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Abstract: Tissue-specific gene methylation events are key to the pathogenesis of several diseases and
can be utilized for diagnosis and monitoring. Here, we established an in silico pipeline to analyze high-
throughput methylome datasets to identify specific methylation fingerprints in three pathological
entities of major burden, i.e., breast cancer (BrCa), osteoarthritis (OA) and diabetes mellitus (DM).
Differential methylation analysis was conducted to compare tissues/cells related to the pathology
and different types of healthy tissues, revealing Differentially Methylated Genes (DMGs). Highly
performing and low feature number biosignatures were built with automated machine learning,
including: (1) a five-gene biosignature discriminating BrCa tissue from healthy tissues (AUC 0.987 and
precision 0.987), (2) three equivalent OA cartilage-specific biosignatures containing four genes each
(AUC 0.978 and precision 0.986) and (3) a four-gene pancreatic β-cell-specific biosignature (AUC
0.984 and precision 0.995). Next, the BrCa biosignature was validated using an independent ccfDNA
dataset showing an AUC and precision of 1.000, verifying the biosignature’s applicability in liquid
biopsy. Functional and protein interaction prediction analysis revealed that most DMGs identified
are involved in pathways known to be related to the studied diseases or pointed to new ones.
Overall, our data-driven approach contributes to the maximum exploitation of high-throughput
methylome readings, helping to establish specific disease profiles to be applied in clinical practice
and to understand human pathology.

Keywords: methylation; machine learning; microarrays; model; liquid biopsy; diabetes; breast
cancer; osteoarthritis

1. Introduction

DNA methylation is a well-characterized epigenetic mechanism participating in the
regulation of gene expression, and is related to a variety of normal functions [1]. Aber-
rant gene methylation contributes to the pathophysiology of human diseases, such as
cancer [2], autoimmune disorders [3] and diabetes [4]. The detection of alterations in DNA
methylation, either on tissues or in liquid biopsies, has been involved in the initiation [5,6],
progression [7–9] and response to the treatment of several diseases [10–12] and, thus, it is
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thought to hold valuable information for their clinical management. Genome-wide methyla-
tion analyses enable the study of a vast number of CpG sites and produce high-dimensional
datasets that can be exploited for a deeper understanding of the contribution of methylation
in human pathology. They also offer the opportunity to build specific biosignatures for
personalized clinical solutions of clinical importance.

In parallel to the rapid accumulation of multiple high-throughput omics data, machine
learning (ML) approaches have been introduced to enable their exploitation. ML uses
a variety of algorithms that perform intelligent predictions and is highly applicable in
biomarker discovery [13,14]. Specifically, ML applied to different type of omics datasets
has been used for diagnosis or classification and prognosis in various cancers [15–17],
neurological diseases [18], coronary artery disease [19], osteoarthritis [20] and diabetes [14].
However, developing an ML approach entails a lot of effort to select and configure the
appropriate algorithm to process the data to learn from, among other things [21]. To this
end, automated tools for ML (AutoML) have recently become available· they promise to
democratize data analysis to non-experts, drastically increase productivity, improve the
replicability of the statistical analysis, facilitate the interpretation of results, and shield
against common methodological analysis pitfalls, such as overfitting [22]. Bioinformatic
analysis combined with AutoML analysis of big omics datasets is able to extract knowledge
and predictive models that can be used in personalized clinical decisions. To the best of our
knowledge, only a few studies focusing on cancer have applied ML to methylation data
analysis [15–17].

Cell-free DNA fragments circulate in the biological fluids of healthy and diseased
individuals. The cellular release mechanisms of circulating cell-free DNA (ccfDNA) include
apoptosis, necrosis and active release from viable cells. Recent studies have shown that mul-
tiple tissues contribute to the ccfDNA mixture of healthy individuals, while in disease, it is
enriched also from pathological tissues [23,24]. ccfDNA fragments carry identical methyla-
tion footprints to their tissue of origin, serving as valuable liquid biopsy material, as they
can dynamically mirror changes throughout the pathophysiological process [25]. Tracing
in ccfDNA the methylation footprints of a tissue presents an unprecedented opportunity
for early diagnosis and monitoring.

To tackle this major challenge in biomarker discovery, in the present study, we estab-
lished an in silico pipeline based on high-throughput microarray methylation datasets to
identify disease/tissue specific methylation fingerprints. Three pathological entities of
major burden, i.e., one malignancy (breast cancer, BrCa), one inflammatory (osteoarthritis,
OA) and one metabolic (diabetes) were selected as use cases in our approach. Instead of the
comparison, adopted in most studies, of a pathological tissue to the respective healthy one
(for example breast cancer tissue vs. normal breast), here we chose to compare methylomes
from a tissue or cell type related to a specific pathology to the bulk of methylomes from
other healthy tissues. Differential analysis revealed specific differentially methylated genes
(DMGs) which were then subjected to functional analysis to unravel epigenetically regu-
lated pathways in each pathology. Following this, AutoML technology, specially designed
for analyzing high-dimensional biological datasets, was applied to build tissue-specific
methylation biosignatures, validated also in ccfDNA. Selected features were additionally
studied using a text mining bioinformatic tool to reveal their biological associations. Over-
all, our approach contributes to the maximum exploitation and knowledge mining of
existing high-throughput methylome readings to establish specific disease profiles to be
exploited in clinical practice and understand human pathology.

