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Identifying differentially variable (DV) genomic probes is becoming a new approach to detect novel genomic risk factors for
complex human diseases. The F test is the standard equal-variance test in statistics. For high-throughput genomic data, the
probe-wise F test has been successfully used to detect biologically relevant DNA methylation marks that have different variances
between two groups of subjects (e.g., cases versus controls). In addition to DNA methylation, microRNA (miRNA) is another
important mechanism of epigenetics. However, to the best of our knowledge, no studies have identified DV miRNAs. In this
article, we proposed a novel model-based clustering method to improve the power of the probe-wise F test to detect DV miRNAs.
We imposed special structures on covariance matrices for each cluster of miRNAs based on the prior information about the
relationship between variances in cases and controls and about the independence among them. Simulation studies showed that
the proposed method seems promising in detecting DV probes. Based on two real datasets about human hepatocellular carcinoma
(HCC), we identified 7 DV-only miRNAs (hsa-miR-1826, hsa-miR-191, hsa-miR-194-star, hsa-miR-222, hsa-miR-502-3p,
hsa-miR-93, and hsa-miR-99b) using the proposed method, one (hsa-miR-1826) of which has not yet been reported to be
related to HCC in the literature.

1. Introduction

Investigating the relationship between genomics and com-
plex human diseases has greatly improved our understanding
of the molecular mechanisms of, and the interplay of
environmental factors and genomic factors to, the complex
human diseases. High-throughput data from cutting-edge
technologies have substantially facilitated the unbiased
discovery of the genetic risk factors for many diseases. The
standard approach to identify disease-associated genomic
probes is to test if the mean level (e.g., DNA methylation)
between cases and controls is significantly different. In addi-
tion to the mean, the variance is another important summary
statistic. The larger the variance is, the more information the
data could provide. However, the information about variance

has not been directly used to detect disease-associated
genomic probes until recent years.

Several groups of researchers have recently identified
DNA methylation marks that have different variances
between cases and controls [1–3]. They observed that (1) for
differentially variable (DV) DNAmethylation marks the var-
iability in cases is usually higher than that in controls and (2)
DV DNA methylation marks are biologically relevant. DNA
methylation is an example of an epigeneticmodification. Such
modification leads to heritable changes via regulation of gene
expression, without changing the genetic code. DNAmethyl-
ation inhibits gene expression by adding amethyl group to the
cytosine or adenine DNA nucleotides. Another example of an
epigenetic modification is microRNAs (miRNAs) that are
short noncoding 18–25-nucleotide-long RNA and negatively
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regulate mRNA translation [4, 5]. However, to the best of our
knowledge, no studies have investigated differential variability
for miRNAs. The main objective of this article is to develop
statistical methods to detect DV miRNAs between cases
and controls.

The F test is the classical method to test for equal
variance between two groups of subjects, which evaluates
whether the ratio of sample variances between two groups
is significantly different from one. For high-throughput
genomic data, such as DNA methylation data, the probe-
wise F test could be used. That is, we first perform the F test
for each probe to test for equal variances between cases and
controls. We then calculate FDR-adjusted p value to control
for multiple testing, where FDR stands for false discovery
rate. If the FDR-adjusted p value< 0.05 for a DNA methyla-
tion mark, we then claim that this DNA methylation mark
is differentially variable between cases and controls. The
advantages of this probe-wise approach include flexibility
(one model per probe) and easy implementation. However,
DV probes might be governed by the same underlying mech-
anism. Statistically speaking, DV probes might follow the
same distribution. Similarly, non-DV probes might also
follow the same distribution. We hypothesize that these
underlying distributions of variances could help us improve
the power of the F test to detect DV probes.

