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Abstract: Atherosclerosis is an inflammatory chronic disease affecting arterial vessels and leading to
vascular diseases, such as stroke and myocardial infarction. The relationship between atherosclerosis
and risk of neurodegeneration has been established, in particular with vascular cognitive impairment
and dementia (VCID). Systemic atherosclerosis increases the risk of VCID by inducing cerebral
infarction, or through systemic or local inflammatory factors that underlie both atherosclerosis and
cognition. Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are involved in inflammatory
processes, but with opposite roles. Specifically, omega-3 PUFAs exert anti-inflammatory properties
by competing with omega-6 PUFAs and displacing arachidonic acid in membrane phospholipids,
decreasing the production of pro-inflammatory eicosanoids. Experimental studies and some clinical
trials have demonstrated that omega-3 PUFA supplementation may reduce the risk of different
phenotypes of atherosclerosis and cardiovascular disease. This review describes the link between
atherosclerosis, VCID and inflammation, as well as how omega-3 PUFA supplementation may be
useful to prevent and treat inflammatory-related diseases.

Keywords: omega-3 PUFAs; omega-6 PUFAs; inflammation; resolvins; AA/EPA ratio; atherosclerosis;
cardiovascular risk; neurodegeneration; vascular cognitive impairment and dementia

1. Introduction to Omega-3 and Omega-6 PUFAs: An Overview of Their Metabolic Pathways

Polyunsaturated fatty acids (PUFAs) are fatty acids with two or more double bonds in their
carbon chain. PUFAs can be further categorized according to the location of the first double bond
relative to the terminal methyl group: omega-3 and omega-6 PUFAs are characterized by the presence
of a double bond three and six atoms away from the methyl terminus, respectively. Omega-3 and
omega-6 PUFAs represent the most biologically significant PUFAs and their role in cardiovascular,
inflammatory, and metabolic diseases has been extensively studied [1-4].

Figure 1 illustrates the omega-6 and omega-3 PUFA biosynthetic pathway, which has already
been extensively reviewed elsewhere [4,5]. Long-chain omega-3 and omega-6 PUFAs derive from
alpha-linolenic acid (ALA, 18:3 w-3) and linoleic acid (LA, 18:2 w-6), respectively. ALA and LA are
called essential fatty acids (EFAs), since mammals cannot synthetize them due to the lack of delta-12
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and delta-15 desaturases, which are enzymes only present in marine algae and plants [6]. Humans
must therefore obtain EFAs through dietary sources. The main dietary sources of ALA are represented
by dairy products, and various seeds and seed oils (especially flaxseeds and walnut oil), whereas corn,
safflower, and sunflower oils are particularly rich in LA. Humans are able to metabolize ALA and
synthesize different downstream very long-chain and more unsaturated omega-3 PUFAs - including
eicosapentaenoic acid (EPA, 20:5 w-3), docosapentaenoic acid (DPA, 22:5 w-3) and docosahexaenoic
acid (DHA, 22:6 w-3) - through multiple enzymatic elongation and desaturation reactions, which mainly
occur in the liver (Figure 1) [5,7]. However, very long-chain omega-3 PUFAs can be also directly
obtained through different dietary sources (cod liver oil, oily fish, algal oils) [5]. The omega-6 PUFA
arachidonic acid (AA, 20:4 w-6) can either be obtained from some dietary sources (especially meat,
egg yolk and dairy products) or be synthesized endogenously from the omega-6 precursor LA through
a series of enzymatic elongation and desaturation reactions (Figure 1) [4,8]. Delta-5 and delta-6
desaturases (encoded by FADS1 and FADS?2 genes, respectively) are the rate-limiting enzymes for
PUFA metabolism, and thus, the main determinants of PUFA levels [9].
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Figure 1. Metabolism of omega-3 and omega-6 PUFAs. Abbreviations: FADS, Fatty acid desaturase;

PUFAs, polyunsaturated fatty acids.

2. Role of Omega-3 and Omega-6 PUFAs in Systemic Inflammation

Lipid mediators derived from the omega-6 PUFA AA are involved in inflammation at different
stages. In particular, the initiation of acute inflammation is regulated by several lipid mediators,
including the eicosanoids prostaglandins (PGs), thromboxanes (TXs) and leukotrienes (LTs), which play
a pivotal role in the modulation of blood flood, endothelial permeability, polymorphonuclear neutrophil
(PMN) chemotaxis, and platelet aggregation [10,11]. Cyclooxygenase (COX) and lipoxygenase (LO)
enzymes catalyze the conversion of AA into a series of pro-inflammatory mediators, including PGs,
prostacyclin (PGI2), TXA2 and pro-inflammatory leukotrienes, which are also known as 4-series
leukotrienes (Figure 2) [12,13].
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Figure 2. Eicosanoid and specialized pro-resolving mediator biosynthesis. The omega-6 PUFA
arachidonic acid is the precursor of the pro-inflammatory eicosanoids. Cyclooxygenase and lipoxygenase
enzymes catalyze the conversion of arachidonic acid into a series of pro-inflammatory mediators,
including prostaglandins, thromboxanes and pro-inflammatory leukotrienes (4-series leukotrienes).
The omega-3 PUFA eicosapentaenoic acid is also a substrate for arachidonic acid-cascade enzymes
(cyclooxygenase and 5-lipoxygenase), leading to the production of alternative omega-3 PUFA-derived
eicosanoids, such as 3-series prostanoids and 5-series leukotrienes, which are inactive metabolites or
display lower pro-inflammatory activity compared to arachidonic acid-derived eicosanoids. Moreover,
omega-3 PUFAs represent the precursors of a series of lipid mediators, including resolvins, protectins and
maresins, which are collectively termed “specialized pro-resolving mediators” (SPMs). Abbreviations:
5-HPETE, 5-hydroperoxyeicosatetraenoic acid; 5-LO, 5-lipoxygenase; AA, arachidonic acid; COX-1,
cyclooxygenase-1; COX-2, cyclooxygenase-2; Cyt P450, cytochrome P450; EPA, eicosapentaenoic acid;
LO, lipoxygenase; LTA4, leukotriene A4; LTB4, leukotriene B4; LTB5, leukotriene B5; LTC4, leukotriene
C4; LTCS5, leukotriene C5; LTD4, leukotriene D4; LTD5, leukotriene D5; LTE4, leukotriene E4; LTES5,
leukotriene E5; MaR1, maresin 1; NPD1, neuroprotectin D1; PD1, protectin D1; PGD2, prostaglandin
D2; PGE2, prostaglandin E2; PGE3, prostaglandin E3; PGF2, prostaglandin F2; PGH2, prostaglandin
H2; PGI2, prostacyclin; PUFA, polyunsaturated fatty acid; RvD1, resolvin D1; RvD2, resolvin D2;
RvD3, resolvin D3; RvD4; resolvin D4; RvE1, resolvin E1; RVE2, resolvin E2; RvE3, resolvin E3; SPMs,
specialized pro-resolving mediators; TXA2, thromboxane A2; TXA3, thromboxane A3.

On the other hand, omega-3 PUFAs exert anti-inflammatory properties by competing with omega-6
PUFAs and displacing AA in membrane phospholipids, reducing the production of pro-inflammatory
eicosanoids. In particular, EPA is also a substrate for AA cascade enzymes (COX, 5-LO), leading
to the production of alternative omega-3 PUFA-derived eicosanoids, such as 3-series prostanoids
and 5-series leukotrienes. Despite being similar in structure and stability, EPA-derived eicosanoids
are inactive metabolites and display lower pro-inflammatory activity compared to AA-derived
eicosanoids [14-17]. However, omega-3 PUFAs play an anti-inflammatory role especially by promoting
the resolution of inflammation. In fact, they are precursors of a series of lipid mediators, including
resolvins, protectins and maresins, which are collectively termed “specialized pro-resolving mediators”
(SPMs) [18]. SPMs are produced by PMN and macrophages during the resolution of inflammation,
stimulating key cellular events, such as the cessation of PMN infiltration, macrophage switching to
anti-inflammatory phenotype M2, and apoptotic cell clearance [18,19]. SPMs are synthesized through
a complex series of enzymatic reactions mediated by acetylated COX-2, P450, and LO enzymes.
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EPA represents the precursor of the E-series resolvins (RvE1, RvE2, and RvE3), whereas DHA leads
to the production of three distinct families of SPMs, namely D-series resolvins (RvD1, RvD2, RvD3,
RvD4), protectins (protectin D1, known as neuroprotectin D1 [NPD1] when formed in the nervous
system) [20], and maresins (MaR1) (Figure 2) [18,20].