2. Results
2.1. Breast Cancer
2.1.1. Differential Methylation Analysis Comparing BrCa and Healthy Tissues

In order to identify differentially methylated genes in a comparison between BrCa
tumors and healthy tissues, raw methylome data from 218 BrCa (primary and metastatic)
tumors and 193 healthy tissues, including healthy breast, blood, liver, muscle, colon,
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gastric, lung and adipose (Supplementary Table S1), were subjected to analysis using
RnBeads. In total, 19,248 DMGs (false discovery rate (FDR) < 0.05) emerged. Among
those, 8820 were found to be hypomethylated, while 10,428 showed hypermethylation
in BrCa in relation to healthy tissues. A heatmap visualization of DMGs is presented in
Figure 1D. Further, DMGs were ranked based on FDR, and the 400 top-ranking genes were
chosen for functional analysis. Of these 400 DMGs, 171 were hypomethylated and the
remaining 229 were hypermethylated in BrCa in relation to healthy tissues. The complete
list of the 400 top-ranking DMGs from the comparison between tissues is presented in
Supplementary Table S2. 
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Figure 1. Differential methylation analysis comparing BrCa and healthy tissues. Gene ontology anal-
ysis of the top 400 DMGs in the aspects of (A) biological process, (B) cellular component and (C) 
molecular function analysis. (D) Heatmap plot of top 100 DMGs comparing BrCa and healthy tis-
sues. Abbreviations: BrCa = breast cancer, DMGs = differentially methylated genes. 
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Figure 1. Differential methylation analysis comparing BrCa and healthy tissues. Gene ontology
analysis of the top 400 DMGs in the aspects of (A) biological process, (B) cellular component and
(C) molecular function analysis. (D) Heatmap plot of top 100 DMGs comparing BrCa and healthy
tissues. Abbreviations: BrCa = breast cancer, DMGs = differentially methylated genes.

2.1.2. Functional Analysis of DMGs Comparing BrCa and Healthy Tissues

Gene ontology analysis was carried out using the DAVID tool (Figure 1A–C). In molec-
ular function analysis, the most enriched functions were G-protein-coupled receptor activity,
sequence-specific DNA binding, transcriptional activator activity and RNA polymerase II
core promoter proximal region sequence-specific binding. In biological process enrichment
analysis, DMGs were found to participate mainly in G-protein-coupled receptor signaling
pathways, the positive regulation of transcription from RNA polymerase II promoter, tran-
scription from RNA and the polymerase II promoter regulation of transcription from RNA
polymerase II promoter. Finally, cellular component analysis showed mainly a plasma
membrane enrichment of the studied genes. Reactome analysis via ConsensusPathDB
mainly revealed enrichment in sensory perception, the genetic transcription pathway, RNA
polymerase II transcription and gene expression (Supplementary Figure S1). The protein–
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protein interaction (PPI) network of the 400 DMGs was visualized using the Cytoscape tool
and is demonstrated in Supplementary Materials.

2.1.3. BrCa-Specific Methylation Biosignature through AutoML

β-values produced by RnBeads were analyzed using JADBio in order to construct
an accurate model specific for tracing BrCa. The original dataset (218 BrCa tissues and
193 healthy tissues) was automatically and randomly split into a training dataset of 151 BrCa
and 131 healthy tissues and a validation dataset of 66 BrCa and 55 healthy tissues. Analysis
of the training dataset of 29,703 gene array features produced one signature containing
5 features via a support vector machines (SVM) algorithm (https://app.jadbio.com/share/
4fd50c38-d0a1-4f28-96c9-480b29b4a3e2, accessed on 1 October 2021). Three of them were
protein-coding genes, namely, CCDC181, HIST2H3PS2 and CFTR, and two were RNA
genes, namely, RUVBL1-AS1 and AL161908.1 (Table 1). All genes presented increased
methylation in BrCa in relation to healthy tissues/cells. In discriminating BrCa against
healthy tissues, this signature reached an area under the curve (AUC) of 0.987 (0.963–1.000)
and an average precision of 0.987 (0.955–1.000) (Figure 2A). Upon validation in the test
dataset, the model showed an AUC and an average precision of 0.995 (Figure 2A), verifying
the model’s performance metrics. The performance and inspection results are depicted in
Figure 2B–D.

Table 1. Differentially methylated genes selected in the BrCa-specific signature built using AutoML
analysis. Their biological characteristics and functions revealed by GO analysis as well as their
methylation status are described.

Signature
Genes

Gene
Type Description Pathway GO—Molecular

Function
GO—Cellular
Components

GO—Biological
Process

UniReD
Score

Methylation in BrCa
in Relation to

Healthy Tissues

CCDC181 Protein
Coding

Coiled-Coil
Domain

Containing 181
NA microtubule

binding

manchette,
cytoplasm,

cytoskeleton,
microtubule,

cilium

NA 5 Hypermethylation

HIST2H3PS2 Protein
Coding

Histone Cluster
2, H3,

Pseudogene 2
NA

DNA binding,
protein het-

erodimerization
activity

Nucleus,
Chromosome NA 1 Hypermethylation

RUVBL1-
AS1

RNA
Gene

RUVBL1
Antisense RNA 1 NA NA NA NA NA Hypermethylation

CFTR Protein
Coding

CF
Transmembrane

Conductance
Regulator

CDK-mediated
phosphorylation
and removal of
Cdc6, bacterial
infections in CF

airways,
regulation of
CFTR activity,

salivary
secretion

nucleotide
binding, chloride
channel activity,
intracellularly

ATP-gated
chloride channel

activity

nucleus,
cytoplasm,
lysosomal
membrane,
endsome,

early endsome

cholesterol
biosynthetic
process, ion

transport,
chloride

transport, vesicle
docking

involved in
exocytes

7 Hypermethylation

AL161908.1 RNA
Gene

Novel Transcript,
Antisense To

LIM1B
NA NA NA NA NA Hypermethylation

Abbreviations: BrCa: breast cancer, AutoML: automated machine Learning, GO: gene Ontology, NA: non-
available.