A few methods have been proposed in the literature to
borrow information across probes to detect differentially
variable genomic probes. For example, Bar et al. [6] proposed
a mixture-model approach for parallel detection of differen-
tial variances in genomic data analysis, by assuming that
the ratio of sample variances between two groups for a given
probe is drawn from a three-component mixture. Bar et al.
[7] introduced a bivariate model (N3) to account for both
differential expression and differential variation in high-
throughput data analysis, by assuming that both means and
variances follow three-component mixture distributions.
Bar and Schifano [8] proposed a unified three-component
mixture model, the L2N model, that can be used to detect
either differential expression (mean) or differential varia-
tion, by modeling the differences of means and variances
(dispersions) between two groups of samples. In the L2N
model, one log-normal component is used to fit under-
expressed (dispersed) probes, one log-normal component
is used to fit overexpressed (dispersed) probes, and one
normal component is used to fit nondifferentially expressed
(dispersed) probes. These models characterize the distribu-
tions of the summary statistics (e.g., mean, variance, or differ-
ence of means), instead of the observed expression levels.

In this article, we propose a mixture of three-
component multivariate normal distributions to fit the
expression levels of miRNAs to identify DVmiRNAs between
cases and controls.

2. Method

2.1. Model. We assume that miRNAs belong to one and only
one of the following three clusters: (1) miRNAs having
higher variances in cases than in controls (denoted as the
OV cluster), (2) miRNAs having equal variances between

cases and controls (denoted as the EV cluster), and (3)
miRNAs having smaller variances in cases (denoted as the
UV cluster). We followed Qiu et al. [9] to directly model
the marginal distributions of miRNAs in the 3 clusters. In
this article, we modified Qiu et al.’s marginal model [9] to
allow the detection of DV probes. We assume that (1) data
have been normalized to remove the effects of confounding
factors, such as chip effect and batch effect, and (2) data have
been transformed so that the distributions of miRNA expres-
sions are close to normal distributions.

For a given miRNA, we denote Xi as the preprocessed
expression for the ith subject, i = 1,… ,m, where m =mc +
mn, mc is the number of cases, and mn is the number of con-
trols. For the kth cluster (k = 1, 2, or 3), we assume that the
expressions of the mc cases are identically distributed with
mean μkc and variance σ2kc. We assume that the expressions
of the mn controls are identically distributed with mean μkn
and variance σ2

kn. According to Qiu et al. [9], Xi’s are margin-
ally correlated with correlation ρkc for cases and ρkn for
controls. We also assume that (1) cases and controls are
independent, and (2) the m × 1 random vector (X1,…, Xm)

T

follows a multivariate normal distribution. For the OV
cluster, we require that σ21c > σ21n. For the UV cluster, we
require that σ23c < σ2

3n. For the EV cluster, we require that
σ2
2c = σ22n. We allow the means and correlations to be different

between cases and controls in the EV cluster.
We used the EM algorithm [10] to estimate the model

parameters μkc, σ
2
kc, μkn, and σ2kn. The posterior probability

pgk = Pr gthmiRNA in kth cluster ∣ x = π1 f1 x / π1 f1 x +
π2 f2 x + π3 f3 x is used to assign the gth miRNA to one
of the 3 clusters, where f k x is the density function of the
multivariate normal distribution for the kth cluster. If pg1
is the largest posterior probability among pg1, pg2, and
pg3, then the gth miRNA will be assigned to the 1st cluster
(i.e., OV cluster). The supplementary document gives the
details about the model and the corresponding parameter
estimation procedure.

2.2. Real Datasets. We downloaded two miRNA datasets
from NIH’s Gene Expression Omnibus (GEO) [11]:
GSE67138 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE67138) and GSE67139 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE67139). Both datasets
are from the same project that aims at detecting miRNAs
differentially expressed between human hepatocellular carci-
noma (HCC) tumor tissues with and without vascular
invasion. GSE67138 is the first batch containing 57 samples
(34 invasive tumor tissues and 23 noninvasive tumor tissues),
while GSE67139 is the second batch containing 120 samples
(60 invasive tumor tissues and 60 noninvasive tumor tissues).
The expression levels of miRNAs in both GEO datasets were
measured by using Affymetrix Multispecies miRNA-1 Array
(GPL8786). Both datasets contain 847 miRNAs.

