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Abstract

Chronic kidney disease (CKD) is an increasing global public health concern, particularly among populations of African
ancestry. We performed an interrogation of known renal loci, genome-wide association (GWA), and IBC candidate-gene SNP
association analyses in African Americans from the CARe Renal Consortium. In up to 8,110 participants, we performed meta-
analyses of GWA and IBC array data for estimated glomerular filtration rate (eGFR), CKD (eGFR ,60 mL/min/1.73 m2),
urinary albumin-to-creatinine ratio (UACR), and microalbuminuria (UACR .30 mg/g) and interrogated the 250 kb flanking
region around 24 SNPs previously identified in European Ancestry renal GWAS analyses. Findings were replicated in up to
4,358 African Americans. To assess function, individually identified genes were knocked down in zebrafish embryos by
morpholino antisense oligonucleotides. Expression of kidney-specific genes was assessed by in situ hybridization, and
glomerular filtration was evaluated by dextran clearance. Overall, 23 of 24 previously identified SNPs had direction-
consistent associations with eGFR in African Americans, 2 of which achieved nominal significance (UMOD, PIP5K1B).
Interrogation of the flanking regions uncovered 24 new index SNPs in African Americans, 12 of which were replicated
(UMOD, ANXA9, GCKR, TFDP2, DAB2, VEGFA, ATXN2, GATM, SLC22A2, TMEM60, SLC6A13, and BCAS3). In addition, we identified
3 suggestive loci at DOK6 (p-value = 5.361027) and FNDC1 (p-value = 3.061027) for UACR, and KCNQ1 with eGFR
(p = 3.661026). Morpholino knockdown of kcnq1 in the zebrafish resulted in abnormal kidney development and filtration
capacity. We identified several SNPs in association with eGFR in African Ancestry individuals, as well as 3 suggestive loci for
UACR and eGFR. Functional genetic studies support a role for kcnq1 in glomerular development in zebrafish.
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Introduction

Chronic kidney disease (CKD) affects approximately 15% of U.S

adults [1]. Due in part to increasing rates of diabetes and obesity, the

prevalence of CKD continues to rise [1]. Marked variability in the

incidence of CKD suggests that factors other than diabetes and

hypertension contribute to its etiology [2]. Recently, we identified

16 genomic loci associated with estimated glomerular filtration rate

(eGFR), a primary measure of CKD, using genome-wide

association studies (GWAS) in a combined sample of 67,093

European ancestry individuals from the CKDGen consortium [3,4].

However, these loci only account for 1.4% of the eGFR variation,

suggesting that additional loci remain to be identified [5].

African American ethnicity is a well-established risk factor for

CKD, and rates of end-stage renal disease (ESRD) are up to 4-

fold higher among African Americans as compared to European

Americans [6]. Several prior studies, including the FIND

consortium, have performed linkage analysis of diabetic ESRD

[7–9]. Recent genome-wide admixture mapping studies identi-

fied genetic variation in the regions of MYH9 and APOL1 on

chromosome 22 that may explain up to 70% of the differences in

ESRD rates between European and African Americans [10–12].

While this finding has great implications for ESRD, recent

evidence also suggests that African Americans progress faster

from moderately decreased kidney function to ESRD, spending

less time in the recognized earlier stages of CKD [13,14]. The

identification of additional risk factors for CKD, including

genetic loci in association with eGFR, may help to advance our

understanding of the underpinnings of CKD in African

Americans.

Thus, the goal of this study was to uncover loci for kidney traits in

African ancestry participants in the Candidate-gene Association

Resource (CARe) Consortium. CARe is a consortium of 9 studies

which form a combined population of approximately 40,000

African and European Americans genotyped on the IBC array [15]

and approximately 8,000 African American participants genotyped
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using a GWAS platform. We aimed to interrogate known regions

previously associated with eGFR in European Ancestry populations

[3,4], as well as to perform discovery analyses in African ancestry

populations. In order to gain further insight into the functional

implications of our associations, genes at or near loci of interest were

knocked down by morpholino injection in zebrafish, and kidney

gene expression and function were investigated using in situ

hybridization and glomerular filtration assays.

Results

Study sample characteristics are shown in Table 1 and Table

S1. Overall, 7,382 participants of African ancestry had genome-

wide SNP data and phenotype information on eGFR and CKD;

and 5,569 had data on UACR and albuminuria. For the IBC chip

analysis, 8,110 participants of African ancestry had data on eGFR

and CKD and 5,995 had data on UACR and albuminuria.

Interrogation of Known Renal Function Loci in African
American Participants

Genome-wide association analyses were conducted for eGFR,

CKD, UACR, and albuminuria. Quantile-quantile and Manhat-

tan plots are displayed in Figure S1 and Figure S2, respectively;

lambdas ranged from 1.0 to 1.02.

We examined previously published loci in association with

eGFR in participants of European Ancestry [3,4,16] in our

African American GWAS (Table 2). In 23 of 24 SNPs, the

directions of the beta coefficients for eGFR were identical

(p-value = 1.4*1026) in CKDGen and CARe (rs6420094 at

SLC34A1 was the only exception), even though only 2 of the

SNPs achieved nominal significance (rs4293393 at the UMOD

locus [p = 0.01] and rs4744712 at the PIP5K1B locus [p = 0.003]).