https://app.jadbio.com/share/4fd50c38-d0a1-4f28-96c9-480b29b4a3e2
https://app.jadbio.com/share/4fd50c38-d0a1-4f28-96c9-480b29b4a3e2
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Figure 2. BrCa-specific methylation biosignature built using AutoML. (A) ROC curves of training
(blue line) and validation (green line) models. (B) Supervised PCA plot (i.e., only considering the
selected relevant biomarkers) presents separation between BrCa (blue) and healthy tissues (green)
within the training group. (C) Out-of-sample probability density plot (i.e., probability predictions
when samples were not used for training) depicts discrete distributions among studied classes of the
training group. (D) PCA plot presents separation between BrCa (blue) and healthy tissues (green)
within the validation group. (E) ROC curves of training (blue line) and external validation (green
line) models and (F) PCA plot presents separation between BrCa ccfDNA (blue) and healthy ccfDNA
(green) within the external validation group. Abbreviations: BrCa = breast cancer, ROC = receiver
operating characteristic, PCA = principal component analysis.

2.1.4. Validation and Applicability of BrCa-Specific Methylation Biosignature on ccfDNA

To validate the discrimination performance of the BrCa-specific five-feature biosig-
nature on ccfDNA and its applicability to liquid biopsy, we applied it to an external
independent dataset of three BrCa ccfDNA samples and five ccfDNA samples from age-
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matched healthy women. The analysis revealed the model’s AUC and an average precision
of 1.000 (Figure 2E,F).

2.1.5. Biological Relevance of Genes Selected in the BrCa-Specific Methylation Biosignature

Feature selection performed via ML identifies a minimum subset of features bearing
the maximal classifying ability between groups. In tasks such as the one addressed here,
i.e., to build a tissue-specific methylation biosignature, it is interesting to know if the
DMGs included in the model have an established role in the related pathophysiology as
revealed by their biological characteristics. All five DMGs of the BrCa biosignature were
subjected to GO analysis using the GeneCards database (Table 1). CCDC181’s molecular
function is related to microtubule binding, while it is mainly found in the manchette and
cytoplasm. HIST2H3PS2’s molecular function is associated with DNA binding and protein
heterodimerization activity and is mainly found in nucleus and on chromosome. CFTR’s
molecular function is related, among other things, to nucleotide binding and chloride
channel activity, and it is located in the nucleus, cytoplasm and in other cellular components
and participates in cholesterol biosynthesis, ion and chloride transport among other things.
For RUVBL1-AS1 and AL161908.1, no information was found in the GeneCards database
(Table 1).

Furthermore, in order to examine if the protein products of the three protein-encoding
DMGs included in the BrCa-specific biosignature were somehow implicated in BrCa patho-
physiology, we analyzed the identified genes, using a literature mining tool UniReD, which
predicts functional associations between proteins. As previously [17], for this analysis,
we used the following list of 10 protein-coding genes with an established role in BrCa
pathophysiology, namely, BRCA1 [26], BRCA2 [26], RASSF1 [27], ESR1 [28], TP53 [29],
PIK3CA [30], BRMS1 [31], CDH1 [32], CST6 [33] and PTEN [34]. All genes were found to
be associated with breast cancer pathways according to the KEGG pathway identification.
CFTR reached a score of 7, while CCDC181 reached a score of 5 and HIST2H3PS2 a score
of 1, showing fewer known associations (Table 1).

2.2. Osteoarhtitis
2.2.1. Differential Methylation Analysis Comparing OA and Healthy Tissues

Methylomes of OA cartilage tissues were analyzed in comparison to healthy tissues,
including healthy cartilages, breast, blood, liver, muscle, colon, gastric, lung and adipose
(Supplementary Table S1). Raw data from 151 OA cartilages tissues and 216 healthy
tissues were subjected to RnBeads for differential methylation analysis and 18,413 DMGs
(FDR < 0.05) emerged. Among those, 12,400 DMGs were found to be hypomethylated, while
6013 were found to be hypermethylated in OA in relation to healthy tissues. A heatmap of
DMGs is presented in Figure 3. Further, the 400 top-ranking DMGs based on FDR were
chosen for functional analysis. Of these, 354 were hypomethylated, and the remaining
56 were hypermethylated in OA in relation to healthy tissues. The complete list of the
400 top-ranking DMGs is presented in Supplementary Table S3.
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Figure 3. Differential methylation analysis comparing OA and healthy tissues. Gene ontology
analysis of top 400 DMGs in the aspects of (A) biological process, (B) cellular component and
(C) molecular function analysis. (D) Heatmap plot of top 100 DMGs comparing OA and healthy
tissues. Abbreviations: OA = osteoarthritis, DMGs = differentially methylated genes.

2.2.2. Functional Analysis of DMGs Comparing OA and Healthy Tissues

Gene ontology analysis of the 400 DMGs was conducted using the DAVID tool
(Figure 3A–C). Molecular function analysis showed enrichment in sequence-specific DNA
binding, insulin-like growth factor binding, integrin binding, heparin binding and col-
lagen binding. Regarding biological process enrichment analysis, DMGs were found to
participate mainly in anterior/posterior pattern specification and in extracellular matrix
organization. Cellular component analysis of the studied genes showed extracellular
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region, extracellular space, proteinaceous extracellular matrix and extracellular matrix
enrichment. Further, Reactome analysis via ConsensusPathDB mainly revealed enrichment
in metabolism, extracellular matrix organization and signal transduction (Supplementary
Figure S2). The PPI network of the 400 DMGs is presented in Supplementary Materials.