As mentioned above, the majority of omega-3 and omega-6 PUFAs are ingested through the diet.
Due to the dramatic changes observed in dietary pattern over decades, Western diets have progressively
evolved towards an increased amount of omega-6 PUFAs compared to omega-3 PUFAs. The dietary
imbalance between omega-6 and omega-3 PUFAs has therefore been suggested to play a role in
triggering systemic inflammation, and thus increasing the risk for several chronic diseases, such as
obesity, cardiovascular disease (CVD) and autoimmune disorders [21-23]. In particular, omega-6 to
omega-3 serum ratio in adults has gradually increased to values ranging from 15:1 to 25:1, which are
markedly high compared to those prevalent in the diet of our ancestors (omega-6 to omega-3 ratio of
around 1:1) [22-25]. The omega-6 PUFA LA represents the main PUFA in most Western diets and is
consumed in 5- to 20-fold higher amount than the omega-3 PUFA ALA [26]. Importantly, omega-3
and omega-6 PUFAs compete for the same desaturation enzymes [23,27-29]. Even if both delta-5 and
delta-6 desaturases prefer ALA to LA as a substrate, a high dietary LA intake — such as that observed
in most Western diets — interferes with the desaturation and elongation of ALA to long-chain omega-3
PUFAs (EPA, DPA, and DHA) [28-30].

3. Pathogenesis of Atherosclerosis and Vascular Cognitive Impairment and Dementia:
Role of Inflammation

The National Institute of Health has defined vascular contributions to cognitive impairment
and dementia (VCID) as conditions arising from stroke and other vascular brain injuries that cause
significant changes to memory, thinking and behavior [31]. VCID encompasses a series of alterations
in cognitive function (from the deterioration of decisional and executive abilities to impairment in
multiple cognitive domains that affect activities of daily living) that are caused by vascular risk factors.
The term VCID includes two forms of the same condition: vascular dementia (VD) and vascular
cognitive impairment (VCI), both arising as a result of risk factors for cerebrovascular disease (e.g., atrial
fibrillation, diabetes, hypertension, and dyslipidemia) [32].

The central role of inflammation in atherosclerosis, and thus in cardiovascular (CV) risk and
vascular cognitive impairment and dementia, has been well established [33-36]. Atherosclerosis is
a chronic inflammatory syndrome that leads to the progressive thickening of large artery walls [37] and
reduced blood flow over time, which can result in stroke, myocardial infarction (MI) and VCID [38].
In the past, atherosclerotic symptoms were thought to be exclusively dependent on the degree of
stenosis determining the impaired perfusion of target tissues, such as brain and heart [6]. However,
recent clinical evidence showed that thrombotic complications, that often lead to stroke and MI, may not
exclusively result from critical stenosis. This new knowledge prompted a shift in our understanding
of the atherosclerotic disease, and led to the recognition of the central role of inflammation in the
atherosclerotic process [39]. The inflammatory process that leads to atheromatous plaque has been
extensively described, and even if the initiation of atherosclerosis is still not fully elucidated, it has been
showed that leukocyte recruitment and production of pro-inflammatory cytokines represent the main
triggers during the early phase of atherogenesis [34,40]. Atherosclerosis begins with inflammatory
changes within the endothelium caused by low-density lipoproteins (LDLs) being deposited on
endothelial cells [41,42]. The activated endothelial cells produce chemokines and chemoattractant
proteins to recruit monocytes and leukocytes to the intima of the vessels. The recruited monocytes
differentiate into macrophages that, in turn, internalize LDLs particles and generate foam cells. It is
becoming increasingly clear that the deposition of LDLs into the arterial walls is not sufficient to
trigger atherogenesis, rather it is the subsequent inflammatory response, promoted by monocytes
and leukocytes, that initiates the atherosclerotic process [43]. The crucial step in atherogenesis has
been identified when invading monocytes differentiate into macrophages in the intima of the vessels,



Nutrients 2019, 11, 2279 5 of 28

and while internalizing and accumulating intracellularly oxidized-LDLs, they gradually transform
into foam cells [44]. Over time, clusters of foam cells become fatty-streaks in the intima of the
endothelium [45]. As the disease progresses, some of the endothelial cells adjacent to the atheromatous
endothelium begin to harden, forming a solid core called the fibrous cap of the atheroma, which begins
to enlarge and partially occlude the vessel to cause a progressive narrowing of the arterial lumen
that leads to stroke and VCID [46]. Atherosclerosis complications may occur when the foam cells
inside the atheromatous plaque secrete pro-inflammatory cytokines, reactive oxygen species (ROS)
and other mediators that can cause death of macrophages, forming the necrotic core of the mature
plaque. Macrophages and phagocytes produce matrix metalloproteinases (MMPs) that degrade the
plaque’s fibrous cap, permitting the blood to contact the plaque’s necrotic core and leading to the
thrombotic complications, such as stroke and MI [34,40]. Vascular smooth muscle cells (VSMCs) also
play a role in the pathogenesis of atherosclerosis. Notably, VSMCs undergo a phenotypic switching
resulting in increased capacity for cell proliferation and migration. In addition, VSMCs can also
switch to macrophage-like cells, which display a reduced phagocytic capacity and directly promote
the formation of the necrotic core of the plaque [47].

It has been shown that the progressive build-up of atherosclerotic plaque in the cerebral arteries
can contribute to the development of VCID either directly or as a consequence of stroke. Since it
has been proven that atherosclerosis is triggered by inflammation, it might be important to target
inflammation to reduce the burden of VCID in older adults.

In the vascular inflammatory process, inflammatory cytokines generate proteases, endothelial
adhesion molecules, and other mediators that ultimately induce the production of interleukin (IL)-6,
which stimulates the production of acute-phase reactants such as C-reactive protein by the liver [48],
and triggers a systemic inflammatory reaction. In addition, platelets and perivascular adipose tissue can
generate inflammatory mediators, that also play an important role in the atherothrombotic process [48].
The discovery of the pivotal role of inflammation in atherosclerosis has prompted the recognition
of inflammatory biomarkers of CV risk (e.g., C-reactive protein, soluble CD40 ligand, adiponectin,
IL-18, and MMP-9) and has led to the adoption of these biomarkers for CV risk prediction [49]. In the
randomized, double-blind, placebo-controlled trial Canakinumab Anti-inflammatory Thrombosis
Outcome Study (CANTOS), which involved stable patients with previous M], a significant reduction
in major CV events compared to placebo was achieved by anti-inflammatory therapy targeting
IL-1$3 with the monoclonal antibody canakinumab [50]. Other studies that aim to target inflammatory
biomarkers for primary or secondary prevention of CV events are currently ongoing. The Cardiovascular
Inflammation Reduction Trial (CIRT) investigated the role of inflammation on atherothrombosis in
patients with prior MI, type 2 diabetes or metabolic syndrome and found that methotrexate was not
effective in reducing atherosclerosis [51]. The Colchicine Cardiovascular Outcomes Trial (COLCOT;
ClinicalTrials.gov Identifier: NCT02551094) is evaluating whether the long-term treatment with
colchicine is able to reduce the rate of CV events in patients after MI. The extensive evidence of the
crucial role of inflammation in the development of atherosclerosis and the recent evidence of the role
of omega-3 and omega-6 PUFAs in the inflammatory process may open a relevant alternative for the
primary and secondary prevention of CV diseases and VCID.

