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Low mortality rate is often associated with slow life history, and so far, has mainly
been assessed through examinations of specific adaptations and lifestyles that limit
mortality risk. However, the organization of activity time budgets also needs to be
considered, since some activities and the time afforded for performing them may expose
animals to higher mortality risks such as increased predation and/or increased metabolic
stress. We examined the extent of activity time budgets contribution to explaining
variation in life history traits in mammals. We specifically focused on hibernating species
because of their marked seasonal cycle of activity/inactivity associated with very different
mortality risks. Hibernation is considered a seasonal adaptation to prolonged periods
of food shortage and cold. This inactivity period may also reduce both extrinsic and
intrinsic mortality risks, by decreasing exposure to predators and drastically reducing
metabolic rate. In turn, reduction in mortality may explain why hibernators have slower
life history traits than non-hibernators of the same size. Using phylogenetically controlled
models, we tested the hypothesis that longevity was positively correlated with the
hibernation season duration (the time spent between immergence and emergence
from the hibernaculum or den) across 82 different mammalian species. We found
that longevity increased significantly with hibernation season duration, an effect that
was particularly strong in small hibernators (<1.5 kg) especially for bats. These results
confirm that hibernation not only allows mammals to survive periods of energy scarcity,
but further suggest that activity time budgets may be selected to reduce mortality risks
according to life history pace.

Keywords: activity patterns, hibernation, life history, temporal organization of activity, time and energy
allocations, trade-off, longevity, mortality risk

INTRODUCTION

Energy is the fundamental requirement for life. Its acquisition, storage, and metabolic use shape
the diversity of lifestyles in all living organisms (Brown et al., 2004). Because energy availability
to organisms is limited under natural conditions, in terms of its acquisition in time and space,
as well as its quantity and quality, organisms have to simultaneously maximize investments into
all biological functions, and to compromise the allocation of metabolic energy among competing
demands (Lack, 1966; Williams, 1966; Hirshfield and Tinkle, 1975; Reznick, 1985). For example,
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demographic characteristics may affect energy investments
among biological traits such as growth, reproduction, and
somatic maintenance. These trade-offs have led to the evolution
of specific life history strategies (Stearns, 1992).

Attributes of life histories generally scale with body size
such that large animal species usually take longer to develop
and mature, have lower annual reproductive rates, and live
longer compared to small species (Blueweiss et al., 1978;
Speakman, 2005). However, life history variations that are
specific to a particular body size are also observed along a
fast-slow continuum (Oli, 2004; Bielby et al., 2007; Dobson
and Oli, 2007; Jones et al., 2008; Jeschke and Kokko, 2009).
For a given body size, most species trade off investments
between reproduction and self-maintenance. For example, a
species with fast life history strategy will exhibit faster growth,
earlier reproduction, larger annual reproductive investment, and
reduced maximum life span compared to a species with a slow life
history strategy, which will typically promote self-maintenance
and survival over reproduction (but see Bielby et al., 2007;
Jeschke and Kokko, 2009).

The evolution of the fast-slow continuum in life history
strategies appears to be contingent upon individual mortality risk
(Promislow and Harvey, 1990; Martin, 2015; Healy et al., 2019).
Individual mortality can be due to either intrinsic (wear-and-tear
of the body) or extrinsic factors, such as predation, disease, or
environmental hazards. Species with slow life histories typically
exhibit adaptations that limit both sources of mortality (Holmes
and Austad, 1994; Wilkinson and South, 2002; Blanco and
Sherman, 2005; Sibly and Brown, 2007; Munshi-South and
Wilkinson, 2010; Shattuck and Williams, 2010; Turbill et al.,
2011; Lewis et al., 2013; Healy et al., 2014; Healy, 2015; MacRae
et al., 2015; Wu and Storey, 2016). Besides these molecular
(such as oxidative stress tolerance), physiological/anatomical
(such as chemical protection, horns and antlers) or lifestyle
(such as arboreality) adaptations that reduce mortality risk,
the organization of activity time budgets should be particularly
important in shaping the variety of life histories observed in the
wild. Mortality rates may change depending on the time allocated
to each activity, resulting in trade-offs for which both time and
energy can be optimized. For instance, activities that contribute
the most to reproductive success are often energy-intensive
(Alonso-Alvarez et al., 2004) and associated with higher risks of
extrinsic mortality (Magnhagen, 1991). However, the temporal
dimension of energy allocation trade-offs in relation to the
evolution of life history strategies has been little examined (see
Healy et al., 2014).

