 
the application. Four different types of raw data are accepted by the 
program. The types of raw data differ in the available information 
on reproduction. Anonymous reproduction occurs when parents 
for recruits cannot be identified. The application distinguishes three 
types of raw data with anonymous reproduction: type I, when re-
productive individuals cannot be recognized in the population; type 
II, when reproductives are recognized but its origin (in postbreeding 
censuses) or destination (in prebreeding censuses) are unknown; and 
type III, when origin or destination of reproductives is known. In the 
fourth type of raw data, parents for every recruit and recruits for 
each reproductive are known. The distinction of different types of 
raw data is relevant to obtain the average fecundity for each stage 
and to implement the bootstrap. The bootstrap is used for the 

construction of confidence intervals and to include sampling error in 
the simulations (see Arrontes, 2018).

Other inputs are the initial population size and structure and 
the information on density dependence. The user must also give 
some sampling details such as the timing for the collection of the 
demographic data (before or after reproduction) and how the in-
dividuals were selected for the study. These details are needed for 
the bootstrap to extract confidence intervals and to implement 
sampling error associated with the construction of the projection 
matrix (see below). Additional information on input formats is in 
Arrontes (2018).

3.2 | Analysis of seasonal matrices

Seasonal matrices describe transitions and fecundity schemes in en-
vironments with a cyclic or periodic variation. It may be seasonal or in-
terannual variation. Each season or distinct period has an associated 
projection matrix. There may be an obvious interest in these models 
when very distinct vital rates, and therefore management options, 
are associated with different predictable periods. Seasonal models 
are also useful, for example, for annual species (Caswell, 2001) and 
to manage pest species by selecting the most effective period for 
pest control (e.g., Darwin & Williams, 1964; Smith & Trout, 1994) or 
for the selection of the optimal hunting or extraction period in game 
or exploited species (Angulo & Villafuerte, 2003). In these cases, a 
control matrix is created (a matrix of zeros with proportions or ones 
in the main diagonal). The analysis of individual periodic matrices is 
often useless, as these matrices may not be operating on their sta-
ble stage structure, but on the structure generated by the previous 
matrix. This is well illustrated by Vavrek et al. (1997). More relevant 
is how the dynamics at different periods may influence the annual 
dynamics. The analysis of the annual matrix may be also misleading. 
Each entry in the annual matrix is the sum of several terms, each 
of which is a combination of vital rates from different periods. See 
additional comments in Caswell and Trevisan (1994). The options of 
environmental stochasticity are limited for seasonal matrices.

3.3 | Control of density dependence

Density dependence may be included in two different ways. The sim-
plest is a ceiling-like approach which automatically adjusts the popu-
lation size when the population is above some threshold given by the 
user. The user may specify which ages or stages are affected by, and 
are responsible for, density dependence. The program regulates the 
number of individuals in the affected classes before projecting the 
population one time step. The second approach modifies entries in 
the projection matrix using a density-dependent function. The user 
specifies which matrix entries are affected by density dependence. 
Then, for each affected vital rate, the user identifies the stages re-
sponsible for density dependence. The user also specifies the car-
rying capacity and the function modifying the rate. Three functions 
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are available; a Ricker (8), a Beverton–Holt (9), (e.g., Turchin, 2003) or 
a ceiling-like function (10):

where a ∗
ij
 and aij are, respectively, the modified and the original matrix 

entries; N is the number of individuals in the stages responsible for 
density dependence. N may be the total population size, if all stages 
are responsible, or the number of individuals in some specific stage, 
reproductive individuals, for example. � is the asymptotic population 
growth rate; and K is carrying capacity and is the population size at 
which the populations should stabilize if all stages and matrix entries 
were responsible, and affected, by density dependence.

3.4 | Construction of confidence intervals for basic 
demographic parameters and matrix entries

Specifically, 90% and 95% confidence intervals are constructed for ma-
trix entries, the asymptotic population growth rate, the stable stage 
structure, and the reproductive value. To obtain the intervals, the ap-
plication needs the number of individuals used to construct the pro-
jection matrix and how these were sampled from the population (at 
random or using fixed quotas for each stage). Intervals are obtained 
using the bootstrap (Efron & Tibshirani, 1993) as described in Caswell 
(2001). In short, the bootstrap consists in resampling with replace-
ment the sample of individuals originally used to construct the matrix. 
With the bootstrap sample of individuals, a new projection matrix is 
obtained (the bootstrap matrix) and demographic parameters are 
extracted. After obtaining a large number (say 10,000) of bootstrap 
matrices, the 90% or 95% confidence intervals may be obtained by ex-
tracting the 5 and 95 or the 2.5% and 97.5% percentiles, respectively (a 
more detailed description may be also found in Arrontes, 2018).