4. The Role of Omega-3 and Omega-6 PUFAs in Atherosclerosis, Cardiovascular Disease and
Vascular Inflammation

Experimental evidence strongly suggests the involvement of omega-3 PUFA and their metabolites
SPMs in the resolution of inflammation in atherosclerosis. Notably, omega-3 PUFAs may reduce the
inflammatory pathway in atherosclerosis by both reducing production of pro-inflammatory eicosanoids,
as well as by increasing synthesis of SPMs (Figure 3) [52]. Interestingly, Fredman et al. showed that
vulnerable regions of human carotid atherosclerotic plaques exhibit significantly lower levels of
pro-resolving mediator RvD1, as well as significantly higher levels of pro-inflammatory mediator
LTB4 [53]. The authors also demonstrated that the exogenous administration of RvD1 to fat-fed
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LDLR/~ mice during atherosclerotic plaque progression was able to restore the RvD1/LTB4 ratio to
that of less advanced atherosclerotic lesions, and to promote plaque stability features (e.g., thicker
fibrous caps, improved lesional efferocytosis, and reduced lesional oxidative stress and necrosis) [53].
Accordingly, Thul et al. found that a higher salivary RvD1/LTB4 ratio was significantly associated with
lower intima media thickness in individuals with subclinical atherosclerosis [54].
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Figure 3. Potential mechanisms underlying the protective effects of omega-3 PUFAs EPA and
DHA against vascular inflammation and atherosclerosis. Abbreviations: 18-HEPE, 18-monohydroxy
EPA; ADP, adenosine diphosphate; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; IL-6,
interleukin-6; LDL, low-density lipoprotein; LTB4, leukotriene B4; RvE1, resolvin E1; RvD1, resolvin
D1; SPMs, specialized pro-resolving mediators; TXA2, thromboxane A2; VSMCs, vascular smooth
muscle cells.

Moreover, a recent experimental study has suggested that EPA supplementation may reduce
diet-induced atherosclerosis in ApoE™~ mice [55]. This study also showed a significant increase in
omega-3 PUFA content in different tissues (myocardium, spleen, and skeletal muscle), which was
accompanied by a parallel reduction in omega-6 PUFA content at the same level. Also, 18-monohydroxy
EPA (18-HEPE, the direct precursor for RvE1 synthesis) was identified as the most prominent circulating
EPA-derived metabolite after EPA supplementation, and deletion of the RvE1 receptor Erv1l/Chemr23
was associated with pro-atherogenic signaling in macrophages, reduced phagocytosis, increased
oxidized LDL uptake, increased atherosclerotic plaque size, and necrotic core formation, in the absence
of changing on total cholesterol and triglyceride serum levels [55]. Overall, these findings suggest that
EPA may exert protective effects in atherosclerosis through its derived SPM RvE1, regardless of its
effects on total cholesterol and triglyceride levels. Intriguingly, RvE1 has also been shown to attenuate
injury-induced vascular neointimal formation in mice by inhibition of inflammatory responses and
VSMCs migration [56].

In addition, Yamano et al. showed that patients with coronary atherosclerotic plaque supplemented
with EPA (at a dose of 1.8 g/day) for eight months exhibited a significant increase in the fibrous cap
thickness (assessed by optical coherence tomography), which was accompanied by a significant
increase in serum EPA/AA ratio compared to the control group [57]. Other studies showed that lower
EPA/AA ratio and omega-3/omega-6 PUFAs ratio represent independently associated factors of carotid
atherosclerosis and high-risk atherosclerotic coronary plaques [58,59].
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Cross-sectional studies showed that the omega-3 index (defined as the omega-3 PUFA content of
red blood cells) is inversely associated with inflammatory biomarkers (C-reactive protein and IL-6) in
patients with peripheral artery disease and stable coronary artery disease (CAD) [60,61]. Moreover,
Massaro et al. found that DHA attenuates the in vitro endothelial expression of COX-2 [62], which is
increased in human atherosclerotic lesions [63].

Wang et al. conducted a brilliant study on LDL-receptor null mice fed different high saturated fat
diets differing only in the omega-6/EPA+DHA ratio. The authors found that mice fed with the lowest
omega-6/EPA+DHA ratio diet (ratio = 1:1) exhibited significantly lower circulating levels of non-HDL
cholesterol and IL-6 compared to mice fed with the diet with the highest omega-6/EPA+DHA ratio [64].

Evidence also suggests that omega-3 PUFAs may reduce platelet aggregation, coagulation and
thrombosis, without increasing the risk of bleeding [30]. A meta-analysis of 15 Randomized Controlled
Trials (RCTs) demonstrated that omega-3 PUFA supplementation is associated with a significant
reduction in adenosine diphosphate (ADP)-induced platelet aggregation [65]. Interestingly, a cross-over
study conducted on healthy subjects showed that platelet aggregation in vitro decreases as the dietary
LA/ALA ratio also decreases [66]. These findings may rely on the fact that omega-3 PUFAs EPA and
DHA can be incorporated into platelet phospholipids membrane at the expense of AA, thus decreasing
the synthesis of AA-derived metabolite TXA2 and reducing platelet aggregation [67]. Figure 3 illustrates
the potential mechanisms underlying the protective effects of omega-3 PUFAs (EPA and DHA) against
vascular inflammation and atherosclerosis.

Despite the afore mentioned experimental evidence, results from clinical studies on the role of
omega-6 and omega-3 PUFAs in vascular inflammation, atherosclerosis and CVD are still controversial.
In fact, a meta-analysis of observational and intervention studies reporting information on biomarkers of
omega-3 and omega-6 PUFAs found that circulating levels of EPA, DHA and also AA were significantly
associated with a lower risk for coronary events [68]. With regard to fatty acid intake, dietary intake of
omega-6 PUFAs — which predominantly consisted of LA — was not significantly associated with risk
for coronary events [68].

Furthermore, several studies investigated the clinical utility of omega-6 to omega-3 ratio in CV risk,
and whether the reduction in this ratio may have an impact on CV risk by decreasing the competitive
influence of LA on ALA metabolism to its longer chain down-stream products, including EPA, DPA,
and DHA [30]. Nevertheless, in 2006 the UK Food Standards Agency (FSA) Workshop documented
that omega-6 to omega-3 ratio is of limited usefulness in the context of CV health and CVD due to
a number of reasons [69]. First, the ratio cannot distinguish between specific omega-3 (e.g., ALA,
EPA, and DHA) or omega-6 PUFAs (e.g., LA and AA), which are not physiologically equivalent in
terms of metabolic and pro- or anti-inflammatory activity. Second, a given ratio value may be the
result of different directional changes in omega-3 and/or omega-6 PUFA levels. For instance, the same
magnitude of increase in omega-6 to omega-3 ratio can derive from an increase in omega-6 intake
(with no change in omega-3 intake), or from a reduction in omega-3 intake (with no change in omega-6
intake). In this context, the ratio may assume that higher levels of omega-6 PUFAs and lower levels of
omega-3 PUFAs have the same impact CV risk. Nonetheless, higher tissue levels of omega-6 (e.g., LA)
and omega-3 PUFAs (e.g., EPA and DHA) have both been associated with reduced CV risk [70],
whereas lower tissue levels of omega-3 PUFAs (particularly EPA and DHA) have been associated
with increased CV risk [70,71]. Finally, the Quantification of the Optimal n-6/n-3 Ratio in the UK Diet
(OPTILIP) study [72,73] and a stable isotope tracer study [74] independently concluded that omega-6
to omega-3 ratio is of no value in modifying CV risk [75].