Here, we first examined the extent to which patterns
of relative activity and inactivity might explain variation in
life history traits in mammals. We specifically focused on
hibernating species because of their marked seasonal cycle
of activity/inactivity, which is associated with very different
risks of mortality. From an intrinsic perspective, hibernation
is a period of metabolic depression where energy requirements
are reduced to minimal levels compared to the active season
(Ruf and Geiser, 2015). It has been suggested that energy
restriction slows down the aging process (Walford and Spindler,
1997; Masoro, 2006) and is associated with enhancement of

somatic maintenance (Shanley and Kirkwood, 2000). From an
extrinsic perspective, even if mortality during hibernation occurs,
hibernating mammals are usually hidden in burrows or shelters,
which may reduce risks of predation, infections or injuries
for several continuous months. As a result, hibernating species
generally exhibit lower rates of mortality than similar-sized
non-hibernating species during part of the year, resulting in
slower life history strategies (Wilkinson and South, 2002; Turbill
et al., 2011). However, previous studies linking hibernation to
longevity considered hibernation as a binary trait (if animals
hibernate or not), rather than a continuous adaptive response
(hibernation season duration) allowing animals to restrict their
period of activity during parts of the year. Yet, early data from
captivity highlight a positive correlation between longevity and
hibernation duration in Turkish hamsters (Mesocricetus brandti)
(Lyman et al., 1981). In addition, a strong negative effect of
mean annual temperature on hibernation season duration and
annual survival rate, which is highly correlated with longevity
(Turbill et al., 2011), has been shown among populations of
hibernating rodent species (Turbill and Prior, 2016). This raises
the question of whether, across hibernating mammals, the time
spent being inactive (hibernation season duration) influences
maximal longevity, a key feature characteristic of fast and slow
life history strategies.

In the present study, we tested for a positive association
between the hibernation season duration and longevity across
82 mammalian species. For this examination, we tested for
effect of body size on longevity while controlling statistically
for phylogeny. If indeed hibernation season duration is part of
a strategy that minimizes mortality, we predicted that a longer
hibernation season duration should be positively associated
with species maximum longevity, especially in small mammals
(<1.5 kg) that exhibit greater longevity than non-hibernators
of the same size (Turbill et al., 2011). In addition, if metabolic
reduction during hibernation slows aging (Lyman et al., 1981;
Turbill et al., 2013; Wu and Storey, 2016), we predicted that the
effect of hibernation season duration on longevity should increase
with the percentage of metabolic reduction during hibernation
compared to euthermia.

MATERIALS AND METHODS

Review Criteria
We conducted the review using the search engine Google
Scholar1 and considered articles up to and including December
2019. We based our survey on the hibernating species listed
in Turbill et al. (2011) and Ruf and Geiser (2015), and
further identified nine other species, mainly ground squirrels
and bats, not mentioned in any of the lists. All the 152
hibernators that were examined in this process are summarized
in Supplementary Material (see Supplementary Table S1).
We excluded species for which hibernation was restricted to
only a few populations or under specific conditions, namely
two species, the black-tailed prairie dog (Cynomys ludovicianus;

1https://scholar.google.com
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Gummer, 2005; Lehmer et al., 2006) and the polar bear (Ursus
maritimus; Amstrup and DeMaster, 2003). We did not include
non-seasonal hibernating species capable of entering multi-day
torpors at any time of the year. Indeed, for such cases, it is
difficult to accurately measure the time spent in hibernation over
a year, which may also vary considerably among individuals and
between years. Thus, we excluded hibernating elephant shrew
species (Elephantulus sp.) and hibernating marsupials with the
exception of the mountain pygmy possum (Burramys parvus),
reported to be a seasonal hibernator (Lovegrove et al., 2001;
Geiser and Körtner, 2010).

Longevity and Body Mass Data
Data on maximum longevity, hereafter referred as longevity,
and average body mass for the list of hibernating species
previously identified were mainly obtained from the AnAge
data base (The Animal Aging and Longevity Database2; Human
Ageing and Genomic Resources; Magalhães and Costa, 2009),
and complemented these data with information from the
PanTHERIA data base (Ecological Society of America3; Jones
et al., 2009) from two reviews on mammalian longevity (Heppell
et al., 2000; Wilkinson and South, 2002) and from a specific search
in Google Scholar combining the following terms: “longevity”
OR “life history” AND scientific or common names of species.
For this specific search in Google Scholar, we considered both
old and new nomenclatures for ground squirrel species, and only
selected long-term field studies since they provide a good estimate
of maximum longevity. Moreover, we specifically investigated the
source of the data (captive vs. wild) and only retained longevity
data where the source was available, to control for captivity effects
on longevity (see Supplementary Table S2 for references).