3.5 | Sensitivity analysis

Perturbation analyses done by Demography _ Lab include sensi-
tivity and elasticity of the asymptotic population growth rate, λ, to 
changes in matrix entries and also the analysis of the changes in the 
probability of reaching a threshold in population size. The user may 
choose to do the sensitivity analysis of λ analytically, by using the 
right and left eigenvectors (the application uses the MATLAB code 
given in Caswell, 2001), or may evaluate the changes in λ in response 
to changes in vital rates by using variations of equations (6) and (7) 
(as in Crowder et al., 1994). Another indirect way to estimate sensi-
tivity of λ is to obtain the range of possible values of λ in response 
to the range of possible values of selected vital rates. This gives an 

estimation of the uncertainty in λ values in response to uncertainty 
in vital rates (Akçakaya et al., 1999). The evaluation of the probability 
of reaching a size threshold includes the probability of extinction and 
the probability of reaching some safe population size. The probabil-
ity of reaching a size threshold is evaluated in response to changes in 
vital rates, to changes in the intensity of density dependence, and to 
changes in the magnitude of the environmental stochasticity.

3.6 | Stochasticity options

The application evaluates populations under three sources of sto-
chasticity: environmental, demographic, and error in the construc-
tion of the projection matrix (Lande et al., 2003). The two former 
sources are real processes affecting populations. The latter does not 
affect real populations but it may severely affect our calculations or 
simulations. See Figure 2 for an example of the effect of the differ-
ent sources of stochasticity. The application offers different options 
to implement each source of stochasticity.

Environmental stochasticity may be included in three ways. 
Most simple is by sampling a discrete set of matrices (Åberg, 
1992a, b; see also Nakaoka, 1996), each representing an environ-
mental stage. This is the “random transmission matrix” approach of 
Fieberg and Ellner (2001). The set of possible matrices may be the 
matrices observed during some period of study involving several 
projection intervals; or may be matrices associated with contrast-
ing environmental conditions. A second option is to obtain vital 
rates in the projection matrix after sampling a range of possible 
values given by the user. This method includes the selection of 
the probability distribution associated with the vital rates (normal 
or uniform) and the degree of correlation among vital rates in re-
sponse to environmental variability. This is equivalent to sampling 
a multivariate distribution describing the variation of vital rates 
under the “parametric matrix method” approach of Fieberg and 
Ellner (2001) and is how some software packages work, such as 
Ramas or Vortex (Akçakaya et al., 1999; Lacy & Pollak, 2020). A 
third option used in Demography _ Lab obtains the projection 
matrix after sampling vital rates using a matrix of variance–cova-
riance among vital rates. This is another example of the previous 
approach. At each, projection interval, the application obtains a 
sample of vital rates from a multivariate normal or uniform dis-
tribution constrained by the variance–covariance matrix given by 
the user.

The effect of the environmental variability depends both on the 
magnitude of the environmental changes and on the structure of 
the projection matrix. Negative correlations among vital rates may 
substantially reduce the effect of environmental variations (Doak, 
Morris, et al., 2005; Tuljapurkar, 1990). The user has control on the 
correlation among matrix entries. The application also offers the 
possibility to fix an environmental sequence. Differences among 
runs depend only on the effects of demographic stochasticity and, 
if applicable, to the effects sampling error in the construction of the 
projection matrix. Obviously, this has just a pedagogical interest, as 

(8)a ∗
ij
= aijexp( − cN ) with c ≃ ln (� ) ∕K

(9)a ∗
ij
= aij [1∕ (1 + cN ) ] with c ≃ (� − 1) ∕K

(10)
a∗
ij
=aij if N≤K

a∗
ij
=aijc∕N if N>K with c≃K∕𝜆

,
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it helps to identify the relevance of demographic stochasticity and 
sampling error. As for the unstructured module, temporal correlation 
of environments is explicitly included and it is under full control by 
the user (see Appendix 1).

Catastrophes are not considered by the application. Catastrophes 
are unpredictable environmental events, causing a substantial reduc-
tion in population size. They can be considered an additional source 
of stochasticity to populations (e.g., Shaffer, 1981; Young, 1994) or 
an extreme case of environmental stochasticity (Lande et al., 2003; 
Shaffer, 1987). There are not objective reasons to ignore catastro-
phes and they might be included in future improvements of the 
application.

Demographic stochasticity is evaluated separately for transi-
tions and fecundities. The user may select the vital rates affected 
by demographic stochasticity. Demographic stochasticity is evalu-
ated after sampling error, environmental stochasticity, and density 
dependence have been evaluated. The magnitude of the effect of 
demographic stochasticity depends on the number of individuals 
at each class, and therefore is expected to change as population 
size changes during the simulations. Demographic stochasticity is a 
magnitude difficult to estimate. In simple models, demographic sto-
chasticity might be included as deviations in the expected number 
of individuals surviving the projection interval and in the number of 

recruits left by reproductive individual. Deviations in survival may 
be quantified as the variance of a binomial distribution (Kendall & 
Fox, 2002; Legendre, 2020). Variance associated with the recruits 
should be related to the variance of the probability distribution 
of the reproductive output of individuals (Akçakaya et al., 1999; 
Kendall & Fox, 2002). The application offers three possibilities, 
Poisson, uniform, and a discrete user-given distributions. The effect 
of demographic stochasticity on growth is also evaluated by sam-
pling binomial or multinomial distributions. To speed up simulations 
at runtime, demographic stochasticity is evaluated only for classes in 
which the number of individuals is larger than 4,000. This is not ex-
pected to alter the output, because at large densities, demographic 
stochasticity is almost irrelevant.