Therefore, additional biomarkers have been suggested as more useful tools to assess the fatty acid
intake and to relate the fatty acid intake to clinical outcomes. In 2004, Harris and Von Schacky proposed
the omega-3 index as a novel risk factor for death from coronary heart disease [76]. Omega-3 index is
defined as the content of EPA and DHA in red blood cell membranes, expressed as a percentage of total
fatty acids. In particular, omega-3 index scores of >8% or <4% were associated with the highest and
lowest cardioprotection, respectively [76]. Thus, it has been suggested that clinical trials evaluating the
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role of omega-3 PUFA intake or supplementation in CV health should include the omega-3 index in
the study design, recruit individuals with a low index, and treat them within a specific target range
(e.g., >8%) in order to give rise to more accurate findings [77]. Harris et al. examined the relationship
between erythrocyte omega-3 PUFA levels among 2500 older participants in the Framingham Heart
Study’s Offspring cohort. Interestingly, the authors found that participants in the highest (>6.8%)
omega-3 index quintile exhibited a 35% lower risk for total mortality, as well as a 39% lower risk for
incident CVD compared to those in the lowest omega-3 index quintile (<4.2%) [78].

5. The Role of Linoleic Acid (LA) in Atherosclerosis and Cardiovascular Disease:
Evidence and Controversies

LA is the main omega-6 PUFA found in vegetable oils, whose consumption has dramatically
increased over the last decades in the Western world. Indeed, a systematic literature review of
studies measuring the concentration of LA in subcutaneous adipose tissue—which accurately reflects
dietary LA intake—revealed a dramatic increase in adipose tissue LA over the last half century in
the USA [79]. Importantly, the amount of LA in adipose tissue and in platelets has been positively
associated with the degree of CAD [80]. Animal studies showed that LA can increase the expression
of vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 ICAM-1)
through the nuclear factor (NF)-kB pathway in the aorta [81]. Moreover, LA has also been shown
to increase LDL transfer across cultured endothelial monolayers, which is regarded as a crucial step
in the atherosclerosis process [82]. A cross-sectional study conducted by Schwertner and Mosser
found higher LA concentrations in phospholipid fatty acids and serum cholesteryl esters in patients
with CAD compared to those without CAD (sample size: n = 30 men; 18 subjects with CAD and
12 subjects without CAD) [83]. Thereafter, another cross-sectional study conducted by Jira et al. showed
that concentrations of oxidized LA metabolites are significantly higher in LDL of atherosclerotic
subjects compared to those of healthy individuals (sample size: n = 36 subjects; 17 atherosclerotic
patients and 19 healthy volunteers) [84]. Reaven et al. showed that linoleate-enriched diet increased
the susceptibility to oxidation of LDL and HDL in hypercholesterolemic subjects [85]. Altogether,
these findings suggested that the oxidation of LDL—which is considered the crucial factor for the
development of early atherosclerotic lesions [86]—may be initiated by the oxidation of LA contained
within LDL particles [87], thus generating the “oxidized LA hypothesis” of atherosclerosis and
CVD [30,88].

Another concern that has been raised about excessive LA intake regards the potential conversion
of LA into AA, resulting in a higher production of pro-inflammatory eicosanoids [89], which may be
associated with atherosclerosis and increased CV risk [30,90]. Therefore, lowering dietary LA intake
has been suggested as a useful strategy to reduce tissue AA levels, decrease eicosanoid synthesis
and prevent the production of oxidized LA metabolites, as it has also been demonstrated in clinical
studies [30,88,91]. Nevertheless, the conversion of LA into AA appears to be strictly regulated, since even
high dietary intakes of LA do not substantially modify tissue content of AA [92,93]. In addition,
the influence of dietary intake of LA and ALA on omega-3 PUFA metabolism is still under debate.
In this context, the hypothesis that a high omega-6 to omega-3 ratio in the diet decreases the conversion
of ALA into its derivatives EPA and DHA has been tested in human subjects. Goyens et al. conducted
a study on 29 healthy volunteers, who received a control diet with a LA to ALA ratio of 19:1 for
4 weeks [74]. Thereafter, the participants were randomized to receive for six weeks the same control
diet (control group) or two diets with the same LA to ALA ratio (7:1), designed by either decreasing LA
and keeping ALA constant (low-LA diet) or by increasing ALA and keeping LA constant (high-ALA
diet). Interestingly, the conversion rate of ALA into EPA and DHA was assessed at the end of each
period using an ALA stable isotope tracer and measuring omega-3 PUFA concentrations in fasting
plasma phospholipids. If the aforementioned hypothesis were true, the metabolic parameters of the
low-LA and the high-ALA diets should have been similar, since both diets had the same LA to ALA
ratio (7:1). Nonetheless, the conversion rate of ALA into EPA increased significantly in the low-LA diet,
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whereas it decreased in the high-ALA diet group. On the contrary, the synthesis of DHA increased
significantly in the high-ALA diet group, where it did not change significantly in the low-LA diet group
compared to the control group. These findings support that the absolute amounts of LA and ALA in
the diet, rather than the LA to ALA ratio (a surrogate marker of omega-6 to omega-3 ratio), determine
the conversion of ALA into EPA and DHA [74]. However, increased dietary intake of ALA at the
expense of LA has been shown to have small benefit in altering EPA and DHA status or improving CV
risk and inflammatory markers [26].

On the other hand, the pro-inflammatory properties of LA and its role in modulating CV risk
still remain highly controversial. A meta-analysis of RCTs showed that omega-6 specific PUFA diets
(including safflower and/or corn oils, which contain high amounts of LA and small proportions of
ALA) significantly increased the risk of non-fatal MI plus death related to coronary heart disease in
comparison with mixed omega-3/omega-6 diets [94]. Conversely, some evidence suggests that LA may
have a cardioprotective role. In fact, observational studies and RCTs documented an inverse association
between omega-6 PUFA intake (primarily LA intake) and risk of coronary heart disease [95-97] and
CV mortality [98]. Moreover, case-control studies showed that lower tissue/serum LA levels were
inversely associated with the risk of stroke [99] and non-fatal CV events [70]. A meta-analysis of
prospective studies reported that dietary intake of LA was significantly associated with lower risk
of coronary events and deaths related to coronary heart disease in a dose-response manner [100].
Another meta-analysis showed that tissue and blood LA concentrations were inversely associated with
risk for coronary events [70]. Additionally, a recent pooled analysis of 30 prospective observational
studies reported that higher circulating and tissue levels of LA were associated with a significant lower
risk of total CVD, cardiovascular mortality, and ischemic stroke, without heterogeneity in population
subgroups across studies [101]. In keeping with these findings, a systematic review of RCTs showed
that dietary intake of LA did not lead to an increase in inflammatory markers, including C-reactive
protein, tumor necrosis factor-«, fibrinogen, plasminogen activator inhibitor type 1, and soluble
vascular adhesion molecules [102].

In conclusion, evidence from human studies shows that LA is not harmful to CV health, but it
may play a beneficial role in prevention of CVD. However, mechanistic studies are needed in order to
understand the exact mechanisms underlying the cardioprotective effects of LA.