2.2.3. OA Specific Methylation Biosignature through AutoML

In order to construct a specific model for OA, β-values were uploaded to JADBio. The
original dataset (151 OA tissues and 216 healthy tissues) was automatically and randomly
split into a training dataset of 108 OA and 144 healthy tissues and a validation dataset
of 43 OA and 65 healthy tissues. An analysis of the training dataset of 29,585 gene array
features produced three equivalent signatures containing 4 features each via a classifica-
tion random forests algorithm (https://app.jadbio.com/share/2fee0023-8330-4b54-ab0
c-ddbaf032b506, accessed on 1 October 2021). Two of them were protein-coding genes,
namely CASD1 and STOML1, two were lncRNA genes, namely, LINC01350 and RP11-
272L13.3, and one was an RNA gene, namely, CARMAL. The last was the RP11-515E23.2
gene (Table 2). Common features between models were RP11-515E23.2, LINC01350 and
CASD1. All genes showed the down-regulation of methylation in OA cartilage in rela-
tion to healthy tissues. In discriminating OA against healthy tissues, signatures reached
an AUC of 0.978 (0.942–1.000) and average precision of 0.986 (0.962–1.000) (Figure 4A).
Upon validation, the model showed an AUC of 0.990–0.995 and an average precision of
0.994–0.997 (Figure 4A), verifying the stability and accuracy of its estimation. Performance
validation and inspection are depicted in Figure 4B,C.

Table 2. Differentially methylated genes selected in the OA cartilage-specific signature built using
AutoML analysis. Their biological characteristics and functions revealed by GO analysis as well as
their methylation status are described.

Signature
Genes

Gene
Type Description Pathway GO—Molecular

Function
GO—Cellular
Components

GO—Biological
Process

UniReD
Score

Methylation in OA
in Relation to Other

Tissues

CASD1 Protein
Coding

CAS1 Domain
Containing 1 NA

acetyltransferase
activity, transferase

activity,
transferring acyl

groups

Golgi membrane,
Golgi apparatus,

membrane, integral
component of

membrane, integral
component of

Golgi membrane

Carbohydrate
metabolic process 0 Hypomethylation

LINC01350 LncRNA

Long Intergenic
Non-Protein

Coding
RNA 1350

NA NA NA NA NA Hypomethylation

RP11-
515E23.2 NA NA NA NA NA NA NA Hypomethylation

STOML1 Protein
Coding Stomatin-Like 1 NA protein binding

endosome, plasma
membrane,

membrane, integral
component of

membrane

lipid transport 2.5 Hypomethylation

CARMAL RNA
Gene

Coronary Artery
Disease

Region-Linked
MFGE8

Regulatory
LncRNA

NA NA NA NA NA Hypomethylation

RP11-
272L13.3 LncRNA NA NA NA NA NA NA Hypomethylation

Abbreviations: OA: osteoarthritis, AutoML: automated machine learning, GO: gene ontology, NA: non-available.

https://app.jadbio.com/share/2fee0023-8330-4b54-ab0c-ddbaf032b506
https://app.jadbio.com/share/2fee0023-8330-4b54-ab0c-ddbaf032b506
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Figure 4. OA-specific methylation biosignature built using AutoML. (A) ROC curves of training (blue
line) and validation (green line) models. (B) Supervised PCA plot (i.e., only considering the selected
relevant biomarkers) presents separation between OA (blue) and non-OA healthy tissues (green)
within the training group. (C) Out-of-sample probability density plot (i.e., probability predictions
when samples were not used for training) depicts discrete distributions among studied classes of the
training group. (D) PCA plot presents separation between OA (blue) and non-OA healthy tissues
(green) within the validation group. Abbreviations: OA = osteoarthritis, ROC = receiver operating
characteristic, PCA = principal component analysis.

2.2.4. Biological Relevance of Genes Selected in the OA-Specific Methylation Biosignature

GO analysis revealed the biological characteristics of the genes included in the assem-
bled models. CASD1 participates in acetyltransferase and transferase activity molecular
functions and others, is mainly located in the Golgi system and is involved in the carbo-
hydrate metabolic process. STOML1 takes part in protein binding, is mainly located in
the endosome and plasma membrane and participates in lipid transport (Table 2). For
LINC01350, RP11-515E23.2, CARMAL and RP11-272L13.31, no relevant information was
found in the GeneCards database (Table 2).

Following this, the two protein-coding gene features were analyzed via UniReD using
a list of 10 protein-coding genes that are known to be related to OA pathophysiology,
namely, VDR [35], AGC1 [36], IGF-1 [37], ADAMTS4 [38], TGF beta [39], MATN3 [40],
MMP13 [41], COL2A1 [42], COL11A1 [43] and COL9A1 [44]. Only STOML1 was found to
be associated with OA pathways according to the KEGG pathway identification, reaching
a score of 2.5 (Table 2).

2.3. Diabetes
2.3.1. Differential Methylation Analysis Comparing Pancreatic β-Cells and Other Tissues

To decipher the methylation landscape of pancreatic β-cells, which could be of value in
monitoring diabetes, raw methylomes of 3 pancreatic β-cell samples were analyzed against
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28 other tissues/cell types, including blood, serum, muscle, adipose, spleen, colon, gastric,
liver, skin, etc. (Supplementary Table S1) using RnBeads. Differential methylation analysis
revealed 65 hypomethylated and 1 hypermethylated genes in β-cells in comparison to
other tissues (FDR < 0.05). A heatmap of the emergent DMGs is presented in Figure 5. The
complete list of the 66 DMGs is presented in Supplementary Table S4.

Figure 5. Differential methylation analysis comparing pancreatic β-cells and other tissues. Gene
ontology analysis of 66 DMGs in the aspects of (A) biological process and (B) molecular function
analysis. (C) Heatmap plot of 66 DMGs comparing pancreatic β-cells and other healthy tissues.
Abbreviations: DMGs = differentially methylated genes.