We further interrogated the 250 kb flanking regions around each

of these 24 SNP to identify the top SNP in CARe; statistical

Table 1. Study sample characteristics in the CARE Renal Consortium.*

Study
Sample Size
eGFRcrea/UACR

European
Ancestry1 % Women %

Age
(years)

eGFRcrea
(ml/min/1.73 m2) UACR (mg/g)1 MA (%) CKD %

CARE African Ancestry Stage 1 Participants

ARIC 2786/1936 15.3(10.7,22.1) 63.1 53.3 99.9 2.69(0.85,9.94) 16.5 3.7

CARDIA 821/754 16.7(12.2,23.2) 61.1 39.4 111 4.28(3.09,7.40) 9.4 0.9

CHS** 728/426 20.6(12.4,32.7) 62.8 72.9 81.4 10.95(5.00,26.90) 31.9 18.4

JHS 2135/1246 15.7(11.8,21.1) 60.8 50 101 6.00(4.00,12.00) 16.5 4.2

MESA 1640/1633 18.8(11.5,29.7) 54.8 62.2 86.5 5.50(3.10, 13.10) 16.4 8.6

Total 8110/5995

CARE European Ancestry

ARIC 9581/7687 NA 53.5 54.3 90.3 3.94(2.04,7.69) 9.3 3.5

CARDIA 1331/1242 NA 53.2 40.7 99.2 4.42(3.30,6.90) 4.5 0.5

CHS 3938/2073 NA 56.1 72.8 76.4 10.20(5.50,22.70) 26.4 21

FHS 6624/6208 NA 53.6 48.8 94 4.50(2.60,9.57) 9.1 3.9

MESA 2293/2287 NA 52.3 62.7 82.4 4.70(3.10,8.60) 9.5 9.7

Total 23767/19497

Stage 2: Replication

GENOA 1217/1228 12.6(7.2,18.9) 71.7 63.2 88 6.13 (2.97, 19.73) 22.9 13

HANDLS 989/629 16.1(11.2,22.0) 55 48.4 121 5.26(3.17,15.96) 20.3 5.3

Health ABC 1139/253 22.4 (12.2, 32.6) 57.2 73.4 76.3 19.3(5.7, 96.5) 47 17.1

HUFS 1013/NA 19.7(14.3,27.0) 58.8 48.3 104.3 NA NA 4.9

Total 4358/2110

Abbreviations: eGFRcrea: estimated glomerular filtration rate by serum creatinine, eGFRcys: estimated glomerular filtration rate by serum cystatin C, CKD: chronic kidney
disease, HTN: hypertension, DM: diabetes mellitus, NA: not available.
* Sample characteristics based on the larger eGFR sample.
** CHS only has data on the IBC platform.
1 Median, 25/75th percentile.
doi:10.1371/journal.pgen.1002264.t001

Author Summary

Chronic kidney disease (CKD) is an increasing global public
health problem and disproportionately affects populations
of African ancestry. Many studies have shown that genetic
variants are associated with the development of CKD;
however, similar studies are lacking in African ancestry
populations. The CARe consortium consists of more than
8,000 individuals of African ancestry; genome-wide asso-
ciation analysis for renal-related phenotypes was conduct-
ed. In cross-ethnicity analyses, we found that 23 of 24
previously identified SNPs in European ancestry popula-
tions have the same effect direction in our samples of
African ancestry. We also identified 3 suggestive genetic
variants associated with measurement of kidney function.
We then tested these genes in zebrafish knockdown
models and demonstrated that kcnq1 is involved in kidney
development in zebrafish. These results highlight the
similarity of genetic variants across ethnicities and show
that cross-species modeling in zebrafish is feasible for
genes associated with chronic human disease.
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significance was determined based on a locus-specific Bonferroni

correction (see statistical methods for more detail). Of the 24 SNPs

with the lowest p-value in each of these regions identified in CARe

African Americans, we were able to replicate 12 loci (UMOD,

ANXA9, GCKR, TFDP2, DAB2, VEGFA, ATXN2, GATM,

SLC22A2, TMEM60, SLC6A13, and BCAS3) in independent

samples of 4358 participants (Table 3, Figure S3).

We also interrogated the CARe CKD GWAS results at the

chromosome 22 MYH9/APOL1 locus (Figure S4); however, none

of the G1 haplotype SNPs in APOL1 was present in our GWAS

dataset. The lowest p-value was observed for rs739097 (MAF 0.36,

p = 0.00179), which was in weak LD with the previously described

rs4821480 in MYH9 (r2 0.03, D9 0.38 as determined by Hapmap

Release 22 YRI phase 2) [10].

Genome-Wide Association Analyses for Renal Indices
We performed discovery analyses using GWAS and the IBC

chip array; p-value thresholds for discovery were p,5.0*1028 for

GWAS and p,2.0*1026 for the IBC array [17]. We observed no

genome-wide signals; instead, we carried forward 8 SNPs from

GWAS that had a p-value,5*1026 in Stage 1 for replication;

results for these SNPs are presented in Table 4.

Replication was performed in 4,358 participants of African

ancestry for eGFR and 2,110 for UACR. Characteristics of the

replication samples are shown in Table 1. Results from discovery,

replication, and the combined GWAS analyses in African

Americans are presented in Table 4 (imputation scores can be

found in Table S2). Of the 8 SNPs from GWAS carried forward to

replication, the combined Stage 1 + Stage 2 p-value was 5.3*1027

for the association between UACR and rs4555246 in DOK6

(Figure 1a) and the combined p-value was 2.9*1027 for association

between UACR and rs2880072 in FNDC1 (Figure 1b). Due to

modest power of our replication set and the possibility that loci

relevant for CKD may be similar across ethnic groups, we also

attempted replication of the association between UACR and these

two loci in the CKDGen consortium, a large consortium of

participants of European ancestry (n = 31,580 with UACR [18]).

The beta coefficient for rs4555246 in DOK6 in the CKDGen data

was direction-consistent, although the p-value for this SNP was

non-significant (p = 0.44). Recognizing that regions, but not

necessarily specific tagging SNPs, may replicate across ethnicities,

we interrogated the 250 kb flanking region of rs4555246 (n = 31

independent SNPs). The SNP with the lowest p-value was

rs11151530 (MAF 0.17, p = 0.008), which did not meet the

Table 2. Interrogation of known loci in EA in AA for the trait eGFRcrea; best SNP at each locus is shown below; SNP ID in bold from
Kottgen et al, Nature Genetics 2009, and Nature Genetics 2010.