Sampling error is associated with the uncertainty in the con-
struction of the projection matrix. Sampling error is a consequence 
of the finite number of individuals used (or sampled) to estimate 
vital rates. As for any other sampling program, small number of 
individuals leads to wide confidence intervals for vital rates 
(McCallum, 2000). This means that very distinct matrices might be 
equally possible, which increases the variability of the future tra-
jectories of the population (Figure 3). Sampling error increases the 
range of final population sizes and the probability of extinction. To 
implement sampling error, matrices are randomly obtained by the 

F I G U R E  2   Effect of different sources of stochasticity on simulated population trajectories for a hypothetical population of the barnacle 
Chthamalus montagui (see Appendix 2 for details). Three independent runs were done, with a single source of stochasticity in each: only 
environmental stochasticity (environmental, top panel), only demographic stochasticity (demographic), and only sampling error. Because 
sampling error is the only source of stochasticity, and it is implemented by selecting a different projection matrix for the whole replicate, 
trajectories are deterministic. Left panels are the 15 first replicated trajectories. The right panels are for the distribution of final population 
sizes for the 10,000 replicates. Note the different scales
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application before each simulation run. The user may choose from 
two alternative methods: by using the bootstrap, which involves 
resampling the sample of individuals used to construct the pro-
jection matrix; or by sampling vital rates from a range of possible 
values, given by the user.

4  | USING DEMOGRAPHY _ LAB  A S A 
TE ACHING TOOL

No formal tests were done on the performance of the students 
before and after using the application. However, after using 
the application for several years, a few conclusions may be ob-
tained. The performance of undergraduate students is better 
using Demography-Lab that using general purpose software 
(like R or MATLAB). Of course, mastering general purpose soft-
ware for modeling and specialized applications (such as Vortex, 
Lacy & Pollak, 2020) is part of the teaching objectives of advanced 
Applied Population Ecology courses. But for introductory courses, 
paraphrasing Burch (2018, p. 157), the emphasis of mathematical 
modeling in Demography should not be “so much on the rigor of 
quantifications as on the ability to perform complex logical infer-
ences correctly.”

Teaching was also benefited by the scalable nature of the appli-
cation. Using the same application through the different levels of 
learning implies that students are familiar with the user interface, 
operational aspects and the nature and interpretation of the out-
puts. Savings in time and effort were not quantified, but were evi-
dent. Note that scalability is considerable, since Demography-Lab 

has two other advanced modules to evaluate metapopulation and 
individual based models (not presented in this report), and an addi-
tional module to evaluate statistical differences among population 
parameters (Arrontes, 2018).

By using Demography _ Lab, the students go through the 
whole process of constructing a population model as suggested by 
Legendre (2020), from the analysis of the life cycle of the species 
and extraction of demographic information to sensitivity analysis. 
Students receive three important messages. First, that variability 
in vital rates decreases future grow in populations. Second, that in 
scenarios of global change, increases in variance might be as influ-
ential (or more) as changes in average values of vital rates (Vasseur 
et al., 2014). And third, that small population size may be responsible 
for populations entering an extinction vortex (Lande, 2002). At this 
respect, students realize that in declining populations, demographic 
variance becomes a relevant source of stochasticity affecting the 
population growth rate. By evaluating demographic and environ-
mental stochasticity separately, students gain insights into the dif-
ferent effects and relevance of both sources of variability.

Students learn that the construction of realistic and reliable 
models may ask for considerable demographic and environmental 
data. But also, that population models may be constructed with very 
limited and incomplete demographic information. At this respect, 
sensitivity analysis helps to identify how robust a model is against 
small changes in input parameters; particularly against the expected 
noise in vital rates associated with sampling error. Students may ex-
perience one of the axioms of modeling, that even though simulation 
is possible with limited data, the quality of the outputs depends on 
the quality of the inputs.