2.3.2. Functional Analysis of DMGs Comparing Pancreatic β-Cells and Other Tissues

Further, all DMGs identified were subjected to functional analysis. Molecular function
analysis showed an enrichment in the G-protein-coupled receptor activity and signaling
pathway, glucose homeostasis, the negative regulation of lipid catabolic process and the
activation of protein kinase B activity (Figure 5). Reactome pathway analysis did not lead to
any pathways. The PPI network of the 66 DMGs is presented in Supplementary Materials.
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2.3.3. Pancreatic β-Cell Specific Methylation Biosignature Using AutoML

To construct a pancreatic β-cell-specific methylation biosignature, methylome β-values
of 3 β-cell samples and 28 other tissue/cell samples were analyzed through JADBio. From
the 28,021 CG feature dataset, AutoML analysis produce a biosignature containing 4 fea-
tures via a support vector machine algorithm (https://app.jadbio.com/share/7ebbc7c3-b8
61-41af-8a39-88202756d609, accesed on 1 October 2021). Two of them were protein-coding
genes, namely, TXNRD3 and LENG8, one was a snoRNA gene, namely, SCARNA6, and one
an LncRNA gene, namely, AC008741.1 (Table 3). All genes showed decreased methylation
in pancreatic β-cells in relation to other tissues/cells. The signature’s performance in
discriminating β-cells reached an AUC of 0.984 (0.909–1.000) and an average precision of
0.995 (0.975–1.000) (Figure 6A). The model’s performance and inspection are depicted in
Figure 6B,C.

Figure 6. Pancreatic β-cell-specific methylation biosignature built using AutoML. (A) ROC curve
of model. (B) UMAP plot shows separation between pancreatic β-cells (blue) and other tissues
(green). (C) Supervised PCA plot (i.e., only considering the selected relevant biomarkers) presents
separation between pancreatic β-cells (blue) and other tissues (green). (D) Out-of-sample proba-
bility density plot (i.e., probability predictions when samples were not used for training) depicts
discrete distributions among studied classes. Abbreviations: ROC = receiver operating characteristic,
PCA = principal component analysis, UMAP = uniform manifold approximation and projection.

https://app.jadbio.com/share/7ebbc7c3-b861-41af-8a39-88202756d609
https://app.jadbio.com/share/7ebbc7c3-b861-41af-8a39-88202756d609
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Table 3. Differentially methylated genes selected in the pancreatic β-cell-specific signature built
using AutoML analysis comparing methylomes of β-cells and other healthy tissues. Their biological
characteristics and functions revealed by GO analysis as well as their methylation status are described.

Signature
Genes

Gene
Type Description Pathway GO—Molecular

Function
GO—Cellular
Components

GO—Biological
Process

UniReD
Score

Methylation in
Pancreatic β Cells in

Relation to Other
Healthy Tissues

SCARNA6 snoRNA
Small Cajal

Body-Specific
RNA 6

NA NA nucleolus RNA processing NA Hypomethylation

TXNRD3 Protein
Coding

Thioredoxin
Reductase 3

folate
metabolism

and
mechanisms of

CFTR
activation by

S-nitrosog
lutathione

nucleotide
binding,

thioredoxin
disulfide
reductase

activity, electron
transfer activity,
protein disulfide
oxidoreductase

activity

cell,
nucleoplasm,

cytoplasm,
endoplasmic

reticulum,
cytosol

multicellular
organism

development,
spermatogenesis,

electron
transport chain,

cell
differentiation

5.5 Hypomethylation

AC008741.1 lncRNA
Novel Transcript,

Antisense To
ZKSCAN2

NA NA NA NA NA Hypomethylation

LENG8 Protein
Coding

Leukocyte
Receptor Cluster

Member
NA protein binding nucleus NA NA Hypomethylation

Abbreviations: AutoML: automated machine learning, GO: gene ontology, NA: non-available.

2.3.4. Biological Relevance of Genes Selected in the β-Cell-Specific
Methylation Biosignature

GO analysis revealed that SCARNA6 is a nucleolus component and is involved in RNA
processing. TXNRD3 has a nucleotide binding function, thioredoxin disulfide reductase
activity, electron transfer activity and others (Table 3). It is a component of nucleoplasm
and cytoplasm and is involved in many biological processes, such as cell differentiation.
LENG8 participates in protein binding in the nucleus. For AC008741.1 no information
about its molecular function, cellular component and biological process was available in
the GeneCards database (Table 3).

Finally, the two protein-coding gene features were analyzed with UniReD, using a
list of 10 protein-coding genes that are known to be related to diabetes pathophysiology—
SLC2A2 [45], IAPP [46], GSK [47], INSR [48], IRS1 [49], PPARG [50], KCNJ11 [51], ABCC8 [52],
TCF7L2 [53] and FTO [54]. Only TXNRD3 was found to be associated with diabetes-
related pathways according to the KEGG pathway identification, reaching a score of 5.5
(Table 3).

3. Discussion

A major burden on the implementation of liquid biopsy diagnostics in cancer and
other pathologies is the lack of a means to identify a tissue-specific fraction of the bulk
of ccfDNA in biological fluids. In this study, we hypothesize that this problem can be
effectively addressed by studying gene methylation, which is, in principle, a tissue-specific
event. We compared methylomes of the major tissue or cell types involved in a pathology
against methylomes from multiple healthy tissues of the body which may contribute
to the ccfDNA pool in the circulation in an effort to determine its heterogenicity. With
multiple bioinformatic analyses, we aimed to identify those methylation features which are
specific to the tissue and should be mirrored in the ccfDNA released there. We used three
distinct pathological conditions as use cases, i.e., one malignancy (breast cancer, BrCa), one
metabolic (diabetes) and one inflammatory (osteoarthritis, OA).