6. Omega-3 PUFA Supplementation for Primary and Secondary Prevention of Atherosclerosis and
Cardiovascular Disease: Lessons from Clinical Trials

Different large-scale randomized placebo-controlled trials investigated the effects of omega-3
PUFA supplementation in terms of primary and secondary prevention of CVD. The Japan EPA Lipid
Intervention Study (JELIS) study first aimed to assess whether the long-term supplementation with
EPA was effective for prevention of major coronary events [103]. The study enrolled 18,645 Japanese
hypercholesterolemic patients, who were randomized to receive either statin alone or EPA (at a dose
of 1800 mg/day) in addition to statin during a five-year follow-up period. Patients in the EPA group
showed a 19% relative reduction in major coronary events compared to those on statin alone (p = 0.011).
Subgroup analyses revealed that EPA supplementation led to a reduction in major coronary events in
both patients with and without history of CAD, although the statistical significance was reached only
in the secondary prevention subgroup (Table 1). Interestingly, the AA/EPA ratio (1.6 in both groups
at baseline) decreased from 1.6 at baseline to 0.8 at the end of the study in the EPA group, whereas
it remained unchanged in the control group [103]. Subsequent post-hoc analyses of the JELIS study
demonstrated that higher plasma levels of EPA are inversely associated with the risk of major coronary
events [104,105], especially in individuals with prior MI [105]. Matsuzaki et al. also found that the
incidence of cardiac death or MI in the JELIS cohort was significantly lower among patients with the
highest EPA/AA ratio compared to those with the lowest ratio (adjusted HR 0.58, p = 0.038) [105].
However, these findings should be interpreted cautiously, since they are based on a post-hoc analysis
that has evaluated the data from JELIS as an observational study:.
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Table 1. Summary of the main randomized controlled trials assessing the efficacy of omega-3 PUFAs in primary and secondary prevention of cardiovascular disease
and vascular cognitive impairment and dementia. Abbreviations: ALA, alpha-linolenic acid; CAD, coronary artery disease; CI, confidence interval; CV, cardiovascular;
CVD, cardiovascular disease; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; hsCRP, high-sensitivity C-reactive protein; MI, myocardial infarction; PUFA,

polyunsaturated fatty acids.

Study Population

Study Duration

Omega-3 PUFA dose

Clinical Findings

18,645 patients with hypercholesterolemia

Mean follow-up:

EPA 1800 mg/day + statin vs.

Reduction in major coronary events in the EPA group
compared to control in the total study population
(hazard ratio, 0.81; 95% CI, 0.69 to 0.95; p = 0.011)

Prevention Study

transient ischemic attack or ischemic stroke,
angina pectoris, peripheral artery disease,
or previous arterial revascularization
procedure) without history of previous MI

[109]

Median follow-up:

5 years

and DHA content and in
a ratio ranging between 0.9:1
and 1.5:1 vs. placebo

JELIS [103] . : . -
and with/without history of CAD 4.6 years statin alone Reduction in major coronary events in the EPA group
compared to control group among patients with history of
CAD (hazard ratio, 0.81; 95% CI, 0.66 to 1.00; p = 0.048)
. I Margarine enriched with Rate of major CV events: hazard ratio with
Alpha Omega Trial 4?2;?32&:;‘;1}}_};?;0;% zfi\ﬁir‘gi%g:ire Median follow-up: ~ EPA and DHA (400 mg of EPA-DHA-enriched margarine, 1.01; 95% CI, 0.87 to 1.17;
[106] antih ertfznsive and lipid-lowerin thera/ 40.8 months EPA and DHA/day) or ALA  p = 0.93; hazard ratio with ALA-enriched margarine, 0.91;
YP ’ P & terapy (2 g of ALA/day) 95% CI, 0.78 to 1.05; p = 0.20
2501 patients with a history of unstable Median follow-up: 600 mg/.day of .EPA and No significant difference in major CV events between
SU.FOL.OM3 [107] aneina. MI. or ischemic stroke 47 vears DHA in a ratio of 2:1 omega-3 group and placebo group (81 vs. 76 patients,
gina, ML LY vs. placebo hazard ratio 1.08; 95% CI 0.79 to 1.47, p = 0.64)
No significant difference in death from CV causes between
omega-3 group and placebo group (9.1% vs. 9.3%; hazard
1 . 0, . —
12,536 participants with diabetes, impaired ratio, 0.98;95% CI1, 0.87 to 1.10; p = 0.72)
glucose tolerance or impaired fasting glucose, . o 465 mg of EPA/day plus N . )
ORIGIN [108] who were at increased CV risk, defined as Median follow-up: 375 mg of DHA/day No significant .dlfference betwgen omega-3 group Oand
history of MI, angina with documented 6.2 years vs. placebo placebo group in the rate of major CV events (16.5% vs.
ischemia. s t1;oke or revascularization ’ 16.3%; hazard ratio, 1.01; 95% CI, 0.93 to 1.10; p = 0.81), death
’ ’ from arrhythmia (4.6% vs. 4.1%; hazard ratio, 1.10; 95% CI,
0.93 to 1.30; p = 0.26), or death from any cause (15.1% vs.
15.4%; hazard ratio, 0.98; 95% CI, 0.89 to 1.07; p = 0.63)
12,513 patients with multiple CV risk factors
or clinical evidence of atherosclerotic 1-g daily capsule containing s . -
Risk and vascular disease (defined as a history of not less than 85% of EPA No significant difference in time to death from CV causes or

first hospitalization for CV causes between omega-3 group
and placebo group (11.7% vs. 11.9%; adjusted hazard ratio
with n-3 fatty acids, 0.97; 95% CI, 0.88 to 1.08; p = 0.58)
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Study Population

Study Duration

Omega-3 PUFA dose

Clinical Findings

No significant difference in first serious vascular event
between omega-3 group and placebo group (8.9% vs. 9.2%;
rate ratio, 0.97; 95% CI, 0.87 to 1.08; p = 0.55)

- 1 . 460 mg of EPA/day plus
ASCEND [110] 15480p articipants with diabetes and no Mean follow-up: 380 ;gng of DHA/}::II;y No significant difference in the secondary composite
evidence of CVD 74 years vs. placebo outcome of any serious vascular event or any
revascularization procedure between omega-3 group and
placebo group (11.4% vs. 11.5%; rate ratio, 1.00; 95% CI,
0.91 to 1.09)
No significant difference in the incidence of major CV
events between omega-3 group and placebo group
Median follow-up: 460 mg of EPA/day plus (hazard ratio, 0.92; 95% ClI, 0.80 to 1.06; p = 0.24)
VITAL [111] 25,871 participants without history of CVD 5.3 vears ’ 380 mg of DHA/day
e vs. placebo Omega-3 PUFA supplementation associated with

a significant reduction in risk of total MI compared to
placebo (hazard ratio, 0.72; 95% CI, 0.59 to 0.90)

8179 patients with hypertriglyceridemia and
established CVD or diabetes and other risk
factors (70.7% for secondary prevention of

CV events)

REDUCE-IT [112]

Medjian follow-up:

4.9 years

4 g/day of icosapent ethyl,
a highly purified EPA ethyl
ester vs. placebo

Significant reduction in the rates of the primary endpoint
(a composite of CV death, non-fatal MI, non-fatal stroke,
coronary revascularization, or unstable angina) in the
icosapent ethyl group compared to placebo group
(hazard ratio, 0.75; 95% CI, 0.68 to 0.83; p < 0.001)

Significant reduction in the rates of the key secondary
endpoint (a composite of CV death, non-fatal MI,
or non-fatal stroke) in the icosapent ethyl group compared
to placebo group (hazard ratio, 0.74; 95% ClI, 0.65 to 0.83;
p <0.001)

Significant reduction in circulating levels of hsCRP in the
icosapent ethyl group compared to placebo group
(median observed values at the last follow-up visit:
1.8 mg/L vs. 2.8 mg/L, respectively; p < 0.001)
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In 2010, Kromhout et al. published the results of the Alpha Omega Trial, a multicenter,
placebo-controlled trial examining the effect of the daily intake of margarine supplemented with
different types of omega-3 PUFAs on the rate of CV events among patients with history of MI [106].
The authors found that neither margarine enriched with EPA and DHA, nor margarine enriched with
ALA were able to significantly reduce the rate of major CV events [106] (Table 1). Similar findings were
observed in the Supplémentation en Folates et Omega-3 (SU.FOL.OM3) trial, which showed that daily
low-dose omega-3 PUFA supplementation had no significant effects on major CV events in patients with
a history of unstable angina, MI, or ischemic stroke [107] (Table 1). Moreover, the outcome reduction
with an initial glargine intervention (ORIGIN) trial sought to determine the effect of omega-3 PUFA
supplementation in patients at increased CV risk (defined as history of MI, angina with documented
ischemia, stroke, or revascularization) who had diabetes, impaired glucose tolerance or impaired
fasting glucose [108]. The study enrolled 12,536 participants who were randomly assigned to receive
a 1-g daily capsule containing either EPA and DHA or placebo. The primary outcome was death from
CV causes. However, no significant between-group differences were observed in the primary outcome
during a median follow-up of 6.2 years. Moreover, omega-3 PUFA supplementation did not show
a significant effect on the rate of major CV events, death from arrhythmia, or death from any cause [108]
(Table 1). Thereafter, the Risk and Prevention Study found that EPA and DHA supplementation at
a dose of 1 g/day did not significantly reduce CV mortality and morbidity among patients with multiple
CV risk factors or clinical evidence of atherosclerotic vascular disease without history of previous
MI [109] (Table 1).