F I G U R E  3   The effect of sampling error on the output of a stochastic matrix model for a population of Chthamalus montagui (see 
Appendix 2 for details). Env + Dem, top panels, are for a simulation run using environmental and demographic stochasticity. Env + Dem + S 
error, bottom panels, are for a simulation run in which sampling error is included. Sampling error was implemented by using the bootstrap. 
For each of the 10,000 realizations of the model, a new projection matrix was obtained after extracting a bootstrap sample of the individuals 
used to construct the original projection matrix. Left panels show a sample of 15 trajectories. Right panels show the distribution of final 
population sizes. Pext, probability of extinction
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APPENDIX 1 . COMPUTATIONAL DETAILS FOR 
Demography_Lab
A simulation consists of N replicated evaluations of a population 
during T time steps. At each replicate and time step, the projec-
tion matrix given as input is modified to accommodate stochastic-
ity and density dependence. A flowchart for a simulation run is in 
Figure A1. The output is the complete set of trajectories (N repli-
cates and T time steps in each) and the probability of reaching low 
and high size thresholds. Reading of inputs may include (a) demo-
graphic data within a variety of formats and the initial population 
size and structure; (b) details for density dependence; (c) stochas-
ticity details: sampling error, environmental stochasticity, temporal 
correlation of environments, and demographic stochasticity; and (d) 
simulation details: number of replicates, number of time steps, and 
density thresholds.

The application has a limited offer of probability distributions for 
demographic parameters and environmental and demographic sto-
chasticity. Some realistic probability distributions in demography are 
left out, for example, the negative binomial or the Gamma distribu-
tions (Otto & Day, 2007). This is not a problem for the main objec-
tive of the application, training in demography, which can be covered 
with well-known distributions to the students as the uniform or the 
normal and lognormal distributions.
IMPLEMENTING S TOCHA S TICIT Y IN THE 
UNS TRUC TURED MODULE
A preliminary comment illustrates that the selection of the model 
may not be trivial and may have profound implications in the output. 
The use of deterministic models as a base to construct stochastic 
models may lead to significant artifacts during simulations. For ex-
ample, if the Ricker or the Beverton–Holt models are used, under 
particular conditions they may predict a population explosion. The 
artifact occurs when R < 1 and the population size is above carrying 
capacity; if R < 1 and Nt > K, then R ( 1−Nt ∕K )

> 1, and the populations 
explodes to infinity. This scenario should be impossible in a deter-
ministic world, as a population with R < 1 should never be above K, 
but it may occur under stochastic environments.
Lognormal distribution of environments
For the lognormal distribution, the effective population growth 
rate is extracted from the log-transformed rates (see, e.g., Lande 
et al., 2003). In a log scale, the population growth rate follows a nor-
mal distribution with mean

and variance

The variance of the deterministic rate is calculated considering 
the environmental and the demographic variances:

The effective rate is extracted by transforming an environmental 
score (et) randomly obtained from a N(0, 1). The distribution is trun-
cated at p = 0.001 to avoid extreme, and perhaps unrealistic, values. 
The environmental score is converted to an reff value:

and then transformed to the linear scale: Reff = exp( reff ).
For an independent and identically distributed (iid) environment, 

the score is extracted at the beginning of each projection interval. 
Scores for correlated environments are always obtained by using a 
simple autoregressive model:

where et, et−1 are environmental deviates for times t and t − 1, e is the 
average environmental value, κ is the correlation coefficient, SD is the 
standard deviation of the normal deviate (for Gaussian noise) or the 
range of the distribution (for uniform noise), and εt is a normal devi-
ate randomly obtained from a normal distribution N(0,1) (for Gaussian 
noise) or a uniform deviate obtained from a uniform distribution (0,1) 
(uniform noise).

Because the environments are created using a N(0,1) distribution, 
the autoregressive model simplifies to:

where zt is a N(0, 1) deviate and other elements are as in Equation (A5).

Uniform or triangular distribution of environments
For uniform and triangular distributions, Reff is extracted after ran-
domly sampling a uniform standard distribution U(0, 1) representing 
the environmental value of the year. Reff is obtained by applying in-
verse methods to the probability represented by the uniform deviate. 
From the relationship between range and variance, �2

R
= range2 ∕12 

and �2
R
= range2 ∕24, for the uniform and triangular distributions re-

spectively, a minimum and maximum deterministic values for R are 
calculated.

For the uniform distribution, and an iid environment, Reff is cal-
culated as:

For the triangular distribution:

If environment is iid, et = ut, random deviate from a uniform U(0, 1).
If environments are correlated:

(A1)r = ln R + �2
r
∕2

(A2)�2
r
= ln (1 + �2

R
∕ R

2
) ,

(A3)�2
R
= �2

e
+ �2

d
∕N

(A4)reff = r + et�r

(A5)et = (1 − � ) e + �et−1 + SD
√
1 − �2�t

(A6)et = �et−1 + zt

√
1 − �2,

(A7)Reff = minR + et ⋅ range.

(A8)
Reff=minR+ range

√
et∕2 if et≤0.5

Reff=maxR− range

�
(1−et)∕2 if et>0.5

,

(A9)et = (1 − � )0.5 + �et−1 + (ut − 0.5 )
√
1 − �2,
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where ut is a U(0,1) deviate and other elements in the equation are as 
in Equation (A5).