In the case of BrCa, the comparison between BrCa tissues vs. healthy tissues resulted
in 19,248 DMGs, the majority of them being hypermethylated in cancer. Functional analysis
showed that the most dysregulated genes have G-protein-coupled receptor (GPCRs) and
transcriptional activator activity. Indeed, it has been shown that GPCRs are involved in the
development and progression of many tumours, including breast cancer [55]. Additionally,
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the activation of transcription is a critical event in BrCa pathophysiology [56,57]. DMGs
were found to be highly involved in sensory perception pathways, previously connected to
cancer and the side effects of cancer treatment [58].

Using AutoML, we were able to construct a five-gene signature exhibiting a high
AUC of 0.987 and a precision of 0.987 when discriminating BrCa against healthy tissues.
Three of them were protein-coding genes, namely, CCDC181, HIST2H3PS2 and CFTR,
and two were novel RNA genes. According to UniRed analysis, more associations to
known BrCa pathways were found for CFTR and less for CCDC181 and HIST2H3PS2.
Indeed, previous studies have shown that the aberrant methylation of CTFR has been
correlated to the prognosis and diagnosis of BrCa [59], as well as to bladder cancer [60],
hepatocellular carcinoma [61] and lung cancer [62]. Furthermore, CCDC181 methylation
has been suggested to be a prognostic biomarker in prostate cancer [63] and lung cancer [64].
Especially in BrCa, CCDC181 methylation was suggested as a biomarker with which to
estimate the breast cancer cell fraction in tissue samples [65], corroborating our results.
The methylation of HIST2H3PS2 has been linked to endometrial cancer tissue [66], but no
association to BrCa has been previously reported. Based on our results, its involvement in
breast malignancy is worthy of further attention.

In order to examine if ccfDNA reflects the specific methylation pattern of BrCa tissues,
we validated our five-gene biosignature in an independent, external ccfDNA BrCa dataset.
The model showed an AUC and precision of 1.000 in discriminating ccfDNA of BrCa
patients from that of healthy women, confirming the hypothesis that ccfDNA mirrors
reliably the specific methylation profile of the tissue of origin. This hypothesis has also
been confirmed in previously studies produced either by computational approaches or
experimental [25,67,68].

Our results also verify the translational value of the BrCa-specific five-gene methy-
lation biosignature in clinical practice as a tool for diagnosing/monitoring tumor burden
in liquid biopsies. In fact, its in silico-demonstrated classifying performance in terms of
specificity/sensitivity is higher than others previously reported [69–71]. For example, we
have previously reported a ccfDNA biosignature including five gene methylation features
and ccfDNA levels with an AUC of 0.844 [71]. Further validation in a real-world clinical set-
ting will confirm the credibility of our data-driven approach in building classifiers readily
available to be applied in diagnostics.

In the case of OA, when OA cartilage tissues were compared to healthy tissues,
18,413 DMGs emerged, the majority of them being hypomethylated in OA. Functional
analysis showed that DMGs were enriched in insulin-like growth factor binding, integrin
binding and collagen binding functions. In accordance to our findings, it is known that
insulin-like growth factors are implicated in OA and have a prognostic value [72]. Addi-
tionally, integrin dysfunction [73] and collagen degradation [74] are well-known pathways
involved in OA pathogenesis. In the biological process analysis, the identified DMGs were
found to participate mainly in anterior/posterior pattern specification and in extracellular
matrix (ECM) organization. Indeed, increased catabolism in the extracellular matrix of the
articular cartilage is a key factor in the pathogenesis of OA [75].

Most importantly, AutoML analysis delivered three equivalent OA cartilage-specific
biosignatures with high performance (AUC of 0.978 and precision of 0.986) containing
four features each. Two of them were protein-coding genes, namely, CASD1 and STOML1,
two were lncRNA genes, namely, LINC01350 and RP11-272L13.3, one was an RNA gene,
namely, CARMAL. Between them, only STOML1 was found to be associated with known
OA pathways, reaching a score of 2.5 through text mining. In fact, stomatin-like (STOML)
protein family members are found to be overexpressed in OA [76]. No associations were
found between OA and the other signature’s genes, CASD1, the two lncRNA genes and the
CARMAL RNA gene, either using a machine learning-aided or manual search of the litera-
ture. Thus, the expression and biological relevance of these genes in OA pathophysiology,
as well as their potential as novel biomarkers, should be investigated, as their methylation
was highlighted to hold great classifying capacity in the OA biosignatures.
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Specific methylation patterns of pancreatic β-cells would be of great value in the early
detection and monitoring of pancreatic cell loss during diabetes. Differential methylation
analysis comparing pancreatic β-cells and other tissues revealed 66 DMGs, 65 of them being
hypomethylated in β-cells. Interestingly, through molecular function analysis, DMGs were
associated with G-protein-coupled receptor (GPCR) activity and signaling pathway and
protein kinase B (PKB) activity. Many GPCRs are involved in the development of insulin
resistance and pancreatic β-cell dysfunction, which can lead to obesity-induced T2DM [77].
Additionally, it has been shown that the β-cell expression of PKB in mice increases β-cell
mass by preserving β-cell survival [78]. Not surprisingly, DMGs were also found to be
associated with glucose homeostasis, as blood glucose levels are tightly controlled by the
regulation of insulin release from pancreatic β-cells [79].

Next, a highly performing biosignature (AUC of 0.984 and precision of 0.995) was
developed through AutoML analysis. The biosignature contained two protein-coding
genes, namely, TXNRD3 and LENG8, one snoRNA gene and one LncRNA gene. Only
TXNRD3 was found to be associated with diabetes-related pathways, reaching a score of
5.5 in machine learning-aided text mining. Indeed, in a recent study of animal models,
a combination of hyperglycemia, long-term insulin resistance and obesity was linked to
reduced mRNA expression of thioredoxin reductase 3 (Txnrd3) along with selenoprotein
Gpx3 and selenophosphate synthetase 2 (Sephs2) in adipose tissue [80]. In addition to
that, it has been found that thioredoxin reductase is the primary mediator of thioredoxin
reduction in β-cells [81].