With regard to the primary prevention of CVD, the multicenter, randomized, placebo-controlled
trial ASCEND (A Study of Cardiovascular Events in Diabetes) investigated whether omega-3 PUFA
supplementation exerted an effect on CV events in patients with diabetes during a mean follow-up
of 7.4 years [110]. Of note, 15,480 patients with diabetes and no evidence of CVD were randomly
assigned to receive a 1-g daily capsule containing EPA and DHA or placebo. The primary outcome
was a first serious vascular event (defined as a composite of non-fatal MI or stroke, transient ischemic
attack, or vascular death, excluding confirmed intracranial hemorrhage), whereas the secondary
outcome was a composite of any serious vascular event or any revascularization procedure. At the
end of the study, no significant between-group differences were observed in primary and secondary
outcomes (Table 1), suggesting that omega-3 PUFA supplementation at the afore mentioned daily dose
does not significantly modify the risk of CV events [110]. In addition, the Vitamin D and Omega-3
(VITAL) trial has recently evaluated the effects of omega-3 PUFA supplementation (at a dose of 1 g/day,
administered as a fish-o0il capsule containing both EPA and DHA) in primary prevention of CVD
during a median follow-up of 5.3 years [111]. The study population included 25,871 participants with
no history of CVD. The primary endpoint consisted of major CV events (a composite of MI, stroke,
or death from CV causes). Omega-3 PUFA supplementation did not result in lower incidence of major
CV events (defined as a composite endpoint of MI, stroke, or death from CV causes) compared to
placebo. However, the analyses of secondary end points showed that omega-3 PUFA supplementation
was associated with a significant 28% reduction in risk for total MI compared to placebo [111] (Table 1).

On the other side, the large, randomized, placebo-controlled trial REDUCE-IT (Reduction of
Cardiovascular Events with Icosapent Ethyl-Intervention Trial) assessed the effects of high dose
(4 g/day) icosapent ethyl—a highly purified EPA ethyl ester—on CV risk among hypertriglyceridemic
patients with established CVD or diabetes and other risk factors, who had been receiving statin
therapy [112]. The majority of patients (70.7%) were enrolled for secondary prevention of CV events.
Importantly, the authors found that supplementation with icosapent ethyl led to a significant reduction
in the rates of both primary and secondary endpoints compared to placebo [112] (Table 1). Interestingly,
Braeckman et al. previously demonstrated that hypertriglyceridemic patients taking the same dose
of icosapent ethyl (4 g/day) used in the REDUCE-IT trial exhibited a significant reduction in the
AA/EPA ratio after 12 week-supplementation (from 12.3 at baseline to 1.2 at the end of the study;
p <0.0001) [113].
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Altogether, these findings suggest that omega-3 PUFAs may have a beneficial role in terms of
prevention of CVD when administered at higher doses. In fact, a possible explanation for the lack
of CV benefits from omega-3 PUFA supplementation in most of the CV outcomes trials may be due
to the relatively low doses administered (<1 g/day) [114]. Indeed, JELIS and REDUCE-IT showed
that high dose omega-3 administration (between 1.8 and 4 g/day) led to a significant reduction in CV
morbidity and mortality. Therefore, it may be speculated that beneficial effects of omega-3 PUFAs at
high doses could be mediated, at least in part, by their protective properties against inflammatory,
thrombotic and atherosclerotic processes [115,116]. This may be due to the fact that high doses of
omega-3 PUFAs could be needed in order to achieve high circulating levels of SPMs, as it has been
previously demonstrated [117]. However, no studies have been conducted in order to address how
markers of SPM synthesis (e.g., Rv/leukotriene ratio) and circulating levels of SPMs relate to the
intracellular effects of these pro-resolving mediators.

Among the afore mentioned RCTs, only the REDUCE-IT trial investigated the effects of omega-3
PUFA supplementation on pro-inflammatory biomarkers, showing a significant reduction in circulating
levels of hsCRP (high-sensitivity C-reactive protein) in the omega-3 group compared to placebo
(Table 1). Therefore, the effects of (high dose)-omega-3 PUFAs and their derivative metabolites SPMs on
inflammatory biomarkers and CV outcomes remain to be extensively investigated in future mechanistic
studies and randomized trials.

7. Role of Omega-3 and Omega-6 PUFAs in Neuronal Cells

The fatty acid composition in the brain is unique: the neuronal cells are characterized by high levels
of palmitate (a saturated fatty acid), omega-6 PUFA, but low levels of omega-3 PUFAs [118]. Among the
omega-3 PUFAs found in the brain tissue, the quantitatively most important omega-3 PUFA is DHA,
which is 250-300 times more abundant compared to EPA [119]. The cerebral synthesis of EPA and DHA
is low, suggesting that the brain maintains fatty acid levels via uptake from dietary or liver sources [120].
In fact, EPA and DHA can cross the blood-brain barrier by diffusion [121]. The brain levels of EPA
are maintained low by several mechanisms, including decreased incorporation, beta-oxidation and
lower phospholipid recycling [122,123]. The high levels of DHA are quite conserved across species,
suggesting a specific role of DHA in the neuronal membrane [118]. It has been shown that DHA carries
a greater tendency to accumulate in sphingomyelin/cholesterol-rich lipid rafts compared to EPA [124],
and thus has a greater potential to affect neuronal signaling [125].

DHA has been proven to have an indispensable role in neuronal membranes. The omega-3
PUFA dietary deficiency studies showed how the reduction of brain DHA can produce alterations in
neuronal membrane properties [126] and in enzyme activity and electrophysiological properties [127],
alter neurotransmission [128], and decrease spatial memory performance [129].