A note on demographic variance
Demographic variance may be given directly by the user or may be 
calculated by the application from the population growth rate (R). 
The procedure is identical to that used by Akçakaya et al. (1999) 
in Ramas Ecolab. Briefly, R is the sum of average survival prob-
ability of individuals and the average number of recruits they left, 
R = s + m. In the absence of any other source of stochasticity, 
variance of R should be only due to the stochastic nature of the 
processes responsible for R (survival and fertility). The applica-
tion assumes that survival and reproduction are independent, that 
survival follows a binomial distribution, with mean s and variance 
s(1 − s), and that the number of recruits follows a Poisson distribu-
tion, with mean and variance m. The user only gives the value of 
average survival (s). The demographic variance can then be esti-
mated as:

IMPLEMENTING S TOCHA S TICIT Y IN THE S TRUC TURED 
MODULE

Environmental stochasticity

A set of possible alternative matrices
The user enters a set of possible projection matrices and their oc-
currence probability. For iid environments, an environmental value 
from a U(0,1) distribution is randomly extracted and then, using 
inverse methods, a multinomial distribution is sampled. For cor-
related environments, the autoregressive model is used: The envi-
ronment is created by sampling a uniform, U(0,1), distribution. The 
autoregressive model is identical to Equation (A9) above. Then, to 
extract the appropriate matrix for each projection interval, a multi-
nomial distribution is sampled by using inverse methods.

A matrix with ranges of vital rates
The user enters a matrix with the ranges of possible values for each 
vital rate in the projection matrix. The user must also specify the 
correlation among the vital rates. Any correlation is possible, from (A10)�2

d
= �2

R
= s (1 − s ) + m

F I G U R E  A 1   Flowchart for 
Demography _ Lab. U, steps for the 
Unstructured module. S, steps for the 
Structured module. Depending on the 
conditions of the simulation specified 
by the user, some of the steps may be 
ignored
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identical response of every vital rate to environmental variation to 
independent effect of the environment on vital rates. These two ex-
tremes are unlikely and the most common situation should be some 
intermediate value (default: 0.8). To generate sets of vital rates with 
a given correlation, a correlation matrix among vital rates is created. 
This is a square matrix (its dimension being the number of nonzero 
vital rates) in which the main diagonal are ones and any other entry is 
the correlation coefficient. The next step is to obtain at random, and 
independently, a N(0, 1) deviate for each of the vital rates. The set of 
correlated values (e t) is obtained from

where zt is a row vector with the set of independent N(0, 1) deviates 
and C is the Cholesky-like decomposition of the correlation matrix. At 
this step, we have a set of correlated normal N(0, 1) deviates represent-
ing the environmental effect on each of the vital rates in the projection 
matrix.

By chance, it may occur that some of the normal deviates are 
beyond the truncation limits given by the user (e.g., [−1.96, 1.96], 
leaving out 2.5% of the values at each side of the distribution). 
The out-of-range normal deviate is then wrapped by using the 
expression:

The limits behave as bouncing boundaries.
The conversion of environmental values into vital rates depends 

on the distribution of values within the interval. If the probability 
distribution for vital rates is normal, N(0, 1) deviates can be trans-
formed into a vital rate value as: Vital rate = mean + SD × deviate. At 
this stage, the projection matrix is ready. The standard deviation (SD) 
is obtained from the ranges given by the user:

zmin is the lower z-score value associated with the truncation 
value given by the user; min is the lower limit of the range of the 
possible values for the vital rate; and mean is the vital rate entered 
by the user as the average projection matrix.

Any normal deviate which is out of range is wrapped as described 
above and then, vital rates are extracted from the input ranges and 
the projection matrix obtained.

In correlated environments, for environments created by sam-
pling a standard normal distribution, N(0,1), the sets of vital rates 
are correlated. The environment for a single year is a collection of 
random normal deviates; one for each nonzero entry in the projec-
tion matrix. The standard deviation of the random deviate in the sto-
chastic component of the autoregressive model is replaced by the 
Cholesky-like decomposition of the correlation matrix. The autore-
gressive model becomes:

where e t, e t−1 are row vectors with environmental values for each 
vital rate at times t and t − 1; κ is the temporal correlation coeffi-
cient; z t is a row vector with random and independently obtained 
N(0, 1) deviates at time t; and C is the matrix with the Cholesky-like 
decomposition of the correlation matrix (correlation among vital 
rates).

If the probability distribution for the vital rates is uniform, the set 
of normal deviates are transformed into probabilities. The transfor-
mation is done after the set of correlated deviates have been obtained 
and extreme values wrapped. The obtained probabilities are equiva-
lent to deviates from a standard uniform distribution, U(0, 1), with 0 
and 1 being the minimum and maximum values. The U(0, 1) deviates 
are then transformed into vital rates as: Vital rate = min + range × de-
viate, where the min value is obtained as before.