SNP ID in EA Chr
Genes Within
60 kb

Coded Allele
Frequency
(allele)

Beta coefficient
in EA relative
to coded allele

Coded allele
frequency for
the lead SNPs
in EA in
AA (allele)

Beta coefficient
in AA for the
lead SNP
in EA

p-value in
AA for lead
SNP in EA

rs17319721 4 SHROOM3 0.43 (A) 20.013 0.22 (A) 20.004 0.44

rs10109414 8 STC1 0.42 (T) 20.008 0.34 (T) 20.005 0.30

rs4293393* 16 UMOD 0.82 (A) 20.016 0.81 (A) 20.013 0.01

rs267734 1 ANXA9 0.8 (T) 20.010 0.96 (T) 20.016 0.13

rs1260326 2 GCKR 0.41 (T) 0.009 0.16 (T) 0.007 0.24

rs13538 2 ALMS1 0.77 (A) 20.009 0.48 (A) 20.003 0.57

rs347685 3 TFDP2 0.72 (A) 20.009 0.75 (A) 20.007 0.13

rs11959928 5 DAB2 0.44 (A) 20.009 0.30 (A) 20.002 0.75

rs6420094 5 SLC34A1 0.66 (A) 0.011 0.83 (A) 20.002 0.83

rs881858 6 VEGFA 0.72 (A) 20.011 0.36 (A) 20.003 0.50

rs10224210 7 PRKAG2 0.73 (T) 0.010 0.92 (T) 0.019 0.06

rs4744712 9 PIP5K1B 0.39 (A) 20.008 0.42 (A) 20.015 0.0003

rs653178 12 ATXN2 0.51 (T) 0.003 0.92 (T) 0.001 0.87

rs626277 13 DACH1 0.60 (A) 20.009 0.34 (A) 20.003 0.50

rs1394125 15 UBE2Q2 0.35 (A) 20.009 0.35 (A) 20.007 0.15

rs12460876 19 SLC7A9 0.61 (T) 20.008 0.72 (T) 20.010 0.03

rs10794720 10 WDR37 0.08 (T) 20.014 0.21 (T) 20.007 0.18

rs491567 15 WDR72 0.78 (A) 20.009 0.45 (A) 20.001 0.87

rs2453533 15 SPATA5L1;GATM 0.38 (A) 20.013 0.84 (A) 20.008 0.18

rs7422339 2 CPS1 0.32 (A) 20.009 0.32 (A) 20.005 0.38

rs2279463** 6 SLC22A2 0.88 (A) 0.013 N/A N/A N/A

rs6465825 7 TMEM60 0.61 (T) 0.008 0.51 (T) 0.000 0.92

rs10774021 12 SLC6A13 0.64 (T) 20.008 0.50 (T) 20.005 0.23

rs9895661 17 BCAS3 0.81 (T) 0.011 0.53 (T) 0.008 0.05

* Lead SNP rs12917707 in EA not present in AA dataset; therefore used rs4293393, which is in perfect LD in EA (r2 = 1.0).
** rs2279463 not present in AA dataset.
doi:10.1371/journal.pgen.1002264.t002
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Table 3. Interrogation of known loci in EA in AA for the trait eGFRcrea; best SNP at each locus is shown below; SNP ID in bold from
Kottgen et al, Nature Genetics 2009, and Nature Genetics 2010.

SNP ID
in EA Chr

Best SNP
ID in AA in
the Region

Coded
Allele
Frequency
in AA
(allele)

Beta
coefficient
in AA for
best SNP

P-value
in AA

Number of
independent
(typed) SNPs
interrogated
in CARe AA

Bonferroni
p-value
threshhold
(0.05/P)

Replication
beta
coefficient

Replication
p-value

Stage
1+Stage
2 beta

Stage
1+Stage 2
p-value

rs17319721 4 rs4371638 0.19 (T) 20.020 0.003 28 0.002 20.002 0.42 20.015 8.8E-03

rs10109414 8 rs192841 0.79 (A) 20.016 0.007 29 0.002 0.012 0.91 20.008 1.3E-01

rs4293393 16 rs4293393 0.81 (A) 20.013 0.014 14 0.004 20.017 0.02 20.014 1.5E-03

rs267734 1 rs3738479 0.39 (A) 0.013 0.005 19 0.003 0.012 0.04 0.013 9.0E-04

rs1260326 2 rs13022873 0.81 (A) 0.013 0.017 17 0.003 0.007 0.21 0.011 1.3E-02

rs13538 2 rs7600291 0.58 (C) 0.011 0.011 19 0.003 20.011 0.93 0.005 1.6E-01

rs347685 3 rs6781340 0.41 (T) 20.014 0.002 21 0.002 20.014 0.03 20.014 2.1E-04

rs11959928 5 rs3822460 0.83 (T) 20.013 0.020 11 0.005 20.010 0.13 20.012 1.0E-02

rs6420094 5 rs10463065 0.95 (C) 0.032 0.004 20 0.003 20.001 0.52 0.023 1.6E-02

rs881858 6 rs1750571 0.07 (A) 0.023 0.005 31 0.002 0.027 0.02 0.024 5.0E-04

rs10224210 7 rs6464167 0.42 (A) 0.015 0.021 20 0.003 0.004 0.33 0.010 3.5E-02

rs4744712 9 rs1556751 0.59 (A) 0.016 0.0002 65 0.001 0.006 0.19 0.013 2.6E-04

rs653178 12 rs12302645 0.94 (A) 20.018 0.050 10 0.005 20.014 0.16 20.017 3.0E-02

rs626277 13 rs9318029 0.13(T) 0.016 0.046 7 0.007 0.002 0.42 0.011 8.5E-02

rs1394125 15 rs2454472 0.84 (A) 20.020 0.0009 28 0.002 20.007 0.25 20.016 1.4E-03

rs12460876 19 rs3795058 0.43 (C) 20.012 0.004 30 0.002 0.009 0.88 20.007 6.7E-02

rs10794720 10 rs2805575 0.20 (C) 0.013 0.01 45 0.001 20.016 0.97 0.005 2.3E-01

rs491567 15 rs16966247 0.17 (C) 20.022 0.0002 35 0.001 20.004 0.31 20.017 6.0E-04