8. Role of Omega-3 and Omega-6 PUFAs in Alzheimer’s Disease and Vascular Cognitive
Impairment and Dementia

Extensive evidence shows that aging is characterized by alteration in energy metabolism,
which includes increased oxidative stress and increased inflammation, that may lead to increased
atherosclerosis susceptibility [130,131]. Structural changes, such as a reduction in total brain volume
and altered neuronal membrane lipid content, have been described in aging populations [132]. For these
reasons, the aging brain is more susceptible to develop atherosclerosis, which can ultimately lead
to VCID and to development of neurodegenerative diseases, including Alzheimer’s disease (AD).
PUFAs can modulate many signal transduction pathways in neuronal cells. Therefore, age-dependent
neurodegeneration may be prevented by controlling these pathways. Lessons from animal models have
shown that the ratio between omega-3 and omega-6 PUFAs influences various aspects of serotoninergic
and catecholaminergic neurotransmission, that are the first to be lost during AD. When Phospholipase
A2 (PLA2) hydrolyzes fatty acids from membrane phospholipids, it liberates omega-6 PUFAs,
which are metabolized to prostaglandins with a higher inflammatory potential compared with
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those generated from omega-3 PUFAs. Thus, the activity of PLA2, coupled with the altered membrane
fatty acid composition typical of aging, may play a central role in the development of neuronal
dysfunction. In particular, PUFAs increase both phospholipase C (PLC) and protein kinase C (PKC)
activities on neuronal membranes, which are involved in alpha-1 adrenergic transmission [133,134]
and can modulate PLA2, that ultimately regulates the production of prostaglandins, thromboxane,
and leukotrienes [135,136]. Intervention trials in human subjects have shown that omega-3 PUFAs
have possible positive effects in the treatment of various psychiatric disorders. Several studies have
investigated the association between omega-3 PUFA (EPA and DHA) levels and risk of dementia and
cognitive decline. Samieri et al. showed that high levels of EPA, but not DHA, are associated with
lower hippocampal, para-hippocampal and amygdala atrophy, along with slower cognitive decline and
dementia risk in older adults [137-140]. In a recent meta-analysis, Lin et al. showed that omega-3 PUFA
levels are significantly reduced in dementia patients, but only levels of EPA are significantly lower in
pre-dementia patients [141]. Moreover, Schaefer et al. described a protective effect of high plasma
levels of DHA (but not EPA) in dementia prevention (participants with higher DHA levels showed
a 47% risk reduction of developing dementia) [142]. Tan et al., in a cross-sectional study conducted on
1575 dementia-free participants, described how lower levels of DHA (but not EPA) were associated
with worse memory and executive function performance [143]. Salem et al. described the role of DHA
in the nervous system and its regulatory role in the G-protein signaling. The authors showed that
DHA has a protective role against apoptosis and plays a role in decreasing phosphatidylserine levels,
that, conversely, control cell signaling and cell proliferation [144]. An anti-amyloidogenic role of DHA
has been described by Dyall et al., that showed how DHA can increase neuronal membrane fluidity,
decrease membrane peroxidation by reducing cholesterol levels in the cell membrane that leads to
reduced oxidative stress in the cerebral cortex and in the hippocampus, and ultimately decrease the
learning disabilities related to AD [145]. Moreover, a DHA transporter has been recently identified on
the blood-brain barrier [146]. Both these newly discovered properties of DHA (its anti-amyloidogenic
properties and its ability to cross the blood-brain barrier) are crucial in the pathogenesis and in
the prevention of AD and VCID. Finally, recent evidence shows that omega-3 PUFA (EPA and
DHA) deficiency may lead to reduced brain glucose uptake [147] and, in turn, higher memory
impairment [148].

Briefly, PLA2 hydrolyzes fatty acids from membrane phospholipids, liberates dihomo-gamma-linolenic
acid (DGLA) and AA (omega-6 PUFAs), which are then metabolized to prostaglandins and thromboxane,
that have pro-inflammatory properties [149]. It has been shown that PLA2 activity and omega-6 PUFAs
may play a role in neuronal dysfunction, and in particular a highly reactive PLA2 coupled with high
omega-6 PUFAs content in the cell membrane has been associated with a higher inflammatory state and
it has been found in various psychiatric disorders [150,151]. This explains the crucial role of a balanced
ratio between omega-3 and omega-6 PUFAs in order to maintain low levels of inflammation and to
promote cell membrane stability.

9. Omega-3 PUFA Supplementation for Prevention of Alzheimer’s Disease and Vascular
Cognitive Impairment and Dementia

The aging brain is more prone to beta-oxidation and inflammatory alterations, that are crucial
factors for development of atherosclerotic changes, stroke, VCID, decreased synaptic plasticity and
worse memory performance [152]. Omega-3 PUFAs have shown an anti-inflammatory role that may
potentially represent a novel treatment for VCID and AD. In a recent study, McGahon et al. showed that
dietary supplementation of EPA, DPA and DHA in aged rats decreased inflammation; in fact, the rats
showed lower cytokines levels, and had in general positive effects on age-related brain changes [153].
Other studies demonstrated that EPA supplementation was able to counteract the age-related increase
in IL-1 levels in the hippocampus of aged rats [154,155]. Similarly, it has been shown that EPA can
reduce the increment of hippocampal IL-1 induced by amyloid-f in aged rats [156]. Furthermore,
Kelly et al. demonstrated that both EPA and DPA may decrease oxidative stress and may revert
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age-related spatial learning impairment [157]. Serini et al. compared the anti-inflammatory effect of
EPA and DHA in AD patients’ cells and healthy controls cells, documenting a reduced inflammatory
cytokines release in cells treated with EPA and DHA [158]. The study described that while DHA has
a more powerful effect on decreasing the cytokines released, EPA could more effectively change the
pro-inflammatory profile towards one similar to that observed in the healthy controls [158].

Several clinical trials have been conducted with omega-3 PUFAs both in healthy adults and
patients with AD or mild cognitive impairment (MCI), using a combination of DHA and EPA. Even if
trials conducted on AD patients have yielded negative results, Yurko-Mauro et al. showed significant
higher performance in different cognitive domains (paired associated learning and delayed verbal
and recognition memory) in healthy adults aged over 55 when treated with 900 mg of DHA for
24 weeks [159]. Lee et al. demonstrated significant improvement in working memory, verbal memory
and delayed recall memory in MCI patients aged over 60 when treated with EPA (at a doseof 1.3 g
per day) compared to controls [160]. Similarly, Freund-Levi et al. described positive effects in a small
group of patients with very mild AD who were treated with EPA and DHA supplements (1.7 g DHA +
0.6 g EPA/daily) [161].

In particular, four RCTs have focused on older adults (Table 2). One trial conducted on Chinese
older adults with MCI showed that a combination of 480 mg DHA plus 720 mg EPA/day significantly
improved cognitive performances and working memory, compared to placebo [162]. Hooper et al.
conducted an RCT on elderly adults showing that 800 mg DHA plus 225 mg EPA/day over a period of
36 months helped to maintain executive function in elderly with low omega-3 index and higher risk of
dementia [163]. Boespflug et al. conducted a 6-month trial on older adults with memory impairment
and showed that 2.4 g of EPA plus DHA/day significantly improved working memory and neuronal
response [164]. Another trial conducted in older adults treated with four 1000 mg omega-3 PUFA
supplements daily (containing 1200 mg of EPA plus 800 mg of DHA) showed reduced levels of oxidative
stress and thus lower susceptibility to atherosclerosis and VCID [165]. McNamara et al. showed that
elderly aged >62 and treated with 24-week fish oil supplementation or blueberry or both had fewer
cognitive symptoms, improved memory discrimination and overall improved cognition [166]. Recently,
a Canadian study by Power et al. deemed the omega-3 PUFAs and the Mediterranean diet to be
key factors in attenuating oxidative damage and inflammation, which are key mechanisms of AD
pathogenesis [167]. Taking together, these results from experimental studies and clinical trials suggest
as omega-3 PUFAs have a beneficial role on preventing neurodegeneration.
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Table 2. Summary of the main randomized controlled trials assessing the efficacy of omega-3 PUFAs in prevention of vascular cognitive impairment and dementia.
Abbreviations: EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; MCI, mild cognitive impairment; PUFA, polyunsaturated fatty acids.

Study Population Study Duration Omega-3 PUFA dose Clinical Findings
Four 1000 mg omega-3 The participants t'reat.ed with the omega-3 supPlements
51 heathy older adults . had lower oxidative stress (measured as higher
Duffy et al. [165] 12 weeks supplements (containing EPA . . ..
(mean age = 71 years) 1200 mg + DHA 800 mg) dail glutathione-to-creatine ratio in the thalamus) compared
& & y to the placebo group (p = 0.049)
140 healthy adults aged Dietary fish oil supplementation ameliorated working
62-80 years with subjective memory performance, and enhanced neuronal response
Boespflug et al. [164] memory complaints, but not 24 weeks EPA + DHA at a dose of 2.4 g/day to working memory challenge (defined as increased
meeting criteria for MCI blood oxygen level dependent signal in the posterior
or dementia cingulate cortex during greater working memory load)
183 ad}l lts agfed 70 years or Two capsules of omega-3 Omega-3 PUFAs showed benefits in maintenance of
older with subjective memory - g i L . .
Hooper et al. [163] . .. 36 months supplement providing a total executive functions in older adults at risk of dementia
complaints but clinically . .
. 800 mg DHA + 225 mg EPA daily due to low omega-3 index
dementia-free
86 adults with mean age Omega-3 PUFA supplement e Apttude Teat scores,
Bo etal. [162] & 6 months capsules of 480 mg DHA + P & P !