A matrix with covariances of vital rates
Environmental stochasticity is implemented by sampling a multivari-
ate distribution of vital rates whose mean is the matrix entered as 
input and its variance is defined by a variance–covariance matrix of 
vital rates. At each projection interval, a matrix is obtained from this 
multivariate distribution (actually, what is obtained is a set of vital 
rates). The covariance matrix may be entered directly by the user or 
it may be created by the application. To create the covariance matrix, 
the user must give a set of possible projection matrices: Then, the 
application calculates the variances and covariances of the vital rates.

Irrespective of the probability distribution of the vital rates, the 
new projection matrix for each period is always obtained by randomly 
sampling a multivariate normal distribution. The mean of such a distri-
bution is the original projection matrix entered as input. A row vector, 
with random and independently obtained normal, N(0, 1), deviates is 
obtained. The length of the vector is the number of nonzero entries 
in the average projection matrix (i.e., the number of vital rates). To 
generate matrices with the specified pattern of variance–covariances 
among vital rates, the Cholesky-like decomposition of the variance–
covariance matrix is used. The vector with the vital rates to recon-
struct the projection matrix to be used at time t is obtained as:

where at is a row vector with the vital rates at time t; am is a row vector 
with the mean vital rates (as entered in the projection matrix used as 
input); zt is the row vector with independent normal deviates; and C is 
the Cholesky decomposition of the variance–covariance matrix.

The projection matrices are reconstructed from the row vectors 
with the vital rates (at). If the probability distribution of the values of 
the vital rates is normal, no additional transformation is needed. The 
projection matrix is constructed by substituting nonzero elements 
by the elements in the row vector.

Correlated environments
Environments are created by sampling a standard Normal distribu-
tion, N(0,1). The environment for a single year is a collection of ran-
dom normal deviates; one for each nonzero entry in the projection 

(A11)et = ztC

(A12)Wrapped value = 2 × limit − observed value.

(A13)SD =
min − mean

zmin

(A14)et = �et−1 + ztC
√
1 − �2

(A15)at = am + ztC
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matrix. The standard deviation of the random deviate in the sto-
chastic component of the autoregressive model is replaced by the 
Cholesky-like decomposition of the variance–covariance matrix 
(given as input by the user). Instead of environmental values or indi-
ces, the autoregressive model gives the final vital rates and becomes:

where at, at−1 are row vectors with the vital rates at times t and t − 1; κ is 
the temporal correlation coefficient; am is a row vector with the mean 
vital rates (entries of the matrix used as input); zt is the row vector with 
independently obtained normal deviates; and C is the Cholesky de-
composition of the variance–covariance matrix.

Uniform distribution
If the probability distribution of the vital rates is uniform, a modifica-
tion is needed: The at vector is converted into a ut vector with vital 
rates extracted from a uniform distribution. As a first step, the vital 
rates in at must be transformed into probabilities using the normal 
cumulative distribution. The ranges of the uniform distributions of 
the vital rates are calculated from the variances of vital rates given 
by the user as: rij =

√
12 × �2

ij
, for the vital rate at row i and column j. 

The vector with the vital rates for period t is then obtained as:

where ○ denotes the Hadamard product of two matrices (or ele-
ment-by-element multiplication) and ut is a row vector with the vital 
rates at time t; am is a row vector with the mean vital rates (entries of 
the matrix used as input); r is a row vector with the ranges for each 
nonzero vital rate; and pt is a row vector with probabilities associated 
with each vital rate at time t.

Demographic stochasticity

Transitions (survival and growth)

If low level vital rates are used as input data, survival and growth 
of individuals are evaluated independently. Survival is evaluated 
by sampling a binomial distribution B(Ni, Si), where Ni is the num-
ber of individuals at stage i at the beginning of the interval and Si 
is the survival probability during the interval. For individuals sur-
viving, the destination stage (growth) is evaluated by sampling a 
multinomial distribution describing the probability of remaining in 
the stage or ending in any other stage. If the census is prebreed-
ing, survival of recruits (or newborns) is evaluated separately. It is 
done by sampling a binomial distribution B(Nr, Pr), where Nr is the 
expected total number of recruits produced during the reproduc-
tive period and Pr is the survival probability of recruits during the 
projection interval.

For any other input format, demographic stochasticity is evalu-
ated on the whole projection matrix or on fecundity + transitions 
matrices. Destination of the individuals at each stage is evaluated by 

sampling a multinomial distribution. For stages with a single destina-
tion (in addition to death), a binomial distribution is sampled.