We checked the data quality by visualizing the plot
(Figure A1) of percentiles across arrays and the scatterplot
(Figure A2) of the first two principal components. Both
plots indicate that the two datasets have been cleaned
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and have good quality (i.e., no apparent outlying miRNAs,
outlying arrays, or technical batch effects). Hence, we
directly used the two datasets in the further analyses. Since
GSE67139 has a larger sample size than GSE61738, we
regarded GSE67139 as the discovery set and GSE67138
as the validation set.

2.3. Simulation.We conducted 4 sets of simulation studies. In
the first set (denoted as SimI), we generated miRNA data
from the proposed marginal mixture model, where estimated
model parameters for GSE67139 (i.e., the discovery set) are
used as the true values of the model parameters (π1 = 0 31,
π2 = 0 58, π3 = 0 11, μ1c = −0 14, σ21c = 1 49, ρ1c = 0 08,
μ1n = 0 14, σ21n = 0 45, ρ1n = 0 32, μ2c = 0 03, σ2

2c = 1 01,
ρ2c = 0 04, μ2n = −0 03, σ22n = 1 01, ρ2n = 0 11, μ3c = 0 13,
σ23c = 0 28, ρ3c = 0 04, μ3n = −0 13, σ23n = 1 69, ρ1n = −0 01).
We generated 100 datasets, each of which has 1000 miRNAs
for 50 cases and 50 controls. Thirty one percent (310) of the
1000 miRNAs are in the OV cluster. Eleven percent (110) of
the miRNAs are in the UV cluster. The remaining 58% (580)
miRNAs are in the EV cluster.

In the second set (denoted as SimII), we generated
miRNA data from a mixture of 3 multivariate t distribution
with the same mean vectors and covariance matrices as those
in SimI and with 3 degrees of freedom. SimII is used to eval-
uate the performance of the proposed method when the nor-
mality assumption for any one of the three clusters (OV, EV,
and UV) is violated.

In the third set (denoted as SimIII) of the simulation
studies, we generated miRNA data from the same model as
that in SimI, except that the marginal correlation within-
subject groups were set to zero (ρkc = 0 and ρkn = 0). SimIII
is used to evaluate the performance of the proposed method
when there are no marginal correlations.

In the fourth set (denoted as SimIV) of the simulation
studies, we generated miRNA data from the same model as
that in SimII, except that the marginal correlations within-
subject groups were set to zero (ρkc = 0 and ρkn = 0). SimIV
is used to evaluate the performance of the proposed method
when there are no marginal correlations and when the
normality assumption for any one of the three clusters
(OV, EV, and UV) is violated.

2.4. Statistical Analysis. We compared the proposed method
(denoted as gs) with sixteen existing differential-variance
detecting methods by using both the real datasets and the
simulated datasets. The ten equal variance tests are (1) the
F test (denoted as F), (2) Ahn and Wang’s score test [12]
(denoted as AW), (3) Phipson and Oshlack’s AD test [13]
(denoted as PO.AD), (4) Phipson and Oshlack’s SQ test
[13] (denoted as PO.SQ), (5) Levene’s test [14] (denoted as
L), (6) Brown and Forsythe’s test [15] (denoted as BF), (7)
trimmed-mean-based Levene’s test [15] (denoted as Ltrim),
(8) improved AW test based on Levene’s test [16] (denoted
as iL), (9) improved AW test based on the BF test [16]
(denoted as iBF), and (10) improved AW test based on the
trimmed-mean-based Levene’s test [16] (denoted as iTrim).
The remaining six methods are based on Bar et al.’s [7] N3
model and Bar and Schifano’s [8] L2N model. Both N3 and

L2N models have been implemented in the R package DVX
[8]. For both N3 and L2N, DVX outputs raw p values, q
values, and posterior probabilities pgk that the probe g
belongs to cluster k given its expression profile and estimated
model parameters, k = 1, 2, 3. Hence, for both N3 and L2N,
we used three methods to assign probes to two clusters: DV
probes and non-DV probes. The first method is based on
the q value. If a miRNA has a q value< 0.05, we claim it is dif-
ferentially variable; otherwise, we claim it is nondifferentially
variable. The second method is based on the false discovery
rate- (FDR-) adjusted p value. If a miRNA has an FDR-
adjusted p value< 0.05, we claim it is differentially variable;
otherwise, we claim it is nondifferentially variable. The third
method is based on the posterior probabilities. We assign a
miRNA to cluster k ∗ if the posterior probability pgk∗ is the
largest among the 3 posterior probabilities, pg1, pg2, and pg3.
We denote the 3-miRNA assignment methods as N3.q
(L2N.q), N3.f (L2N.f), and N3 (L2N), respectively.