rs2453533 15 rs1153859 0.52 (T) 20.014 0.001 14 0.004 20.012 0.04 20.013 2.2E-04

rs7422339 2 rs957749 0.79 (A) 20.011 0.04 13 0.004 0.007 0.82 20.006 2.0E-01

rs2279463 6 rs3798156 0.12 (T) 20.027 7.8E-05 22 0.002 20.032 0.003 20.028 1.2E-06

rs6465825 7 rs6973213 0.20 (A) 20.019 2.79E-04 25 0.002 20.008 0.19 20.017 2.75E-04

rs10774021 12 rs485514 0.91 (T) 0.019 0.03 20 0.003 0.013 0.17 0.017 1.6E-02

rs9895661 17 rs11650989 0.22 (A) 0.016 0.002 20 0.003 0.013 0.06 0.016 5.8E-04

doi:10.1371/journal.pgen.1002264.t003

Table 4. Stage 1 and Stage 2 results from loci in African Americans from GWAS (p,5.0*10E-06): SNP association with renal traits.

Trait SNP ID Chr
Genes In
or Nearby

SNP
function

Coded Allele
Frequency# Beta

Stage 1
P-value

Replication
beta for
lead trait

Stage 2
p-value

Stage
1+Stage
2 beta

Stage
1+Stage
2 p-value

GWAS

UACR rs4555246 18 DOK6 Intron 0.77 (A) 0.156 8.74E-07 0.078 0.10 0.140 5.33E-07

UACR rs13213851 6 HACE1 N/A 0.68 (A) 20.130 1.86E-06 0.102 0.97 20.084 5.25E-04

UACR rs2880072 6 FNDC1 N/A 0.66 (A) 20.128 1.99E-06 20.097 0.04 20.122 2.98E-07

MA rs1009840 6 SGK1 Intron 0.19 (A) 0.363 2.62E-07 0.034 0.36 0.246 1.21E-05

eGFRcrea rs6581768 12 DYRK2 N/A 0.87 (A) 0.035 3.00E-07 0.002 0.43 0.029 2.62E-06

eGFRcrea rs7784820 7 GNAT3 N/A 0.70 (A) 0.023 5.30E-07 20.008 0.87 0.014 2.33E-04

CKD rs12575381 11 B3GAT1 N/A 0.18 (A) 0.521 9.97E-07 20.127 0.90 0.179 1.26E-02

CKD rs6428106 1 RGS1 downstream 0.17(T) 0.549 2.95E-07 0.144 0.07 0.334 3.70E-06

IBC

eGFRcrea rs7111394 11 KCNQ1 Intron 0.83 (T) 20.025 4.67E-06 20.012 0.10 20.0213 3.61E-06

eGFRcys rs6865647 5 PDE4D Intron 0.74 (A) 0.108 1.491E-07 20.007 0.74 0.0169 6.87E-02

CKD rs4648006 4 NFKB1 Intron 0.13 (T) 0.433 1.06E-05 20.140 0.89 0.1886 1.07E-02

doi:10.1371/journal.pgen.1002264.t004
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Figure 1. Regional association plots for DOK6 and FNDC1. For A) DOK6 and B) FNDC1, Stage 1 only.
doi:10.1371/journal.pgen.1002264.g001
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Bonferroni-corrected threshold of p = 0.0016 (0.05/31). For

FNDC1, the beta coefficient for the lead SNP was direction-

consistent in CKDGen (beta = 20.0196), although the p-value was

not significant (p = 0.053). Interrogating the 250 kb flanking

region (n = 7 independent SNPs) revealed that rs7758822 had

the lowest p-value at p = 0.002 (MAF 0.12), which met the

Bonferroni-corrected threshold of p = 0.007 (0.05/7).

IBC Chip Analyses for Renal Function Indices
In European Americans, we confirmed several known loci for

eGFR/CKD [3,4,16]; no novel genome-wide significant associa-

tions (defined as p,2.0*1026) were identified (Table S3). In

African Americans, three loci for eGFR/CKD were brought

forward to replication (Table 4). Of these, we observed nominal

replication for rs7111394 in the KCNQ1 gene (Figure 2a, Stage 1 +
Stage 2 p-value = 3.6*1026). This SNP was not identified in the

European American analysis as it was monomorphic in this

population. Thus, we interrogated the 250 kb flanking region

around this SNP (93 independent SNPs) in the CARe IBC

European ancestry participants. The SNP with the lowest p-value

was rs81204 (Figure 2b, MAF 0.16, p-value = 0.00036), which

exceeded the corrected regional-specific threshold of 0.000538

(0.05/93).

Functional Studies of New Loci for Renal Function
To further understand the impact of the three new loci on

kidney function and to bolster confidence in the sub-genome-wide

statistical associations that we observed, we performed morpholino

knockdown of kcnq1, dok6, and fndc1 in zebrafish embryos (see

methods).

In situ hybridization for well-established renal markers was used

to assess specific anatomic regions of the kidney during

development. Kcnq1 knockdown caused abnormalities in glomer-

ular gene expression in the majority of injected embryos, as shown

by the global kidney marker pax2a at 48 hours post fertilization

(hpf) (see Table 5, Figure 3F). Assessment of the podocyte markers

wt1a at 24 hpf and nephrin at 48 hpf revealed similar, glomerular-

specific effects. In contrast, the tubular markers slc20a1a and

slc12a3 showed no significant changes. Analysis of glomerular

architecture at 120 hpf by electron microscopy did not demon-

strate significant differences between control and kcnq1 morphant

embryos (Figure S5), possibly due to diminished morpholino

efficacy at this later stage. Knockdown of dok6 and fndc1 did not

result in generalized edema or significant developmental abnor-

malities of the kidney (Table 5, Figure S6).