Fecundities and fertilities
Fertility is the average number of newborns produced by reproduc-
tive individual during the reproductive season. It is related to the 
biological potential to produce new individuals. Fecundity is the real-
ized fertility during the projection interval. It is the average number 
of new individuals in the population produced by reproductive indi-
viduals during the projection interval. It is a combination of fertility 
and survival. If input data are low level vital rates, fertility is used to 
evaluate demographic stochasticity related to reproduction. For all 
other input formats, fecundity is used. In both cases, demographic 
stochasticity considers the probability distribution of the numbers 
of recruits or newborns. Three probability distributions are used: 
Poisson, uniform, and discrete, user-given, distributions. Hereafter, 
only the term fecundity is used.

Poisson distribution

This probability distribution is discrete and has a single parameter, 
(commonly represented by λ, which has nothing to see with the as-
ymptotic population growth rate), which is both the mean and vari-
ance of the distribution. For each stage, λ is the average fecundity of 
the stage. To evaluate demographic stochasticity, for individuals at 
each stage i, a Poisson distribution with λi identical to fecundity of the 
stage, is randomly sampled Ni times, where Ni is the number of indi-
viduals in the stage. As fecundity changes as consequence of environ-
mental stochasticity or density dependence, new Poisson distributions 
with the new λi's are sampled.

Uniform distribution
The user gives a range of possible values around the average fecun-
dity in the projection matrix. The number of recruits produced by the 
individuals at each stage during the projection interval is obtained by 
sampling the uniform distribution associated with each stage as many 
times as individuals there are in the stage at the beginning of the pro-
jection interval. After the fecundity is modified by the environment 
or density dependence, the range of new uniform distributions keeps 
unaltered. If the minimum value becomes negative under very low 
fecundities, the range is adjusted to have 0 as minimum value. The 
maximum value is adjusted to keep the new fecundity as the mean of 
the distribution.

Discrete distribution

The user must enter the discrete probability distribution in the form of 
pairs of values [number of new individuals produced, probability] for 
each reproductive stage. The number of recruits is obtained by random 
sampling of a multinomial probability distribution as many times as indi-
viduals are in the reproductive stages. There is a problem with this ap-
proach, as the original user-given distribution should only be valid for the 
original projection matrix. After the modification of the projection matrix 
by environmental stochasticity and density dependence, the user-given 

(A16)at = (1 − � )am + �at−1 + ztC
√
1 − �2,

(A17)ut = (am − r ∕2) + r ◦pt ,
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distributions should be changed, as fecundities are modified. There is not 
an automatic and easy way to adjust the discrete distribution to the new 
average fecundity. The application keeps constant the number of classes 
and the probabilities associated with each class. The fecundities, how-
ever, are modified by the same factor the average fecundity was changed 
in the projection matrix. This approach necessarily assumes that the indi-
viduals may leave fractional numbers of newborns. I ignore the effect of 
the resulting stochasticity but I presume that with this approach demo-
graphic stochasticity might be only slightly underestimated.

Sampling error in obtaining the matrix

Using a bootstrap procedure

The user must introduce information on how demographic data 
were obtained. These include (a) the number of individuals studied 
in each stage and from which the projection matrix was constructed; 
(b) if individuals were selected at random or if a fixed numbers of 
individuals were studied in each stage, and (c) the identification of 
reproductive stages in postbreeding censuses.

The first step in the bootstrap is the construction of an auxiliary 
matrix with the individual histories during the projection interval. The 
auxiliary matrix contains all the information needed to reconstruct the 
projection matrix. Each column in the auxiliary matrix is an individual 
during the projection interval. The first row defines the stage at the 
start of the projection interval. The second row, the destination stage 
(including death). The final row(s) give the number of recruits left by 
the individual. There should be as many rows as classes to which new 
individuals recruit. Details for the shape and construction of the auxil-
iary matrix have been explained elsewhere (Arrontes, 2018).

Random sampling of individual histories with replacement from 
the auxiliary matrix simulates repeated sampling of the original 
population in the field, and so different projection matrices may be 
obtained. At the start of each simulation run, the application obtains 
a random sample of individual histories and extracts the projection 
matrix. The random sample is obtained by sampling, with replace-
ment, a discrete uniform distribution U(1, N) (Caswell, 2001). The 
sample size, N, is the original sample size used to construct the origi-
nal input matrix and is the length of the auxiliary matrix. If sample 
size was originally large, differences among randomly extracted ma-
trices will be small and the variability due to sampling error should 
be small. If the original sample size was small, matrices may differ 
considerably and the sampling error should be large.

The procedure is not affected by the nature of the environmental 
stochasticity. However, if the environmental stochasticity is imple-
mented as a set of alternate projection matrices, a different auxiliary 
matrix is constructed for each of the matrices.