In real data analysis, we followed Qiu et al.’s [9] data
preprocessing steps. That is, we first performed the same
Box-Cox transformation for each expression level, and then
for each miRNA, we performed mean centering and scaling
operations so that the mean expression level is 0 and the
variance is 1. We then applied the 17 methods (the gs method
and the 16 existing methods) to the discovery set (GSE67139)
to detect DVmiRNAs between invasive tumors and noninva-
sive tumors. For the 10 probe-wise tests (F, AW, PO.AD,
PO.SQ, L, BF, Ltrim, iL, iBF, and iTrim), we obtained
FDR-adjusted p values. If a miRNA has an FDR-adjusted
p value< 0.05, we claim that this miRNA has significantly
different variances between invasive tumors and noninva-
sive tumors. We then applied the same procedure to the
validation set (GSE67138). We claim that a miRNA is a
validated DV miRNA (1) if the miRNA is DV in both dis-
covery and validation sets and (2) if the sign of the difference
(s2c − s2n) is the same in both datasets, where s2c and s2n are
sample variances for cases and controls, respectively. We
next calculated the proportion of the validated DV miRNAs
(i.e., validation rate) pValid = n12/n1, where n1 is the number
of DV miRNAs in the discovery set (GSE67139) and n12 is
the number of significant DV miRNAs sharing the same
difference direction of variances in both data sets. To esti-
mate the variation of the validation rate pValid, we obtained
the 100 bootstrap validation rates based on 100 bootstrap
discovery and validation sets. We then test if the median
bootstrap validation rate of the gs method is the same as that
of each of the other 16 methods by two-sided Wilcoxon
signed rank tests.

For the validated DVmiRNAs detected by the gs method,
we also checked if they are validated differentially expressed
(DE) miRNAs by using R Bioconductor package limma
[17]. A miRNA is a validated DE miRNA if the FDR-
adjusted p value for testing equal mean expression between
cases and controls is <0.05 in both the discovery and valida-
tion sets and if the sign of the mean difference xc − xn is the
same in both discovery and validation sets, where xc and xn
are the sample means of the cases and controls, respectively.
Denote SDVonly as the set of miRNAs that are validated DV,
but not validated DE. Denote SDEonly as the set of miRNAs
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that are validated DE, but not validated DV. Denote Sboth
as the set of miRNAs that are both validated DE and
validated DV.

We applied the miRSystem [18] to predict the target
genes of miRNAs in each of the 3 sets: SDVonly , SDEonly, and
Sboth. The miRSystem also provides the enriched KEGG
pathways for the predicted target genes.

For simulated datasets, we calculated the magnitude of
agreement between the true cluster memberships of miR-
NAs and the detected cluster memberships by each of the
17 methods by using the Jaccard index [9, 19]. The maxi-
mum value of the Jaccard index is one, indicating perfect
agreement. The minimum value of the Jaccard index is
zero, indicating that the agreement is by chance. We also
evaluate the performances using false positive rate (FPR)
(i.e., the proportion of detected DV probes among the true
non-DV probes) and false negative rate (FNR) (i.e., the
proportion of detected non-DV probes among the true
DV probes). The smaller the FPR (FNR) is, the better the
performance is.

3. Result

For the real data analyses, the numbers of the DVmiRNAs in
the discovery set (GSE67139), and the numbers and propor-
tions of the validated DV miRNAs are shown in Table 1. The
gs method detected 358 DV probes based on the discovery set
(GSE67139), 67 of which are validated in the validation set
(GSE67138). Among the 67 validated DV miRNAs, 66
miRNAs are OV and only one miRNA is UV. The proportion
of the validated DVmiRNAs is 0.19 for the gs method, which
is higher than those of the N3 and L2N methods but lower

than those of the 10 probe-wise tests. However, the gs method
had the highest median bootstrap validation rate among
all 17 methods (Figure 1). For all the 17 methods, the number
(nValid.OV) of the validated OV miRNAs is much larger
than the number (nValid.UV) of the validated UV miRNAs.
This observation is consistent with that observed by other
researchers using DNA methylation data [3].