Several studies have shown that liquid biopsy biomaterials such as ccfDNA retain
the tissue/cell- or disease-specific methylation profile, opening the way for biomarker
discovery [17,71]. Gene methylation panels examined in liquid biopsy are implemented for
the clinical management of some diseases, limited so far to a few cancer types [82–84]. To
this end, building new highly performing panels that can be applicable to ccfDNA is of
utmost importance. Unfortunately, in the cases of OA and diabetes, ccfDNA methylome
datasets were not available to allow the in silico validation of our biosignatures in liquid
biopsies, as in the case of BrCa. It would also be very interesting to analyze diabetic
pancreatic β-cell methylomes, should they become available.

A few previous studies have also tried to identify unique methylation patterns specific
to different pathological tissues. Moss et al. compared the genome-wide methylation
profiles of normal breast and breast cancer tissue to those of other normal and cancerous
tissues and identified CpG sites with breast-unique methylation patterns. A three-marker
biosignature was suggested for BrCa diagnosis [85]. In addition, Zemmour et al. compared
the methylomes of human heart chambers to the methylomes of 23 other human tissues in
order to identify cardiomyocyte-specific biomarkers for the diagnosis of acute myocardial
infarction [86]. Additionally, Lehmann-Werman et al. compared multiple human tissue
methylomes and selected three hepatocyte-specific methylation markers, which were
unmethylated in the liver as compared to other tissues and cell types for monitoring liver
damage [87]. Here, in order to build methylation-based biosignatures, we employed,
for the first time, AutoML using JADBio. As we have previously shown [17,18,88], this
approach presents two advantages of major significance for further developments in
biomarker discovery: (1) It has high-performing classifiers with low feature numbers via
feature selection, i.e., automatic calculations for identifying the minimum feature number
within a dataset of some thousands of features that retain the maximum classifying power.
Reducing the dimensions of a signature is a great advantage in terms of translatability to
cost-effective assays with less technical requirements for multiplexing, moving from the
multi-dimensional omics results to simpler classifiers. Upon prospective clinical validation,
these signatures can offer feasible solutions for laboratory tests that could be realized in
any standardly equipped diagnostic lab. (2) JADBio has been shown to shield against
typical methodological pitfalls in data analysis that lead to overfitting and overestimating
performance and, therefore, to misleading results. This is again confirmed here, as the
AUC of the biosignatures built did not fall significantly when tested in the validation
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sub-datasets or in independent cohorts, adding credibility to this approach, showing that it
can deliver mature solutions for clinical development.

4. Materials and Methods
4.1. Data Sources

Raw DNA methylation data from several tissues and cell types and corresponding
demographic and clinical data were retrieved from the GEO database [89]. GEO sample
inclusion criteria were: (1) platform: Infinium Human Methylation 450K bead-chip array,
(2) available raw data. The GEO database was searched using several human tissues and
cell types, such as blood, spleen, brain, breast, pancreas, adipose, pancreatic beta cells, alpha
cells, T cells, etc., as keywords and ‘Methylation profiling by array’ as the study type. In
total, 45 studies were chosen, and 430 tissue samples were downloaded. GEO studies and
corresponding tissues/cell types used in our study are presented in Supplementary Table
S1. An analysis was performed for each of the 3 studied pathologies separately: (1) BrCa
tissues vs. healthy tissues/cell types, (2) OA cartilage tissues vs. healthy tissues/cell types,
(3) pancreatic β-cells vs. other healthy tissues/cell types. The study workflow is depicted
in Figure 7.

Figure 7. Study workflow. Abbreviations: DMGs = differentially methylated genes, GEO = Gene
Expression Omnibus. Created with BioRender.com, accessed on 20 July 2021.

4.2. Data Preprocessing and Differential Methylation Analysis

Raw DNA methylation data (IDAT files) and sample annotation files were subjected
to the Bioconductor R package RnBeads v2.0 [90] and processed as performed previously
by our team [17]. In our workflow, genes were chosen as the genomic region of interest.
Methylation β values are expressed as decimal values between 0.0 (no methylation) and
1.0 (full methylation). Differentially methylated genes (DMGs) were ranked based on the
false discovery rate (FDR) adjusted p-value for further downstream analysis. The first
100 DMGs in osteoarthritis and breast cancer and all the DMG in the case of β-cells were
plotted in heatmaps using the R programming environment (R version 3.6.1) with the



Int. J. Mol. Sci. 2022, 23, 2959 16 of 22

ComplexHeatmap package. Methylation values of DMGs were clustered using the default
hierarchical clustering (hclust) method.