We determined the arboreality lifestyle of the species in
order to statistically control (see below section “Statistics”) for
higher longevity (Kamilar et al., 2010; Shattuck and Williams,
2010; Healy et al., 2014). For this, we conducted a review
of peer-reviewed scientific journal Mammalian Species4 and
used Google Scholar. The search criteria were based on
combining the following terms: “arboreal” OR “semi-arboreal”
OR “climb tree” AND scientific or common names of species.
We completed our search by examining the mammalian
lifestyle databases of the following articles (Healy et al., 2014;
Hidasi-Neto et al., 2015). Our arboreality factor included 16
arboreal and semi-arboreal species, which feed, nest, or escape
from predators, at least frequently, by climbing into trees (see
Supplementary Table S2).

Hibernation Season Duration Data
Reviewing Strategy
Relatively few studies have investigated hibernation duration
with body temperature recorders on wild mammals. However,
several studies have estimated hibernation season duration from
capture-mark-recapture records or direct observations, thus
assessing periods of inactivity. Although for some species, the

2https://genomics.senescence.info/species/search_list.php
3https://ecologicaldata.org/wiki/pantheria; Ecological Archives
4https://academic.oup.com/mspecies

duration of hibernation measured as the period between the
first and last torpor bout is probably shorter than the period
of inactivity (Young, 1990; Williams et al., 2014; Siutz et al.,
2016), these measures should still provide reasonable estimates
of the duration of energy savings, thereby allowing species to be
compared with each other.

We reviewed the literature to retrieve estimates of the
hibernation season duration as the time (in days) spent
between immergence and emergence from the hibernaculum
or den (with little or no movement outside). The search
criteria were based on combining the following terms:
“hibernation” OR “hibernation duration” OR “denning”
(exclusively for bears) OR “roosting” (exclusively for bats)
AND scientific or common names of species. In order to
minimize heterogeneity in the scales at which the data
were measured (e.g., individual, population), we considered
maximum hibernation season duration obtained from
same-sex adult groups, either male or female depending
on the species (and recorded maximum hibernation season
duration from overall population data when more precise data
were unavailable).

Inclusion and Exclusion Criteria
We prioritized studies for which the methodology for estimating
hibernation season duration was described (capture-mark-
recapture, direct observation and body temperature recording).
These criteria included 64 species. We also included studies
based on road kills as an index of activity/inactivity. This
criterion has already been used to evaluate changes in hedgehog
abundance (Morris and Morris, 1988; Bright et al., 2015;
Wembridge et al., 2016) and was used for 2 species in our
data set [The Algerian hedgehog (Atelerix algirus) and the
Southern white-breasted hedgehog (Erinaceus concolor)]. Finally,
in cases where the above criteria were not available, we
included studies for which a precise hibernation period was
mentioned but the methodology could not be assessed. This
criterion included 16 species (see Supplementary Table S2,
labeled species).

We excluded studies for which periods of extreme inactivity
were measured only once in a population. This criterion
excluded three maximum hibernation season data: 8 months
for the little pocket mouse (Perognathus longimembris; Kenagy
and Bartholomew, 1985); 6 months for the long-tailed pocket
mouse (Chaetodipus formosus; Kenagy and Bartholomew, 1985);
and 11 months for the Eastern chipmunk (Tamias striatus;
Munro et al., 2008).

The availability or absence of data (longevity and
hibernation season duration) in the literature for the 152
species examined is specified in Supplementary Material
(see Supplementary Table S1). In total, our literature search
allowed inclusion of 82 hibernating mammals in the analyses
including 80 placental mammals, 27 bats, one marsupial
(the mountain pygmy possum), and one monotreme [the
short-beaked echidna (Tachyglossus aculeatus)]. Longevity,
body mass and hibernation season duration data for
these species are available in Supplementary Material (see
Supplementary Table S2).
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Phylogenetic Data
We downloaded 100 phylogenetic mammalian trees5 (see
(Upham et al., 2019), focusing on the 82 species in our data
set (see Supplementary Table S2). These trees were used to
construct strict consensus trees for the hibernating species of
our study, where the included clades were those present in all
the 100 phylogenetic mammalian trees (Paradis, 2011). Because
we ran subsequent analyses on different subsets of the global
dataset (see section “Phylogenetic Data” below), we constructed
separate phylogenetic trees on (1) the full hibernator data set
(N = 82 species), (2) the data set excluding bats (N = 55
species), (3) the data set with only deep hibernators (see
below) excluding bats (N = 46 species), and (4) the data set
excluding bats and hibernators >1.5 kg (N = 44 species) (see
Supplementary Figure S1).

The rationale for eliminating bats from some analyses was
to compare the specific effect of hibernation season duration on
longevity between bats which have very distinct characteristics
(i.e., flight capacity, highly gregarious behavior during
hibernation, Austad and Fischer, 1991) and other hibernators.