We got 392 DE miRNAs based on the discovery set
(GSE67139), among which 217 DE miRNAs were validated.
There are only 7 miRNAs in SDVonly (hsa-miR-1826, hsa-
miR-191, hsa-miR-194-star, hsa-miR-222, hsa-miR-502-3p,
hsa-miR-93, and hsa-miR-99b), the parallel boxplots of
which are shown in Figure A3. SDEonly contains 157 miRNAs
(Table A1), the parallel boxplots of which are shown in
Figure A4. Sboth contains 60 miRNAs (Table A2), the parallel
boxplots of which are shown in Figure A5.

Based on the miRSystem analysis, there are 1639 genes
(Table A3) targeted by the 7 miRNAs in SDVonly , 8141 tar-
geted genes (Table A4) for the 157 miRNAs in SDEonly , and
6893 targeted genes (Table A5) for the 60 miRNAs in Sboth.
The 1639 genes targeted by the 7 miRNAs in SDVonly are
significantly enriched (raw p value< 0.05) in 6 KEGG
pathways (calcium signaling pathway, salivary secretion,
amyotrophic lateral sclerosis (ALS), MAPK signaling
pathway, PPAR signaling pathway, and Alzheimer’s
disease) (Table A6). The 8141 genes targeted by the 157
miRNAs in SDEonly are significantly enriched in only one
KEGG pathway (antigen processing and presentation) with
raw p value = 2.70E− 2 (Table A7). The 6893 genes
targeted by the 60 miRNAs in Sboth are enriched in two
KEGG pathways (O-glycan biosynthesis and glycine
serine and threonine metabolism) (Table A8).

Table 1: Information about the validated DV miRNAs.

Method nSig n.OV n.UV nValid nValid.OV nValid.UV pValid

gs 358 262 96 67 66 1 0.19

F 472 349 123 99 96 3 0.21

AW 141 136 0 33 33 0 0.23

PO.AD 202 186 0 68 68 0 0.34

PO.SQ 141 136 5 32 32 0 0.23

L 201 185 16 72 70 2 0.36

BF 175 164 11 54 53 1 0.31

Ltrim 181 168 0 58 56 2 0.32

iL 199 183 16 70 68 2 0.35

iBF 174 163 11 53 52 1 0.30

iTrim 181 168 13 57 55 2 0.31

L2N 225 121 104 30 29 1 0.13

L2N.q 173 69 104 17 16 1 0.10

L2N.f 157 60 97 16 15 1 0.10

N3 247 141 106 34 33 1 0.14

N3.q 202 96 106 25 24 1 0.12

N3.f 178 74 104 18 17 1 0.10

nSig: the number of the DV miRNAs detected in the discovery set (GSE67139); n.OV: the number of OV miRNAs detected in the discovery set; n.UV: the
number of UV miRNAs detected in the discovery set; nValid: the number of validated DV miRNAs; nValid.OV: the number of validated OV miRNAs;
nValid.UV: the number of validated UV miRNAs; pValid = nValid/nSig.
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For the first and the third simulation studies (SimI and
SimIII) where data were generated from a mixture of multi-
variate normal distributions, the values of the Jaccard index
obtained by the gs method are close to one (the perfect
agreement). Figures 2 and 3 showed that the boxplots of the
Jaccard index obtained by the gs method are higher than box-
plots obtained by the other 16 methods. The small p values in
Table A9 showed that the gs method had significantly higher
values of the Jaccard index than the 16 existing equal-
variance tests. Figures 2 and 3 and Tables A10 and A11 also
showed that the gs method had significantly smaller FPR
and FNR than the other 16 methods, except that the gs
method had significantly higher median FNR in SimI
(Figure 2).