To determine whether differences in gene expression resulted in

altered kidney function, we evaluated glomerular filtration in kcnq1

morphant embryos by assessing the kidney’s capacity to retain

fluorescent dextran. Fluorescently labeled high-molecular weight

dextran has been used in zebrafish to directly visualize functional

glomerular integrity [19]. Control or kcnq1 morphant embryos

were equally loaded with rhodamine-labeled 10,000 MW dextran

by injection into the cardiac sinus venosus at 48 hpf (Figure S7A,

S7D). Dextran clearance was assessed by overall fluorescence in

the embryo at 72 and 96 hpf (Figure S7B, S7C, S7E, S7F) and

presence of red fluorescence in the green fluorescent tubules of

cdh17:GFP reporter embryos. Kcnq1 morphant embryos exhibited

decreased fluorescence by 96 hpf, indicative of increased dextran

clearance compared to control embryos (Figure 4C, 4F). Time

course analysis confirmed equal loading and progressive loss of

fluorescence over 48 hours in kcnq1 morphants. These results

suggest that loss of kcnq1 causes decreased glomerular retention of

macromolecules. The majority of embryos with increased loss of

dextran fluorescence also exhibited generalized edema (Figure 4A,

4B, 4D, 4E, 4G), which has been previously linked to kidney

dysfunction in zebrafish [20,21].

Cross-Trait Associations
rs4555246 in DOK6 was associated with albuminuria (OR = 1.20,

p = 0.001) but not with eGFR (p = 0.23) or CKD (p = 0.92; Table

S4). Similarly, rs2880072 in FNDC1 was associated with albumin-

uria (OR = 0.83, p = 4.9*1025) but not with eGFR or CKD.

Although rs7111394 in KCNQ1 was associated with eGFR, it was

not significantly associated with CKD (direction consistent OR

1.07, p = 0.36), UACR, or albuminuria. These findings underscore

the specificity of the genetic underpinnings of eGFR as compared to

albuminuria.

Stratification by Hypertension and Diabetes Status
All replicating loci were stratified by hypertension and diabetes

status (Table S5). We observed nominal significance for nearly all

loci in the non-diabetes and non-hypertension strata, and many

loci retained statistical significance in the diseased strata despite

smaller sample sizes.

Discussion

In more than 8,000 African Americans, for 24 known renal

susceptibility loci identified in European ancestry consortia for

eGFR and CKD, we have identified the most significant SNP in

African Americans, of which several showed evidence of

confirmation or replication. In addition, we performed discovery

analyses using GWAS and a candidate-gene based array, and

uncovered 3 suggestive loci, including KCNQ1 in association with

eGFR and DOK6 and FNDC1 in association with UACR. Finally,

we show that loss of function of kcnq1 leads to abnormalities in

glomerular gene expression and function during zebrafish

development.

Despite having one of the largest GWAS datasets in African

Americans, both our discovery and replication samples were of

relatively modest size. Thus, we have focused primarily on

interrogating regions previously identified in well-powered Euro-

pean ancestry meta-analyses for renal function in order to reduce

our genome-wide penalty for multiple testing. While we have

uncovered 3 suggestive loci, the strength of the statistical

significance is only suggestive. Because of this, we have

corroborated our findings with functional data from zebrafish,

providing compelling evidence for the role of KCNQ1 in renal

abnormalities.

Several prior genome-wide studies using GWAS or admixture

approaches have identified loci for renal function in participants of

European [3,4,16] and African ancestry [10,11]. These studies

have identified loci for eGFR, CKD, and non-diabetic ESRD;

however, few novel discoveries and relatively limited replication

have been made for renal function indices in African Americans.

African ancestry populations have smaller LD blocks and hence

more genetic diversity, thus offering the potential opportunity to

fine map genomic regions and to identify novel genomic regions

for indices of renal function.

The genes located closest to our three suggestive loci are KCNQ1

in association with eGFR, as well as FNDC1 and DOK6 in

association with UACR. KCNQ1 on chromosome 11 encodes for

the potassium voltage-gated channel, KQT-like subfamily,

member 1 (KvLQT1). The lead SNP identified among the

African ancestry participants is located in an intron of KCNQ1 and

is flanked by two recombination hotspots. The kcnq1 protein is

abundantly expressed in the brush border membrane of renal

proximal tubule cells, where it interacts with other K+ channels

Renal Genetics in African Americans
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Figure 2. Regional association plots for KCNQ1. For A) KCNQ1 in participants of African ancestry and B) in participants of European ancestry.
doi:10.1371/journal.pgen.1002264.g002
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(KCNE) to mediate net K+ secretion. Loss of Kcnq1 in the mouse

leads to impaired Na+ absorption with increased glucose load,

however, developmental abnormalities have not been reported

[22]. Variants in KCNQ1 have been associated with type 2 diabetes

[23] and beta cell function [24], due to its role as a potassium

channel in the pancreatic beta cells. A recent study of individuals

Table 5. Number of observed abnormalities/number of embryos examined at 200 uM injection (kcnq1) and 400 uM injection
(dok6 and fndc1).

Global Renal
Marker pax2a

Podocyte
Marker wt1a

Podocyte
Marker nephrin

Proximal Tubular
Marker slc20a1a

Distal Tubular
Marker slc12a3

Control MO 2/49 (4.1%) 3/63 (4.8%) 2/47 (4.3%) 45/142 (31%) 0/62 (0%)

kcnq1

Splice 45/68 (66%) 30/60 (50%) 35/50 (70%) 54/143 (38%) 0/35 (0%)

ATG 46/68 (68%) 33/78 (42%) 29/46 (63%) 65/157 (41%) 0/41 (0%)

Chi-Sqr p-value* ,0.0001 ,0.0001 ,0.0001 0.34 1

Chi-Sqr p-value** ,0.0001 ,0.0001 ,0.0001 0.11 1

Uninjected control 0/38 (0%) 0/31 (0%) 0/60 (0%) 1/16 (6%) 0/18 (0%)

dok6

ATG 5/54 (9%) 3/28 (11%) 1/50 (2%) 5/32 (16%) 2/42 (5%)