The metabolic rate during torpor is not known for all
hibernating species studied (Ruf and Geiser, 2015). To test the
prediction that the effect of hibernation season duration on
longevity should increase with metabolic reduction, we compared
the effect of hibernation season duration on the longevity
of two groups including (all hibernators excluding bats) or
excluding (only deep hibernators without bats) species reducing
their energy expenditure during hibernation by less than 90%
compared to the euthermic state. These comprise Ursidae species
and the European badger (Meles meles) that reduce their total
energy expenditure from 33 to 75% during hibernation compared
to the euthermic state (Hellgren, 1998; Watts and Jonkel, 1988;
Tøien et al., 2011; Ruf and Geiser, 2015) and small tropical
hibernators such as Cheirogaleidae and Tenrecidae species, which
show a 70% reduction (Dausmann et al., 2009; Wein, 2010).
Thus, the “deep hibernator” group includes the species capable
of reducing their total energy expenditure by about 90% or
more during hibernation as compared to the euthermic state and
reaching a body temperature during torpor below 10◦C (mainly
small Holarctic species; Heldmaier et al., 2004).

In addition, the analyses of Turbill et al., 2011 indicated a body
mass threshold of 1.5 kg, below which the benefits of hibernation
(compared to non-hibernation) for longevity increased. To test
the effect of hibernation season duration on longevity between
hibernators <1.5 kg and larger ones, we used the data set
excluding bats and hibernators >1.5 kg.

Branch lengths for respective consensus trees were calculated
with the “compute.brlen” function from the “ape” package based
on Grafen’s (1989) computations, and were used to compute
PGLS models with the “caper” package in R (see section
“Phylogenetic Data” below).

Statistics
We tested for a significant relationship between hibernation
season duration and species maximum longevity, using

5http://vertlife.org/phylosubsets/

phylogenetic generalized least squares (PGLS) models with the
“ape 5.0,” “apTreeshape 1.5,” and “caper 1.0” packages in R v.
3.6.2 (Paradis, 2011; Orme et al., 2013; Paradis and Schliep, 2019;
R Core Team, 2019). We thus statistically “controlled” for the
influence of the phylogenetic relationships among species on
the variables before evaluating relationships. In addition, the
relative effect of the phylogenetic tree on the linear model could
be estimated as a λ parameter, ranging between 0 (covariation
among species measurements is independent of co-ancestry)
and 1 (covariance entirely explained by co-ancestry). Testing
the models with λ = 0 allowed comparison to λ-positive
models, and thus the extent to which phylogeny influenced
analyses of the models examined. In addition to phylogeny,
our model evaluated the influences of average body mass (of
adults) of the different species, bats and arboreality lifestyle, and
the fact that some data were acquired from captive and wild
populations (see below).

We ran PGLS models for the four different conditions
listed above (Table 1). Longevity was the dependent variable
in all our models, and hibernation season duration and
species average body mass were independent variables. In all
models, body mass and longevity were log-transformed to
normalize their distributions, and all independent variables
were standardized (using z-scores), so that their coefficients
are directly comparable as estimates of effect sizes (Abdi,
2007). In the original models, we included the interaction
hibernation season duration x body mass to test for the
possibility that the effect of hibernation season duration on
longevity was more important for species of small body
mass (see Figure 2 in Turbill et al., 2011), as well as a
“captive/wild” factor to account for captivity-related variation
in longevity (Tidière et al., 2016). However, these factors
were parsimoniously dropped in the final models based on
Akaike’s Information Criterion (AIC). Among the models within
1AIC < 2 (1AICi = AICi-AICmin), we kept the model with
the lowest number of terms (see Supplementary Table S3).
Nevertheless, body mass was retained throughout our models,
because of the dominance that it shows as a primary axis of
energetics and life history (Stearns, 1992; Brown et al., 2004).
In order to control for higher longevity due to particular
lifestyles, we added a “bat (yes/no)” factor in the full model
(Wilkinson and South, 2002; Turbill et al., 2011) and an
“arboreality (yes/no)” factor in each model (Kamilar et al., 2010;
Shattuck and Williams, 2010; Healy et al., 2014).We limited the
number of additional predicators in order to maintain sufficient
statistical power with respect to the sample size (Table 2;
Mundry, 2014).

For the final models, the level of covariation in maximum
longevity among species was estimated by maximum
likelihood (λ ML).

Within bats (individuals from wild populations only), we
were not able to estimate the effects of body mass and
hibernation season duration on longevity, while controlling
statistically for phylogeny. We had too few species of bats
(N = 27; Münkemüller et al., 2013) for properly evaluating the
phylogenetic signal (the lower CI bound for the phylogenetic
signal could not be estimated; see Supplementary Material,
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TABLE 1 | Summary of models and datasets.