Using ranges of vital rates
The user enters a matrix with the ranges of possible values for 
each vital rate in the projection matrix. When introducing data, 
only ranges generating positive values and/or transition probabili-
ties smaller than 1 are accepted by the application. This procedure 

assumes that the vital rates are within an interval of feasible values. 
Ranges may be given for every vital rate or only for a subset. To 
extract a projection matrix, vital rates are sampled at random from 
each interval assuming a uniform distribution of values within the 
intervals. Implementing random sampling of vital rates is trivial:

where ○ denotes the Hadamard product of two matrices and Ai is the 
matrix to be used at run i; Am is the average matrix (i.e., the original 
matrix given as input); R is a matrix with the ranges of the vital rates 
(user-given); and Pi is a matrix with randomly selected uniform deviates 
from a standard uniform distribution, U(0, 1). Uniform deviates are at 
the nonzero entries of matrix R.

APPENDIX 2 . EXAMPLE: Chthamalus montagui IN 
NORTHERN SPAIN
Data come from unpublished matrices for the barnacle Chthamalus 
montagui Southward in northern Spain. Details for sampling and 
the construction of the projection matrix are in Suárez & Arrontes 
(2008). The projection matrix and some demographic parameters 
are in Table A1. Demographic information and confidence inter-
vals in Table A1 were obtained using Demography _ Lab. The 
projection matrix comes from a postbreeding census. Entries in 
the first row are fecundities. Reproductive size classes are 2–4. 
The projection interval was 1 year. The matrix was constructed 
after the study of the destinations of 203 individuals in class 1 
(newly recruited individuals), 127 in class 2, 105 in class 3, and 
66 in class 4. Chthamalus populations are open populations but, 
for example, the population was treated as a closed and all 203 
recruits were considered to come from reproductives in the area.

Details for simulation to construct Figures 1–3.

- No density dependence was considered.
- The threshold for extinction was 1 individual.
- Ten thousand replicates were evaluated.
- Environmental stochasticity was included by sampling matrix en-

tries from uniform distributions. Ranges for the distribution of 
each vital rate were:

 ⎛⎜⎜⎜⎜⎜⎜⎝

0.008 0.2 0.5 0.6

0.1 0.2 0 0

0 0.1 0.2 0

0 0 0.1 0.2

⎞⎟⎟⎟⎟⎟⎟⎠

.

- Demographic stochasticity affected transitions and fecundities. 
For transitions, multinomial or binomial distributions were sam-
pled. For fecundities, a Poisson distribution was used.

- Sampling error in the construction of the projection matrix was 
implemented by using the bootstrap. At the beginning of each 
run, a new projection matrix was extracted from the collection of 
individuals in the original sample of individuals studied.

(A18)
Ai = (Am − R∕2) + R◦Pi ,
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TA B L E  A 1   Matrix used in examples in Figures 1–3. Matrix is for a population of the intertidal barnacle Chthamalus montagui Southward in 
northern Spain

Parameter Original value

95 confidence interval

Lower values Upper values

Projection matrix ⎛
⎜⎜⎜⎜⎝

0.03 0.24 0.68 1.11

0.24 0.52 0 0

0 0.29 0.64 0

0 0 0.24 0.88

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0.01 0.17 0.56 0.97

0.18 0.43 0 0

0 0.21 0.54 0

0 0 0.16 0.80

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0.06 0.32 0.79 1.26

0.30 0.61 0 0

0 0.37 0.73 0

0 0 0.32 0.95

⎞
⎟⎟⎟⎟⎠

λ 1.03 0.97 1.08

R0 1.30 — —

Generation time 10.21 — —

Damping ratio 1.92 — —

Stable stage structure ⎛⎜⎜⎜⎜⎝

0.42

0.20

0.15

0.24

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

0.39

0.16

0.11

0.19

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

0.47

0.25

0.20

0.28

⎞⎟⎟⎟⎟⎠

Reproductive value ⎛⎜⎜⎜⎜⎝

0.05

0.22

0.33

0.40

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

0.04

0.17

0.29

0.32

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

0.07

0.26

0.37

0.47

⎞⎟⎟⎟⎟⎠

Fundamental matrix ⎛⎜⎜⎜⎜⎝

1 0 0 0

0.50 2.08 0 0

0.40 1.67 2.76 0

0.79 3.26 5.39 8.20

⎞⎟⎟⎟⎟⎠

— —

Sensitivity matrix ⎛⎜⎜⎜⎜⎝

0.11 0.05 0.04 0.06

0.43 0.21 0.15 0.25

0.67 0.32 0.24 0.38

0.79 0.38 0.28 0.45

⎞⎟⎟⎟⎟⎠

— —

Elasticity matrix ⎛⎜⎜⎜⎜⎝

0.01 0.01 0.02 0.07

0.10 0.10 0 0

0 0.09 0.15 0

0 0 0.07 0.39

⎞
⎟⎟⎟⎟⎠

— —

Note: Parameters and confidence intervals were evaluated using Demography _ Lab. Note that entries have been rounded to the second decimal 
place and gross rounding error may occur if demographic parameters are recalculated by the reader. Lower and upper values of vital rates in the 
projection matrix were independently extracted for each vital rate (same for the entries in the vectors).