Chi-Sqr p-value** 0.14 0.2 0.93 0.65 0.88

fndc1

Splice 4/39 (10%) 1/30 (3%) 0/51 (0%) 8/31 (26%) 0/35 (0%)

Chi-Sqr p-value* 0.13 0.99 1 0.22 1

*Control or Uninjected versus splice MO.
**Control or Uninjected versus ATG MO.
doi:10.1371/journal.pgen.1002264.t005

Figure 3. Kcnq1 knockdown in zebrafish embryos causes glomerular abnormalities. (A–E) Zebrafish embryos injected with control
morpholino show normal glomerular and tubular morphology, as shown by in situ hybridization for the global kidney marker pax2a (A, inset showing
lower-magnification image, with staining in both glomerulus and tubules), the podocyte markers wt1a (B) and nephrin (C), and the proximal and
distal tubular markers slc20a1a (D) and slc12a3 (E). (F–J) Injection of the kcnq1 antisense morpholino, targeting the ATG site of the gene, at the one-
cell stage results in significant changes in glomerular gene expression (F–H). No changes were observed in the proximal tubule (I) or the distal tubule
(J).
doi:10.1371/journal.pgen.1002264.g003
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with diabetes from Japan identified variants in the KCNQ1 gene in

association with diabetic nephropathy [25]. Our lead SNP is not in

LD with this signal in either European or African ancestry

individuals. Importantly, we observe a strong and significant

association with KCNQ1 among participants without diabetes, and

our functional work suggests an independent association of kcnq1

in renal development. Thus, it is unlikely that our observed

associations are solely due to the association of KCNQ1 with

diabetes.

The DOK6 gene on chromosome 18 encodes a member of a

family of intracellular adaptor proteins that have a role in the

assembly of multimolecular signaling complexes. It is expressed in

the human kidney as well as the ureteric buds of the murine

developing kidney [26]. Although a direct role in renal disease has

not been described so far, DOK6 interacts with Ret [26], the

ablation of which resulted in kidney agenesis in model systems

[27]. The lead SNP we identified is located in an intron of a very

circumscribed region of the gene. DOK6 has been recently found

in a GWAS for osteoporosis [28], although our lead SNP is not in

LD with this variant.

The fibronectin type III domain containing 1 (FNDC1) gene on

chromosome 6 is also expressed in the kidney; the lead SNP is

located nearly 100 kb downstream of the gene. Little is known

about the function of this gene to date; previous studies found that

FNDC1 may mediate G protein signaling and have a role in

hypoxia-induced apocytosis of cultured ventricular cardiomyocytes

[29,30].

Zebrafish have been extensively used to study principal

pathways of kidney development and function [31,32]. More

recently, adult models of kidney injury have been developed [33].

For example, targeted knockdown of a prolyl 4-hydroxylase

resulted in kidney dysfunction with edema and changes in

podocytes and Bowman’s capsule [34]. In addition, a zebrafish

model of human nephrotic syndrome was generated by plce1

knockdown after positional cloning of this gene in affected siblings,

similarly resulting in cardiac edema and functional abnormalities

[35]. Here, we use morpholino knockdown to demonstrate that

loss of kcnq1 leads to changes in global morphology and gene

expression abnormalities during zebrafish kidney development.

Furthermore, in vivo fluorescence-based functional analysis of

zebrafish glomerular filtration capacity demonstrated decreased

retention of macromolecules, as previously demonstrated for other

genes affecting glomerular integrity [19,20]. Interestingly, KCNQ1

was identified in association with eGFR, and knockdown of kcnq1

in zebrafish predominantly causes glomerular gene expression and

filtration defects. These results suggest that genes associated with

polygenic chronic conditions can produce developmental pheno-

types when knocked down in vivo.

Our analytic approach was complemented by a large-scale

candidate gene analysis using the IBC SNP Chip array [15] and

replication of our findings in an additional 4358 African American

individuals. By using participants from predominantly population-

based cohorts, we were able to study disease initiation. An

important focus of our multi-ethnic samples allowed us to explore

Figure 4. Tg(cdh17:GFP) embryos were injected with 200 uM control or kcnq1 morpholino (MO) at the 1-cell stage. Embryos were
subsequently injected in the sinus venosus with 10,000 MW rhodamine dextran at 48 hpf. Dextran clearance was monitored over the next 48 hours
by confocal microscopy. Compared to control MO-injected embryos (A–C), kcnq1 MO-injected embryos exhibit edema (D, E) and increased dextran
clearance (F) 48 hours post-injection (hpi), suggestive of a filtration defect. At 5 dpf, 87% of kcnq1 morphant embryos (n = 38) develop edema (G).
doi:10.1371/journal.pgen.1002264.g004
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allelic heterogeneity, and support the notion that genomic risk

regions are observed across ethnicities. Our replication was

derived from in silico samples, which allowed for the adjustment

for principle components where necessary. Finally, we were able to

corroborate our results in the zebrafish, a model organism for

studying vertebrate kidney development.

While the advantage of the zebrafish model is to rapidly assess

gene function during development, the role of genes in aging and

chronic disease cannot be modeled by transient morpholino

knockdown. eGFR was estimated using the MDRD study

equation, as obtaining gold-standard measures of GFR in large

population-based samples is not feasible. Serum creatinine and

albuminuria were measured at a single-point in time, which may

misclassify certain individuals and bias our results toward the null.

Even with imputation, the coverage of the genome in African

Americans is not comprehensive, thus limiting our statistical

power. With respect to the chromosome 22 MYH9/APOL1 locus,

neither the E1 haplotype in MYH9 nor the G1 haplotype in

APOL1 were in our GWAS dataset, limiting our ability to examine

this region in association with more modest CKD phenotypes.

Finally, our power was low for CKD to detect SNPs with odds

ratios of 1.2, the largest odds ratio detected in other GWAS for

CKD [4].