Model 1 2 3 4 5

Model type PGLS PGLS PGLS PGLS Linear model

Hibernators > 1.5 kg x x

Hibernators < 1.5 kg x x x

Deep hibernators x x x

Bats x x

Sample size 82 55 46 44 27

Arboreal and semi-arboreal species 16 16 11 15 0

Hibernation season duration range (day) 105−296 105−296 105−296 105−296 120−255

Longevity range (year) 3.5−49.5 3.5−49.5 3.5−49.5 3.5−29 6−41

Body mass range (g) 4.6−227500 8−227500 8−7300 8−958 4.6−28.55

The category known as “deep hibernator” includes the species capable of reducing their total energy expenditure by about 90% or more during hibernation as compared
to the euthermic state and reaching a body temperature during torpor below 10◦C (mainly small Holarctic species; Heldmaier et al., 2004). Crosses indicate group(s)
included in each model.

Supplementary Figure S2). Thus, we present simple linear
regressions for this group later indicated as model 5 (Tables 1, 2).

RESULTS

The characteristics of the models and data used are summarized
in Table 1. For each model, hibernation season duration and
longevity were similar in range between the different datasets
(Table 1). Naturally, the range of body mass was much smaller
when considering only deep hibernators, small species and bats.

Model 1 (N = 82)
Accounting for the effect of phylogeny, variation in longevity was
positively associated with hibernation season duration and body
mass across all hibernating mammals (Figures 1, 2 and Table 2).
On average, bats had significantly longer lifespans (83%, x̄ = 21
years, SD = 8.7, N = 27) as well as species with an arboreal lifestyle
(12.6%, x̄ = 12.9 years, SD = 9.2, N = 16), than other non-flying
and non-arboreal mammals (x̄ = 11.5 years, SD = 9.7, N = 39)
(Table 2).

Model 2 (N = 55)
Removing hibernating bats from the analyses showed that
hibernation season duration still had a significant positive effect
on longevity (Figures 1, 2 and Table 2). The positive effect
of body mass and an arboreal lifestyle on longevity remained,
mammals with a higher body mass or an arboreal lifestyle
exhibiting significantly longer lifespan (Figures 1, 2 and Table 2).

Models 3 and 4 (N = 46 and N = 44, Respectively)
When only deep hibernators (model 3) and small hibernators
<1.5 kg (excluding bats) were considered (model 4), we
found a positive effect of hibernation season duration on
longevity (Figures 1, 2 and Table 2). The positive effect
of arboreality lifestyle on longevity only remained for small
hibernators (model 4).

Among the above models, the effect of hibernation season
duration was slightly higher for small hibernators <1.5 kg and
highly significant (Figures 1, 2 and Table 2). These models

FIGURE 1 | Effects of hibernation season duration and body mass on
longevity. Z-standardized model coefficients are presented ±95% Confidence
Interval (1.96xSE). Both body mass and longevity were log-transformed before
the analyses. The effect sizes are presented for PGLS models for all mammals
(N = 82), mammals without bats (N = 55), deep hibernators without bats
(n = 46) and small mammals without bats (N = 44). For comparison, effect
sizes from a simple linear model not accounting for phylogeny are presented
for bats only (N = 27).

showed a strong influence of phylogeny on the results (Table 2).
Ignoring the effect of phylogeny by constraining λ to 0 removed
the effect of hibernation season duration on longevity (Table 2).

Model 5 (N = 27)
Because our sample size for bats alone was too small, we
could not perform an analysis controlling for phylogeny.
Instead, we ran simple linear models to test for the effects
of hibernation season duration and body mass on longevity.
Here as well, hibernation season duration, but not body
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FIGURE 2 | Relationship between hibernation season duration (standardized)
and longevity (log-transformed and standardized). The regression lines are
presented for PGLS models for all mammals (bold black line, N = 82,
p = 0.015), all hibernators without bats (black line, N = 55, p = 0.011), deep
hibernators without bats (dashed line, N = 46, p = 0.028) and small
hibernators without bats (green line, N = 44, p = 0.005). For comparison,
effect sizes from a simple linear model not accounting for phylogeny are
presented for bats only (red line, N = 27, p = 0.036). Full red circles highlight
bat species, the squares highlight species reducing their energy expenditure
during hibernation by less than 90% compared to the euthermic state, green
item highlight species below 1.5 kg, and black circle highlight all remaining
hibernators above 1.5 kg in the data set. Please note that some dots referring
to bat species are superimposed because the corresponding species have
the same hibernation season durations and longevities.

mass, was positively and significantly related to maximum
longevity (Figures 1, 2 and Table 2). Hibernation season
duration had an effect on bat longevity up to two times
higher than in previous models excluding bats. This significant
effect without accounting for phylogeny was probably due
to a lower level of phylogenetic differences among bat
species, compared to other models including up to eight
different orders.