Figures 4 and 5 and Table A9 showed that for SimII and
SimIV where data was generated from a mixture of multivar-
iate t distributions, the N3 and L2N methods had the highest
Jaccard index values (median Jaccard index> 0.50), while the
remaining 11 methods had a median Jaccard index< 0.4. The
gs method still had much higher values of the Jaccard index
than the 10 probe-wise tests (F, AW, PO.AD, PO.SQ, L, BF,
Ltrim, iL, iBF, and iTrim). Figures 4 and 5 and Tables A10
and A11 also showed that the gs method had a lower FPR
than the 10 probe-wise tests, but had higher FNR than
these 10 probe-wise tests. Although the N3 and L2N
methods had very low FPR, they had FNR close to one.

Tables A9–A12 showed the p values of two-sided
Wilcoxon signed rank tests to evaluate if the median mea-
sures (Jaccard index, FPR, FNR, and bootstrap validation
rate) are the same as those of each of the other 16 methods,
respectively. All p values are smaller than 0.05, indicating that
all the differences are statistically significant.

4. Discussion

In this article, we proposed a novel model-based clustering
method (the gs method) to detect miRNAs having different

variances between cases and controls. The proposed method
is different from probe-wised equal-variance tests in that
it does not involve hypothesis testing. The real data
analysis showed that the gs method had a larger median
bootstrap validation rate than the 16 existing equal-
variance detecting methods. The four simulation studies
showed that the gs method outperformed the 16 existing
equal-variance detection methods if the miRNA data fol-
low a mixture of multivariate normal distributions. If
the data were generated from other distributions, such
as a mixture of multivariate t distributions, the gs method
had a lower FPR and a higher FNR than the 10 probe-wise
tests. Since controlling FPR is more important than con-
trolling FNR, the gs method is promising in the genomic
data analysis.

Several model-based clustering algorithms have been
proposed to detect DV genomic probes in the literature,
such as Bar et al.’s [7] N3 methods, and Bar and Schifano’s
[8] L2N methods. The N3 methods and L2N methods do
not seem to work as well as the gs method under the simu-
lation scenarios in this article. This is probably partly due
to the gs method that directly models the observed expres-
sion levels, while the N3 and L2N methods model the
summary statistics (e.g., mean, variance, or difference of
means). Using summary statistics might cause the loss of
information. Moreover, the N3 and L2N methods applied a
couple of approximations to derive the marginal densities,
while approximations might cause deviations from true
marginal densities.

In the simulation studies, the proposed method outper-
formed the 10 probe-wised tests, including the classic F test
that has been reported to outperform other equal-variance
tests when the normality assumption is held [20, 21]. The
reason why the gs method performed better than the F test
in SimI and SimIII, where the normality assumption for
any one of the three clusters (OV, EV, and UV) is held, is that
the gs method could borrow information across miRNAs
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Figure 1: Boxplots of validation rates based on 100 bootstrap samples of the discovery set (GSE67139) and the validation set (GSE67138).
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(i.e., the estimation of the model parameters uses the infor-
mation provided by all the miRNAs).

The gs method had lower FPR than the 10 probe-wised
equal-variance tests in SimII and SimIV, where the data
were generated from a mixture of multivariate t distribution
(i.e., the normality assumption for any one of the three clus-
ters (OV, EV, and UV) is violated) (Figure A6). However, the
gs method had higher FNR than the 10 probe-wised tests in
SimII and SimIV. The results of SimII and SimIV also
suggest that the large variation of the validation rate in the
real data analyses (Figure 1) may be due to the violation of
the underlying assumption that the expression levels are
from the mixture of multivariate normal distributions.

Figure A7 showed that the distributions of the original
real datasets are quite different from a mixture of normal
distributions. Note that in genomic data analysis, majority
probes are supposed to be nondifferentially expressed.
Hence, we can use a histogram and QQ plot to roughly check
if data are from a mixture of normal distributions. We

followed Qiu et al.’s [9]data preprocessing steps. That is, we
first performed the same Box-Cox transformation to each
expression level, and then for each miRNA, we performed
mean-centering and scaling operations so that the mean
expression level is 0 and the variance is 1. Figure A7 showed
that even after the Box-Cox transformation and scaling, the
data distributions are still quite different from normal distri-
butions. Further investigation is warranted to develop more
robust model-based clustering methods.