We identified several SNPs in association with eGFR in African

Ancestry individuals, as well as 3 suggestive loci for UACR and

eGFR. Functional genomic studies support a role for kcnq1 in

glomerular development and function in zebrafish.

Methods

Renal Function Indices
Serum creatinine was measured as described in Text S1. Serum

creatinine was calibrated to NHANES in all studies (including

replication cohorts) to account for between-laboratory variation as

previously described [3,36,37]. Glomerular filtration rate was

calculated based on serum creatinine (eGFR) with the Modification

of Diet in Renal Disease (MDRD) equation [38]. We defined

chronic kidney disease (CKD) as eGFR ,60 ml/min/1.73 m2 in

accordance with the National Kidney Foundation guidelines; CKD

was based on a single serum creatinine measurement as described in

Text S1. Urinary albumin to creatinine ratio (UACR, mg/g) was

computed as described in Text S1; microalbuminuria was defined as

UACR .17 mg/g [men] and .25 mg/g [women].

Covariate Definitions
We defined diabetes as fasting glucose $126 mg/dl, self-report,

or pharmacologic treatment. Similarly, hypertension was defined

as systolic blood pressure $140 mm Hg, diastolic blood pressure

$90 mm Hg, or pharmacologic treatment.

Genotyping Platforms for Genome-Wide Genotype and
Imputation

For the present study, the CARe consortium genotyped the IBC

SNP chip [15] in 23767 European Americans and 8110 African

Americans, as well as the Affymetrix 6.0 chip in 7382 African

Americans. The IBC array contains nearly 50,000 SNPs across

2,000 loci. SNPs were selected using a tagging approach among

populations represented in HapMap and the SeattleSNPs project.

The array was designed to focus on candidate loci related to

cardiovascular disease and its risk factors. More details can be

found in the design paper [15]. Table S1 details the genotyping

that was conducted. For the CARe study cohorts, quality control

and imputation were conducted centrally using MACH 1.0.16

(http://www.sph.umich.edu/csg/abecasis/MaCH/). Imputation

results were filtered using thresholds RSQ_HAT value of 0.3

and minor allele frequency 0.01. Fractional counts between 0 and

2 were coded for the imputed genotypes in order to estimate the

number of copies of a pre-specified allele. For European samples,

the CEU population from HapMap 2 (2.54 million SNPs) was

used as the reference panel.

For African American samples, a 1:1 combined HapMap 2

CEU+YRI reference panel was used. This panel includes SNPs

that were present in both populations, as well as SNPs segregating

in one panel and monomorphic and nonmissing in the other (2.74

million altogether). Since the African American samples were

genotyped for both the Affymetrix 6.0 and IBC arrays, we were

able to analyze imputation performance at non-genotyped SNPs.

The use of the CEU+YRI panel resulted in an allelic concordance

rate of ,95.6%, calculated as 1 – 1/2*|imputed_dosage –

chip_dosage| for imputation on the Affymetrix chip. This is

similar to rates obtained from African ancestry participants

imputed using HapMap 2 YRI individuals [39].

Statistical Methods for Discovery Stage
Trait creation details are described above (Renal Function

Indices). Performed centrally but within each individual study,

genome-wide association analyses and IBC chip analyses of

natural log-transformed eGFR, UACR, CKD, and MA were

conducted using linear and logistic regression with an additive

genetic model. We adjusted for age, sex and study site (when

applicable) and the first 10 principal components; relatedness was

accounted for when necessary using linear mixed effect (LME)

models for eGFR and UACR and logistic regression via

generalized estimating equations (GEE) for CKD and MA.

Additional details regarding the discovery cohorts are in Text S1.

Principal Components Analysis
Principal components were generated using EIGENSTRAT

[40] within each study using the CARe African ancestry Affy6.0

genotype data. Two reference populations were included in the

principal component analysis of African Americans: 1,178

European Americans from a multiple sclerosis GWA study (from

Dr. Phil de Jager and colleagues), and 756 Nigerians from the

Yoruba region from a hypertension GWA (provided by Dr.

Richard Cooper and colleagues). Importantly, these two under-

went extensively quality control procedures to remove population

outliers using PCA. Ten principal components were generated for

each study and used to adjust for population substructure.

Meta-Analysis
We performed fixed-effect meta-analyses of the IBC chip and

genome-wide association data using the inverse-variance weighted

approach in METAL (http://www.sph.umich.edu/csg/abecasis/

Metal/index.html). Genomic control correction was applied after

calculating the inflation factor lambda (l) within each individual

study and after the genome-wide association meta-analysis was

performed.

The standard threshold of p,561028 for genome-wide

significance in the genome-wide association and p,2.061026 in

the IBC chip analyses was used. The rationale for the p-value

threshold used for the IBC chip is based on an empiric test of the

number of independent loci (,25,000) that appear on the IBC

array [17]. We selected independent SNPs (pairwise r2,0.2) at

each locus for replication.

The R software (v2.9.0) was used for data management,

statistical analyses and graphing.
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Interrogation of CKDGen Loci in CARe
We developed a set of criteria to validate the lead SNPs and

interrogate regions around each of the loci that were previously

reported among European ancestry (EA) participants [3,4] in our

African American (AA) CARe samples. For each lead SNP in EA,

we looked-up the respective association result with eGFR in AA.

To accommodate the difference of LD structure and possible

allelic heterogeneity across different ethnicities, we then interro-

gated the 250 kb flanking region around each lead SNP to

determine whether there exist other SNPs with stronger

associations with the outcome. We used the following criteria to

identify the top AA SNP: 1) the SNP with the smallest association

p-value within the region; 2) MAF .0.03; 3) location of the AA

lead SNP within the same recombination block of the lead EA

SNP, where the recombination block was defined as a 20%

recombination rate. The statistical significance of each identified

SNP was evaluated using a region-specific Bonferroni correction.

We determined the number of independent SNPs based on the

variance inflation factor (VIF), which was calculated recursively

within a sliding window with size 50 SNPs and pairwise r2 value of

0.2 using PLINK.