DISCUSSION

Influence of Hibernation Season
Duration on Longevity
Our purpose was to examine the extent to which the activity
time budget explains variation in life history traits in mammals.
We investigated this question in hibernating species because
of their marked seasonal cycle of activity/inactivity, which is
associated with very different risks of mortality (Turbill et al.,
2011). While controlling for phylogeny, our study highlighted a
positive influence of hibernation season duration on longevity in
mammalian hibernators. These results were in agreement with
an early study that tested the effect of hibernation duration on
longevity in captive Turkish hamsters (Lyman et al., 1981). In
agreement with Dobson (2007) and Sibly and Brown (2007), the

two major axes of life histories of mammalian hibernators are
body mass and lifestyle, with lifestyle contributing to the slow-
fast continuum. The bat lifestyle (e.g., aerial) had the greatest
influence on longevity, with a positive effect on longevity that
was three times greater than the arboreality lifestyle. The effect
of hibernation season duration, in addition to these lifestyles,
appeared to be roughly one-third of the effect of body mass on
longevity (see model estimates in Table 2).

Our results show that the effects of hibernation season
duration on longevity were consistent across a wide range of body
sizes, and became stronger with the limitation in body mass to
small species (species <1.5 kg), especially for bats (Figure 1).
Interestingly, hibernation season duration appeared to be more
important than body mass in explaining longevity in the latter
species. These results support the idea that hibernation (1) is
an efficient strategy that limits mortality in periods of energy
scarcity for some larger species facing strong energy constraints
during part of the year (e.g., Marmota species), and (2) may be an
especially effective strategy for small mammals that are expected
to suffer from both higher predation rate (Cohen et al., 1993;
Sinclair et al., 2003) and increased loss of energy expenditure
during winter (Ruf and Geiser, 2015). In either case, increased
hibernation season duration may increase both annual survival
rates (Turbill and Prior, 2016) and overall longevity (this study).
Note that in some cases, the lack of relationship between body
mass and longevity in our study could also be due to a smaller
range of body mass variation than reported in other studies (for
instance in bats; Wilkinson and South, 2002).

In our study, the effect of hibernation season duration on the
longevity for bats was twice that of small non-flying terrestrial
mammals, though this result should be considered with caution
since we were not able to control for phylogeny when considering
only bats (Figure 2 and Table 2). Bats stand somewhat apart
from other mammals, distinguished notably by their ability for
sustained flight, an important lifestyle characteristic (Sibly and
Brown, 2007). Flying is an energy-intensive activity, considerably
more than terrestrial locomotion (Tucker, 1968; Thomas and
Suthers, 1972). Thomas and Suthers (1972) estimated that the
greater spear-nosed bat (Phyllostomus hastatus) increases its
resting metabolic rate more than 34 times during flight, while
rodents of similar size increase it only by 8-fold during terrestrial
locomotion. Thus, in bats the reduction of metabolism during
hibernation is particularly important compared to their period
of activity (Wilkinson and South, 2002).

The marked effect of hibernation season duration on longevity
in bats may also be explained by some extreme physiological
adaptations to hibernation having evolved in response to
specific ecological and anatomical constraints (Willis, 2017). For
instance, several bat species are capable of very long torpor
bouts (up to 60 days; reviewed in Ruf and Geiser, 2015),
perhaps in response to their limited accumulation of internal
or external energy reserves (Willis, 2017). In addition, the
little brown bat (Myotis lucifugus), for instance, is capable of
performing “heterothermic arousals,” corresponding to shallow
torpor bouts (Tskin > 20◦C), during arousal phases, and
thus reduce the cost of euthermia (Jonasson and Willis,
2012; Czenze et al., 2017). This particular adaptation may be
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TABLE 2 | Regression results for the best models explaining variation in longevity among hibernators species.

λML λ = 0

λML β ± SE t-value p-value β ± SE t-value p-value

Phylogenetic
correction (PGLS)

Model 1: All
hibernators (82
species)

Intercept
z-Hibernation duration
z-log (Body mass) bat
arboreality

λML = 0.736
CI95 = [NA-0.924]

0.986 ± 0.111 8.847 < 0.001*** 0.834 ± 0.032 25.778 < 0.001***

0.051 ± 0.020 2.484 0.015* 0.028 ± 0.020 1.343 0.183

0.163 ± 0.043 3.800 < 0.001*** 0.216 ± 0.026 8.409 < 0.001***

0.531 ± 0.170 3.131 0.002** 0.656 ± 0.060 10.903 < 0.001***

0.163 ± 0.075 2.175 (0.033* 0.182 ± 0.054 3.387 0.001**

Model 2:
Hibernators without
bats (55 species)

Intercept
z-Hibernation duration
z-log (Body mass)
arboreality

λML = 0.849
CI95 = [0.238−0.969]