71 years affected by MCI

720 mg EPA/daily

space imagery efficiency, processing speed, and working
memory (p < 0.01)
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10. Novel Personalized Strategies to Prevent Atherosclerosis and Vascular Cognitive Impairment
and Dementia: Focus on AA/EPA Ratio and Omega-3 PUFAs

Prevention represents the best way to counteract atherosclerosis and VCID. The main strategy
to prevent atherosclerosis and VCID is controlling vascular risk factors by adequate diet and
lifestyle, and pharmacologically in case of vascular risk factors and overt disease. The importance
of a Mediterranean diet, characterized by the high consumption of fruit, vegetables, legumes, fish,
grains and olive oil, along with a low intake of milk, meat, and saturated fatty acids, has since been
found to be associated with a significant reduction in risk of cognitive decline [140]. The integration
of omega-3 PUFAs on diet has raised a great attention for prevention of atherosclerosis, CVD and
VCID, given the causal association between inflammation and such diseases. However, the appropriate
omega-3 PUFA dose to reach beneficial effects in terms of primary or secondary prevention of CVD
and inflammatory diseases is still unclear. The real benefit of this treatment either with diet or with
nutraceutical supplements may depend on the serum and/or tissue levels of omega-3 PUFAs [168].
Thus, various markers of fatty acid intake and status have been proposed. In this regard, it has been
shown that omega-6/omega-3 ratio is of limited usefulness for prediction of CV risk, whereas omega-3
index appears to be a more reliable risk factor for CVD. Moreover, the AA/EPA ratio has been shown to
be a reliable surrogate marker of omega-6/omega-3 ratio that may serve as a more specific indicator of
the magnitude of cellular inflammation and, in turn, CV risk. An AA/EPA ratio between 1.5 and 3 has
been suggested as the optimal range in order to reduce cellular inflammation and achieve beneficial
effects in different clinical settings [169-173], although larger mechanistic and prospective studies
are needed to confirm this hypothesis in the context of CVD and, specifically, VCID. Also, different
measurements of AA/EPA ratio have been used across studies, basing on the levels of erythrocyte fatty
acids, phospholipid fatty acids, adipose tissue fatty acids, or serum fatty acids. Thus, a standardized
method to measure the AA/EPA ratio and relate it to clinical outcomes is also needed. As previously
described by Barry Sears in an interesting and recently published editorial [174], the main discrepancies
between the studies in terms of clinical benefit of use of omega-3 PUFAs on CV prevention were
determined by the variations in the administered dose of omega-3 PUFA supplements. For instance,
the dose used in the REDUCE-IT was 4.5 times greater than that used in the VITAL trial. Moreover,
it should be worthy to remark that high dose omega-3 PUFAs might increase levels of SPMs and
reduce eicosanoid synthesis and pro-inflammatory cytokine expression. Therefore, an accurate dose of
omega-3 PUFAs needs to be determined based on several factors. In line with previous and current
trials, a dose of approximately 86 mg of EPA and DHA/kg body weight/day has been suggested to have
a significant benefit in terms of prevention against CV events [174]. Importantly, a dose of 5 g/day of
EPA and DHA has been established to significantly reduce the AA/EPA ratio from 23 to 2.5 in healthy
Caucasians, with a corresponding reduction of inflammation [175]. Nonetheless, even if 5 g/day of
EPA and DHA represent a proper dose to markedly reduce the AA/EPA ratio, the mean intake of EPA
and DHA from supplements and foods in the US is less than 0.3 g/day [176,177]. Therefore, taking
also into account the numerous RCTs of omega-3 PUFAs, daily supplementation with 5 g of EPA and
DHA needs to be considered in an experimental setting. In general, a daily dose of EPA and DHA of
2.5 g seems to be sufficient to lower the AA/EPA ratio within the desired range for excellent wellness
for healthy individuals [173]. The ability of AA/EPA ratio to give a parameter of omega-3 PUFA
treatment in terms of anti-inflammatory effects may allow for development of a personalized therapy
for inflammatory-based diseases, including atherosclerosis and VCID. Omega-3 PUFAs may induce
an early prevention by acting at different levels of VCID pathogenesis, including reducing vascular
inflammation, and decreasing noxious molecular pathways activation leading to accumulation of
misfolded proteins in the neurons. Therefore, therapy with omega-3 PUFAs, especially in subjects with
a high risk of VCID—such as patients with diabetes, hypertension and dyslipidemia—may significantly
benefit from this treatment.

Moreover, other inflammatory parameters have been associated with risk for vascular
diseases, such as high-sensitivity C-reactive protein (hs-CRP), IL-6 dominant inflammation,
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and lipoprotein-associated phospholipase A2 (Lp-PLA2) in large cohorts, including the Northern
Manhattan Study (NOMAS) [178,179]. It is important to mention that so far, studies that investigated
the activity of darapladib against PLA2 activity, did not show direct reduction of CV events when
added to optimal medical treatment [180-182]. However, several studies have shown how omega-3
PUFA supplementation decreases the risk of AD and cognitive impairment. This may be due to the
different activity of PLA2 in the brain or to the pleiotropic effect that omega-3 PUFAs exert on the
brain tissue.

It is also worth noting that majority of clinical trials have been conducted on Caucasians. Hence,
an optimal AA/EPA ratio level and adjusted omega-3 PUFA treatment should be investigated in other
race-ethnic groups, given the high risk to develop CVD [183]. Finally, future studies will be necessary
in order to compare the sensitivity and specificity of the AA/EPA ratio to those of other inflammatory
markers (e.g., CRP), and also to address whether the AA/EPA ratio may be useful in vascular risk
prediction, along with hs-CRP, IL-6 and Lp-PLA2.

11. Conclusions

Although the role of omega-6 PUFAs in triggering systemic inflammation remains controversial,
growing evidence highlights the importance of increasing the absolute intake of omega-3 PUFAs
in order to reduce CV risk. Indeed, the beneficial CV effects of omega-3 PUFAs may rely on their
anti-inflammatory and anti-atherosclerotic properties.

Vascular contribution to VCID is frequently underestimated, both in terms of disease burden and
potential for understanding and preventing dementia. Converging data from clinical, neuropathological
and experimental studies have begun to unravel the association between white matter hyperintensities
(WMH) and VCID, and have uncovered substantial advances in the molecular understanding and
clinical management of WMH and VCID. A deeper molecular understanding has also opened the
possibility for novel therapeutic agents as the omega-3 PUFAs [31,32]. Currently, the management
of WMH of vascular origin is limited to lifestyle modifications and risk factor control. Given the
associations between WMH and vascular risk factors, it is pivotal to target vascular health throughout
the life course as a prevention strategy. Effective regulations on the content of foods and diet, that include
omega-3 PUFAs, may offer an important therapeutic option [31,32].

With regard to the biomarkers of fatty acid intake and status, omega-3 index and AA/EPA ratio
appear to be potentially useful for measuring the burden of systemic inflammatory diseases and
predicting and/or modifying CV and VCID risk. Notably, titrating the dose of supplementary omega-3
PUFAs based on the values of these biomarkers might represent an additional strategy to prevent CVD
and VCID. However, mechanistic studies and large prospective trials are warranted in order to confirm
the clinical usefulness of omega-3 index and AA/EPA ratio as risk factors for CV and VCID, due to the
current lack of robust evidence-based literature. In conclusion, experimental and clinical studies are
awaited to establish the efficacy of omega-3 PUFA supplementation at a proper dose as a successful
prevention strategy against atherosclerosis, CVD and VCID.
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