Finally, each identified top SNP in AA was sent for replication

in additional independent AA samples.

Interrogation of CARe Loci in CKDGen
Similar to the interrogation in AA for the EA lead loci, we also

interrogated the newly identified loci from the CARe GWAS and

the IBC chip in EA participants of the CKDGen consortium.

Stage 2 Replication Analysis
Replication analyses were performed using imputed in silico

genome-wide association data; replication studies conducted the

same association analyses as the Stage 1 phase. Details regarding

the replication cohorts can be found in Text S1.

Replication was performed as follows: meta-analysis was

conducted in the Stage 2 studies only, and then in the Stage 1 +
Stage 2 studies combined. Replication was defined as a direction-

consistent Stage 2 beta coefficient; replication p-values are thus

represented as one-sided tests. SNPs were declared to replicate

when the p-value in the Stage 1 + Stage 2 studies combined was

smaller than the p-value in the Stage 1 alone.

Cross-Trait Analyses
The correlation between ln(UACR) and ln(eGFR) can range

from non-significant to as high as 0.237 (p,0.001) in our study;

therefore, we examined the cross-trait associations across albu-

minuria and eGFR phenotypes.

Functional Studies in Zebrafish
Zebrafish were maintained in accordance with established

procedures and IACUC approval. At the one-cell stage, zebrafish

embryos were injected with varying doses of morpholino antisense

oligonucleotides (MO, GeneTools, Philomath OR). MO sequenc-

es are shown in Table S6. For in vivo observations, edema

development was documented at 5-days post-fertilization.

In situ hybridization was performed according to established

procedures (http://zfin.org/ZFIN/Methods/ThisseProtocol.html).

To visualize different regions of the kidney, we used pax2a (global

kidney marker) [41], wt1a (podocyte marker) [41], nephrin (podocyte

marker) [31], slc20a1a (proximal tubule) [42], and slc12a3 (distal

tubule marker) [42]. The morphology of the expression pattern was

independently scored by two investigators. Electron microscopy was

performed as previously described [41].

Dextran clearance was assessed as described previously [20],

48 hours after morpholino injection, embryos were manually

dechorionated, anesthetized in a 1:20 dilution of 4 mg/ml

Tricaine in egg water and positioned on their back in a 1%

agarose injection mold. An equal volume of tetramethylrhodamine

dextran (10,000 MW; Invitrogen) was injected into the cardiac

sinus venosus of each embryo, after which embryos were returned

to fresh egg water. Embryos were imaged by fluorescence

microscopy 6 hours post-injection (54 hpf) to demonstrate equal

loading, then subsequently imaged at 72 and 96 hpf to evaluate

dextran clearance. Confocal images were obtained from agarose

embedded embryos using a Zeiss LSM500 microscope.

Supporting Information

Figure S1 Quantile-quantile plots for genome-wide association

for A) eGFR; B) CKD; c) UACR; 4) MA.

(TIF)

Figure S2 Manhattan plots for genome-wide association for A)

eGFR; B) CKD; c) UACR; 4) MA.

(TIF)

Figure S3 Regional association plots for all confirmed or

replicating loci from the CKDGen loci interrogation; the blue

notation represents the best SNP in whites with the p-value in

African Americans, whereas red represents the lead SNP in

African ancestry participants; the linkage disequilibrium shown

uses YRI information from Hapmap2.

(PDF)

Figure S4 Regional association plot for the MYH9-APOL1

region in African ancestry participants.

(TIF)

Figure S5 Analysis of glomerular architecture after kcnq1

knockdown by electron microscopy does not reveal significant

changes. (a–c) Glomerular architecture at 120 hpf after injection

of control morpholino visualized by electron microscopy at 8000-,

15,000, and 50,000-fold magnification reveals endothelial capil-

laries (C) with basement membrane (BM), podocytes (P) and foot

processes (FP) similar to mammalian glomerular ultrastructure.

(d–f) Transient knockdown of kcnq1 does not significantly change

glomerular anatomy.

(TIF)

Figure S6 Dok6 and fndc1 knockdown in zebrafish embryos

does not affect kidney development. (a–e) Uninjected control

zebrafish embryos show normal glomerular and tubular morphol-

ogy, as shown by in situ hybridization for the global kidney marker

pax2a (a, inset showing lower-magnification image, with staining

in both glomerulus and tubules), the podocyte markers wt1a (b)

and nephrin (c), and the proximal and distal tubular markers

slc20a1a (d) and slc12a3 (e). (f–o) Injection of dok6 (f–j) or fndc1

(k–o) morpholinos at the one-cell stage results in no significant

changes in glomerular or tubular gene expression.

(TIF)

Figure S7 kcnq1 knockdown enhances loss of fluorescent

dextran. Control and kcnq1 MO injected embryos were loaded

with rhodamine-labeled dextran at 48 hpf. .80 embryos were

analyzed for each group in 3 separate experiments (a,d)

Fluorescence microscopy at 6 hpi reveals equal fluorescence

loading between embryos. (b,e) At 72 hpf (24 hpi), fluorescence

intensity in kcnq1 morphants is diminished. (c,f) At 96 hpf (48 hpi)

control embryos retain their fluorescence, but kcnq1 morphants

have significantly diminished fluorescence.

(TIF)
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Table S1 Genotyping and imputation platforms.

(DOC)

Table S2 Genome-wide significant loci: SNP imputation

quality* in Discovery and Replication cohorts.

(DOC)

Table S3 Known loci for eGFRcrea and eGFRcys among

participants of European Ancestry present on the IBC chip.

(DOC)

Table S4 Cross-trait associations for novel loci from Stage

1+Stage 2 in participants of African ancestry.

(DOC)

Table S5 Diabetes and Hypertension stratified analyses, Stage 1

data.

(DOC)

Table S6 Morpholino sequences.

(DOC)

Text S1 Study-specific methods.

(DOC)
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