0.970 ± 0.112 8.682 < 0.001*** 0.841 ± 0.031 27.439 < 0.001***

0.058 ± 0.022 2.645 0.011* 0.004 ± 0.022 0.200 0.842

0.171 ± 0.038 4.442 < 0.001*** 0.217 ± 0.024 8.920 < 0.001***

0.191 ± 0.070 2.738 0.008** 0.173 ± 0.051 3.409 0.001**

Model 3: Deep
hibernators without
bats (46 species)

Intercept
z-Hibernation duration
z-log (Body mass)

λML = 0.850
CI95 = [0.480-0.960]

1.025 ± 0.107 9.611 < 0.001*** 0.876 ± 0.026 33.483 < 0.001***

0.051 ± 0.022 2.279 0.028* 0.008 ± 0.023 0.342 0.734

0.100 ± 0.054 1.833 0.074. 0.173 ± 0.034 5.120 < 0.001***

Model 4: Small
hibernators
(<1.5 kg) without
bats (44 species)

Intercept
z-Hibernation duration
z-log (Body mass)
arboreality

λML = 0.740
CI95 = [0.293−0.924]

0.867 ± 0.084 10.240 < 0.001*** 0.820 ± 0.029 28.543 < 0.001***

0.061 ± 0.020 2.994 0.005** 0.024 ± 0.021 1.148 0.258

0.014 ± 0.053 0.264 0.793 0.121 ± 0.042 2.864 0.007**

0.204 ± 0.069 2.937 0.005** 0.191 ± 0.048 4.002 < 0.001***

No phylogenetic
correction (linear
model)

Model 5: Bats only
(27 species)

Intercept
z-Hibernation duration

Not estimated 1.453 ± 0.168 8.619 < 0.001* Not estimated

0.101 ± 0.045 2.215 0.036*

0.141 ± 0.179 0.785 0.440z-log (Body mass)

Z-standardized model estimates (ß) for the effects of hibernation season duration and body mass on species maximum longevity. The phylogenetic effect is estimated by λML. Both body mass and longevity were
log-transformed before the analyses. For comparison, we have provided estimates for λ constrained to zero (no effect of phylogeny). The model for bats was a simple linear model not controlling for phylogeny, due
to limited sample size in this group. In the model with all hibernators, the NA value in the confidence interval for λML indicates that the caper package could not calculate the full confidence interval. An NA value is
considered as 0. Significant results are represented as *p < 0.05, **p < 0.01, ***p < 0.001.
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present in other bat species as well. Finally, bats are highly
gregarious during hibernation and can cluster in colonies
of up to thousands of individuals (Clawson et al., 1980).
Huddling could enable them to reduce energy costs and water
loss during hibernation, making hibernation a particularly
profitable strategy (Boyles et al., 2008; Gilbert et al., 2010;
Boratyński et al., 2012, 2015).

Comparisons between models either including (model 2)
or excluding (model 3) species with the lowest metabolic
reductions during hibernation did not reveal significant
differences. These results suggest that the effect of
hibernation season duration on longevity remains consistent
whatever the rate of metabolic reduction reached during
hibernation compared to the active state (between 70
and 90%). This finding should pave the way for future
studies to specifically test this effect of metabolic reduction
during hibernation.

Interestingly, in all PGLS models, removing the effect of
phylogeny by constraining λ to 0 also removed the effect
of hibernation season duration on longevity. This suggests
that the effect of hibernation season duration on longevity
is masked by the phylogenetic pattern. Thus, hibernation
season duration might be a stronger explanation of variation
within species or between closely related species, as shown
in Turkish hamsters (Lyman et al., 1981). For instance,
studies comparing populations of golden-mantled ground
squirrels (Callospermophilus lateralis) and Columbian ground
squirrels (Urocitellus columbianus) living along an altitudinal
gradient show that populations with longer hibernation
season duration generally have higher annual survival
and longevity (Bronson, 1979; Murie and Harris, 1982;
Dobson and Murie, 1987).

Although our results highlight an association between
hibernation season duration and longevity, they do not provide
a causal mechanism through which such an association
might arise. Periods of prolonged inactivity are likely to
increase longevity through the integration of multiple
factors affecting both intrinsic and extrinsic mortality, as
discussed below.