In the real data analysis, the gs method detected 67
validated DV miRNAs (66 OV and 1 UV), seven of which
are DV only. The 7 DV-only miRNAs (hsa-miR-1826,
hsa-miR-191, hsa-miR-194-star, hsa-miR-222, hsa-miR-
502-3p, hsa-miR-93, and hsa-miR-99b) were targeted to
1639 genes based on the miRSystem analysis. Except for
hsa-miR-1826, all DV-only miRNAs have been associated
with HCC. Elyakim et al. [22] showed that miR-191 is a can-
didate oncogene target for hepatocellular carcinoma therapy.
Law andWong [23] reported the association of miR-194 with
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Figure 2: The boxplots of the 100 estimated Jaccard indices, FPR, and FNR based on the 100 simulated datasets in SimI (generating data from
a mixture of multivariate normal distributions with nonzero marginal correlations). The closer the Jaccard index is to one, the better the
performance of the method is. The closer the FPR (FNR) is to zero, the better the performance of the method is.
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Figure 3: The boxplots of the 100 estimated Jaccard indices based on the 100 simulated datasets in SimIII (generating data from a mixture of
multivariate normal distributions with zero marginal correlations). The closer the Jaccard index is to one, the better the performance of the
method is. The closer the FPR (FNR) is to zero, the better the performance of the method is.
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themetastatic behavior of HCC.Murakami et al [24] reported
that miR-222 is increased in poorly versus moderately versus
well-differentiated hepatomas. Jin et al. [25] reported that
miR-502-3p suppressed cell proliferation, migration, and
invasion inHCCby targeting SET. Li et al. [26] confirmed that
the miR-106b-25 cluster, which miR-93 belongs to, is overex-
pressed in HCC. Morishita et al. [27] found that miR-99b is
upregulated in HBV-infected HCC cells.

The 1639 genes, which are targeted by the 7 DV-only
miRNAs, are enriched in 6 KEGG pathways (calcium signal-
ing pathway, salivary secretion, amyotrophic lateral sclerosis
(ALS), MAPK signaling pathway, PPAR signaling pathway,
and Alzheimer’s disease). All these 6 pathways have been
linked to HCC in the literature. For example, Huang et al.
[28] reported that increased mitochondrial fission induced
cytosolic calcium signaling in HCC cells. Chen et al. [29]
reported that in a mice study, DNA methylation marks that
are differentially methylated between livers with HCC and
livers without HCC are enriched in the salivary secretion

pathway. Seol et al.’s [30] results suggest that Riluzole, an
amyotrophic lateral sclerosis (ALS) drug, has an anticancer
effect on HCC. Feng et al. [31] reported that cantharidic acid
inhibits HCC cell proliferation by inducing cell apoptosis
through the p38 MAPK signaling pathway. Nwosu et al.
[32] reported that downregulated genes (HCC versus non-
HCC) were enriched in the PPAR signaling pathway based
on each of the 8 HCC datasets downloaded from the Gene
Expression Omnibus (GEO). Jin et al. [33] reported that
kynurenine 3-monooxygenase (KMO), an enzyme playing a
critical role in Huntington’s and Alzheimer’s diseases,
exhibits tumor-promoting effects towards HCC. Hence,
DV-only miRNAs are biologically relevant to HCC.