4.3. Automated Machine Learning Analysis (AutoML)

The AutoML technology Just Add Data Bio (JADBio) [22] was used to produce
disease/tissue-specific biosignatures based on the β-value methylation data. JADBio
is applicable to low-sample, high-dimensional omics data and provides predictive models
by employing standard, best-practice, and state-of-the-art statistical and machine learning
methods. JADBio automatically produces predictive models either for a discrete (clas-
sification), or a continuous (regression) or a time-to-event (survival analysis) outcome.
Specifically, JADBio has the following functionality and properties: (a) Given a 2D matrix
of data, it automatically produces predictive models for a categorical (classification), contin-
uous (regression) or time-to-event (survival analysis) outcome. No selection of appropriate
algorithms to apply is necessary, nor is a tuning of their hyper-parameter values; it is
performed automatically. Available classification algorithms are: classification random
forests, support vector machines (SVM), ridge logistic regression and classification decision
trees. (b) It identifies multiple equivalent biosignatures, i.e., subsets of selected biomarkers.
The algorithms used for biosignature identification (i.e., feature selection) are currently
SES [91] and Lasso [92]. (c) It produces conservative predictive performance estimates and
corresponding confidence intervals by employing out-of-sample estimation protocols, such
as variants of K-fold cross-validation. It reliably processes up to hundreds of thousands of
features and sample sizes as low as a couple of dozen. JADBio also employs the recently
developed BBC-CV protocol for tuning the hyper-parameters of algorithms while estimat-
ing the performance and adjusting for multiple tries. For all analyses, the performance was
estimated via internal validation after correcting for the “winner’s curse” and the fact that
multiple machine learning pipelines are tried using the BBC-CV algorithm [93]. JADBio
has been evaluated many times on hundreds of omics datasets with respect to predictive
performance, number of biomarkers selected and correctness of predictive performance
estimation [22]. In the same paper, it is compared against the previous state-of-the-art
AutoML tools.

In our analysis, extensive tuning effort was used as a preference when running the
tool, and large sample datasets were automatically split into training and validation groups
in a proportion of 70/30 by JADBio. The maximum size of biosignatures was set to be up
to 5 features for better applicability in clinical practice.

Gene description and the biological characteristics of each gene feature based on gene
ontology (GO) analysis were retrieved by the GeneCards database [94].

4.4. Biological Association Analysis through Text Mining

We employed UniProt Related Documents (UniReD) to analyze the protein-coding
features of the assembled biosignatures. UniReD is a computational tool used to predict
functional relationships between proteins based on a machine learning algorithm called
mcl [95]. The relationships are extracted using biomedical literature. UniReD includes
information only for reviewed UniProt proteins and for organisms Homo sapiens and Mus
musculus. UniReD computes a score for each protein under investigation signifying the
relatedness to a specific pathway.

Using UniRed, we tested the associations of identified features against ten genes
known for their significant implication in BrCa, OA, and pancreatic β-cell function/diabetes
pathways (UniReD uses KEGG pathway analysis system). We ran a UniReD analysis for
each protein-coding feature and searched the list of 10 protein-coding genes related to
each pathology to see whether we could find an association. When we could not find
the human protein, we searched for homologs of the protein or we ran UniReD using the
mouse ortholog and we conducted the same analysis. We used a simple scoring system, i.e.,
we assigned 1 point when we found the human protein. If we could not find an exact match,
we assigned 0.5 points whenever we were able to find a homolog of the protein in a human.
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If we were still not able to find a protein of the same family in a human, we conducted the
analysis using the mouse ortholog and we assigned 0.5 points when we were able to find
one. The literature searching of biosignature genes was performed using BioTextQuest(+),
a platform for knowledge integration, literature mining and concept discovery [96].

4.5. Functional Analysis of DMGs

The biological functions of the 400 top-ranked DMGs were further investigated using
publicly available tools. The Database for Annotation, Visualization and Integrated Dis-
covery (DAVID) v6.8 [97] was used for gene ontology (GO) analysis of DMGs according to
the following categories: biological process, cellular component and molecular function.
Benjamini–Hochberg FDR < 0.05 was set as the cutoff criterion in GO analysis. In case of
the β-cells/diabetes analysis, due to the small number of comparisons, a p-value < 0.01
was set as a cutoff level of significance. In addition, we used ConsensusPathDB-Human
Release 34 [98] to perform Reactome analysis. Finally, in order to evaluate the relationships
among DMGs, we analyzed them using the Search Tool for the Retrieval of Interacting
Genes (STRING) v11.0 [99] and protein–protein interaction (PPI) networks were visualized
using Cytoscape 3.8.2 [100].

4.6. Evaluation of Biosignatures on Liquid Biopsy

In order to examine the performance of the assembled biosignatures on liquid biopsy
biomaterial, we searched the GEO database for related datasets. ‘Liquid biopsy’, ‘cell
free DNA’ ‘ccfDNA’, ‘circulating DNA’ and ‘ctDNA’ were used as keywords in the GEO
query and ‘Methylation profiling by array’ as the study type. In total, 4 studies were
found. However, only one study, GSE122126 [23], contained suitable and adequate ccfDNA
samples against which to test the BrCa biosignature.

4.7. Statistical Analysis

The Kolmogorov–Smirnov test was applied in order to check the normality of age
distribution among groups. A t-test was then used to compare the mean age among groups.
Statistical significance was set at p-value < 0.05. Statistical analysis was performed using
the IBM SPSS Statistics 21 software (IBM Corp. 2010. IBM SPSS Statistics for Windows,
Version 21.0. Armonk, NY, USA).

5. Conclusions

Revisiting available microarray methylomes and using an innovative AutoML tool,
we were able to produce three simple biosignatures for clinical implementation in the man-
agement of BrCa, OA and diabetes. They showed high performance in discriminating the
tissues of interest among the bulk of tissues of different origin. The data-driven approach
presented here can be extrapolated to any other pathological condition, given that the major
tissue or cell type involved in its pathogenesis is known and contributes significantly in
the ccfDNA pool of circulation, and there are available methylomes. Most importantly, the
validation of the BrCa-specific biosignature in an independent ccfDNA dataset confirmed
the potential for application in liquid biopsy diagnostics. Our immediate plans are to
test the applicability of the constructed models in ccfDNA samples through multiplex
PCR (Methylight, ddPCR) assays and/or targeted next-generation sequencing for further
clinical development. Furthermore, our in-depth analysis of the methylomes via functional
analysis of the identified DMGs, and in particular the biological relevance of those selected
in the biosignatures via text mining, unraveled novel insights into the pathophysiological
pathways of the studied conditions and augmented knowledge exploitation.
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