Factors Affecting Extrinsic and Intrinsic
Mortality and the Evolution of
Hibernation
Energetic stress, when energy demand is greater than
energy availability in the environment, has a proximate
role in the regulation of hibernation pattern (Vuarin and
Henry, 2014). However, few studies have focused on the
causal link between energetic stress, and the timing of
hibernation immergence and emergence (e.g., Humphries
et al., 2002). Thus, the hypothesis that hibernation occurs
primarily as a response to an energetic stress has not been
completely studied (focusing on torpor bouts frequency,
depth and duration). To the best of our knowledge, the
only study having measured both energy availability in
the environment and individual energy expenditure before
immergence in hibernation shows in eastern chipmunks

(Tamias striatus), that immergence occurs while food is
still plentiful and climatic conditions are still favorable for
maximizing energy storage (Humphries et al., 2002). Other
observations also suggest that immergence into hibernation
while food is still available seems common, at least in
sciurids (Humphries et al., 2003) and for the little pocket
mouse (Barnes and Carey, 2004). Thus, food availability and
ambient temperature alone may not be sufficient to explain the
phenology of immergence.

Other evidence suggests that hibernation is not initiated
solely in response to deficiencies in energy, water, or poor
food quality. Many observations suggest that early immergence
(before energetically stressful periods start) occurs when the
benefits of reproduction are low. For instance, in years of
low beech seed abundance, the edible dormouse (Glis glis)
skips reproduction, quickly accumulates fat reserves, and is
able to hibernate for up to 11 months (Hoelzl et al., 2015).
This occurs even if food in the environment is sufficient
to allow the edible dormouse to remain active but not to
reproduce. Similarly, Eastern chipmunks skip reproduction and
cease foraging for almost a full year when food availability is
particularly low (Munro et al., 2008). It seems that at that time,
chipmunks rely on large amounts of food hoarded during the
preceding year; but there is no evidence of torpor expression.
This kind of behavior is also observed in several hibernating
ground squirrel species. Females that fail to reproduce may
immerge up to several weeks before the others (Michener,
1978; Choromanski-Norris et al., 1986; Bintz, 1988; Neuhaus,
2000). An experiment in semi-natural conditions shows that
female European ground squirrels (Spermophilus citellus) that
were separated from males (and thus did not breed) entered
into hibernation 4−6 weeks before females that were not
separated (Millesi et al., 2008). These results support the
view that hibernation phenology is influenced by a trade-off
between reproduction and survival, where hibernation seems
to provide benefits other than surviving periods of energetic
stress. This trade-off may also explain differences (up to 1
month) in the timing of immergence and emergence between
gender and age observed in rodents (Snyder et al., 1961;
Holekamp and Nunes, 1989; Kawamichi, 1989; Sheriff et al.,
2011; Kart Gür and Gür, 2015; Siutz et al., 2016) and bats
(Stebbings, 1970; Thomson, 1982; Decher and Choate, 1995;
Norquay and Willis, 2014).

So far, most studies have focused mainly on temperate
hibernating species. However heterothermy that occurs
during daily torpor and hibernation, is taxonomically
and geographically widespread (Ruf and Geiser, 2015).
A surprisingly large proportion of mammals, including
a monotreme, several marsupials, and placental species
regularly enter daily torpor and seasonal hibernation in
the southern hemisphere (Grigg and Beard, 2000). For
some species in these regions, the use of torpor may not
be related to low environmental temperatures or limited
food availability (Nowack et al., 2020). For example, the
short-beaked echidna hibernates (Grigg et al., 1989) while
ants and termites, which constitute the main part of its diet,
remain available throughout the year (Grigg and Beard, 2000).
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Short-beaked echidnas are heavily armored, perhaps rendering
avoidance of predation an unlikely adaptive benefit for
hibernation. These observations suggest that some species may
use hibernation because of the energy advantages provided by
lack of activity, even though it is not an energy necessity for
survival during a period of energetic stress (Grigg and Beard,
2000). Such case studies broaden the scope of possibilities for
understanding the evolution of hibernation (Grigg and Beard,
2000; Ruf et al., 2012), and open up exciting perspectives for
future research.

CONCLUSION

Hibernation is considered an adaptation to seasonal,
hence predictable decreases in food resources and ambient
temperatures. However, hibernation is also observed in mild
climates and when ambient conditions are still favorable for
activity (Nowack et al., 2020). If remarkable physiological aspects
of hibernation have been widely studied, fewer studies have
focused on its ecological and evolutionary significance. Our
study provides evidence that there may be a relationship between
activity time budgets, hence the time dimension of allocation
trade-off, and life history traits.

Our phylogenetic analyses show that variations in hibernation
season duration can partially explain variations in longevity
in hibernators. The models show a strong influence of
phylogeny on this relationship and highlight the need for
in-depth studies at an inter- and intra-population scales.
For example, future studies may attempt to consider
activity time budgets in the context of the pace of life
syndrome by examining variations in hibernation with other
physiological and behavioral traits. Our results, combined
with information available in the literature, suggest that,
in addition to its survival benefits during a period of
energetic stress, hibernation season duration may have evolved

to reduce the effects of other sources of extrinsic and
intrinsic mortality.
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