There are no overlaps among the enriched pathways for
the 3 sets of miRNAs in the real data analysis: SDVonly
(the set of miRNAs that are validated DV, but not validated
DE), SDEonly (the set of miRNAs that are validated DE, but
not validated DV), and Sboth (the set of miRNAs that are both
validated DE and validated DV). This indicates that DV-only
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Figure 4: The boxplots of the 100 estimated Jaccard indices based on the 100 simulated datasets in SimII (generating data from a mixture of
multivariate t distributions with nonzero marginal correlations). The closer the Jaccard index is to one, the better the performance of the
method is. The closer the FPR (FNR) is to zero, the better the performance of the method is.
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Figure 5: The boxplots of the 100 estimated Jaccard indices based on the 100 simulated datasets in SimIV (generating data from a mixture of
multivariate t distributions with zero marginal correlations). The closer the Jaccard index is to one, the better the performance of the method
is. The closer the FPR (FNR) is to zero, the better the performance of the method is.
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miRNAs might provide additional information about the
molecular mechanisms of HCC than that provided by
DE miRNAs.

In summary, the proposed gs method assumes expression
levels from the mixture of multivariate normal distributions.
The proposed gs method seems promising to detect differ-
ential variability based on our simulation studies. In the
future, we will improve it into a robust version against
the violation of the normality assumption on the compo-
nent distributions.

Data Availability

The authors downloaded two microRNA datasets from NIH’s
Gene Expression Omnibus (GEO) [8]: GSE67138 (https://
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acc=GSE67139).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The research is partially supported by the NSERC Discovery
Grants (RGPIN-2018-05846, RGPIN-2018-05981) and by
the National Institute of Health of the United States (NIH/
NHLBI 1 P01 HL 132825-01, NIH/NHLBI 5 R01 HL
125734).

Supplementary Materials

Details about the gs model and its parameter estimation via
the EM algorithm. Supplemental Table A1: the list of the
157 DE-only miRNAs. Supplemental Table A2: the list of
the 60 DV-and-DE miRNAs. Supplemental Table A3: the list
of the 1639 genes targeted by the 7miRNAs in SDVonly . Supple-
mental Table A4: the list of the 8141 genes targeted by the 157
miRNAs in SDEonly . Supplemental Table A5: the list of the
6893 genes targeted by the 60 miRNAs in Sboth. Supplemental
Table A6: the list of the 6 KEGG pathways enriched by the
1639 genes targeted by the 7miRNAs in SDVonly . Supplemental
Table A7: the list of the 1KEGGpathway enriched by the 8141
genes targeted by the 157 miRNAs in SDEonly. Supplemental
Table A8: the list of the 2 KEGG pathways enriched by the
6893 genes targeted by the 60 miRNAs in Sboth. Supplemen-
tal Table A9: p values of two-sidedWilcoxon signed rank tests
to test if the median Jaccard index obtained by the gs
method is the same as that obtained by each of the other
16 methods. Supplemental Table A10: p values of two-sided
Wilcoxon signed rank tests to test if the median FPR obtained
by the gs method is the same as that obtained by each of the
other 16 methods. Supplemental Table A11: p values of
two-sided Wilcoxon signed rank tests to test if the median
FNR obtained by the gs method is the same as that obtained
by each of the other 16 methods. Supplemental Table
A12: p values of two-sided Wilcoxon signed rank tests to test
if the median proportion of validation obtained by the gs

method is the same as that obtained by each of the other 16
methods based on 100 bootstrap samples. Figure A1: the plot
of percentiles of log2 expression levels across arrays. Left panel:
GSE67138. Right panel: GSE67139. Figure A2: the plot of the
first and second principal components. Left panel: GSE67138.
Right panel: GSE67139. Supplemental Figure A3: parallel
boxplots of the 7 validated DV-only miRNAs. Left panel:
GSE67138. Right panel: GSE67139. Supplemental Figure A4:
parallel boxplots of the 157 validated DE-only miRNAs.
Left panel: GSE67138. Right panel: GSE67139. Supplemental
Figure A5: parallel boxplots of the 60 validated DV-and-DE
miRNAs. Left panel: GSE67138. Right panel: GSE67139.
Supplemental Figure A6: histograms and QQplots for a sim-
ulated dataset in each of the 4 simulation scenarios. Supple-
mental Figure A7: histograms and QQ plots for the two real
datasets. Note that in genomic data analysis, majority probes
are supposed to be nondifferentially expressed. Hence, we can
use a histogram and QQ plot to roughly check if data are from
a mixture of normal distributions. (Supplementary Materials)
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