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Contrasting inequality in human exposure to
greenspace between cities of Global North
and Global South

Bin Chen 1,2,3 , Shengbiao Wu 1, Yimeng Song4, Chris Webster 2,3,5,
Bing Xu6 & Peng Gong 2,7

The United Nations specified the need for “providing universal access to
greenspace for urban residents” in the 11th SustainableDevelopmentGoal. Yet,
how far we are from this goal remains unclear. Here, we develop a metho-
dology incorporating fine-resolution population and greenspace mappings
and use the results for 2020 to elucidate global differences in human exposure
to greenspace. We identify a contrasting difference of greenspace exposure
between Global South and North cities. Global South cities experience only
one third of the greenspace exposure level of Global North cities. Greenspace
exposure inequality (Gini: 0.47) in Global South cities is nearly twice that of
Global North cities (Gini: 0.27). We quantify that 22% of the spatial disparity is
associated with greenspace provision, and 53% is associated with joint effects
of greenspace provision and spatial configuration. Thesefindings highlight the
need for prioritizing greening policies tomitigate environmental disparity and
achieve sustainable development goals.

Greenspace is an important component of urban nature, providing
vital ecosystem services to society1,2 and protecting human health3–5.
The United Nations specified the need for “providing universal access
to greenspace for urban residents” in the 11th Sustainable Develop-
ment Goal of making cities and human settlements inclusive, safe,
resilient and sustainable6. However, how farwe are from achieving this
goal remainsunclear in the global context because thereare no reliable
and accurate data on the exposure of the world’s population to nature
in the form of green spaces.

Greenspace supply metrics, designed to capture the amount and
distribution of green spaces, arewidely adopted to gauge the progress
toward achieving relevant sustainable and healthy development
goals7,8. However, measures of provision (in total or per capita) are
often simplistically equated to actual exposure on the assumption that

the population is evenly exposed to greenspace over time and space9.
The widely used indicator of greenspace coverage in total does not
consider accessibility by the population that might use it9–11. Urban
greenspace phenology is also rarely considered, which might cause
overestimation or underestimation in measurements of greenspace
supply. Therefore, aggregated unit measures of greenspace total
supply or per capita supply produce an ecological fallacy—biased
inferences of individual patterns from aggregated data. Additionally,
greenspace privilege is becoming an increasingly critical concern
because the inequality in greenspace accessibility has the potential to
translate into inequalities in mental and physical health4,12–14. Evidence
from the United States15,16, Germany17,18, Brazil19, China10,20 and else-
where suggests that strong disparities in greenspace supply char-
acterize cities and communities, highlighting the need to consider

Received: 10 March 2022

Accepted: 19 July 2022

Check for updates

1Future Urbanity & Sustainable Environment (FUSE) Lab, Division of Landscape Architecture, Department of Architecture, Faculty of Architecture, The
University of Hong Kong, Hong Kong SAR, China. 2Urban Systems Institute, The University of Hong Kong, Hong Kong SAR, China. 3Musketeers Foun-
dation Institute of Data Science, The University of Hong Kong, Hong Kong SAR, China. 4School of the Environment, Yale University, NewHaven, CT 06511,
USA. 5HKUrbanLabs, Faculty of Architecture, The University of Hong Kong, Hong Kong SAR, China. 6Department of Earth System Science, Ministry of
Education Ecological Field Station for East Asian Migratory Birds, and Institute for Global Change Studies, Tsinghua University, Beijing 100084, China.
7Department of Geography, and Department of Earth Sciences, The University of Hong Kong, Hong Kong SAR, China. e-mail: binley.chen@hku.hk;
bingxu@tsinghua.edu.cn; penggong@hku.hk

Nature Communications |         (2022) 13:4636 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-3496-2876
http://orcid.org/0000-0003-3496-2876
http://orcid.org/0000-0003-3496-2876
http://orcid.org/0000-0003-3496-2876
http://orcid.org/0000-0003-3496-2876
http://orcid.org/0000-0003-4569-6366
http://orcid.org/0000-0003-4569-6366
http://orcid.org/0000-0003-4569-6366
http://orcid.org/0000-0003-4569-6366
http://orcid.org/0000-0003-4569-6366
http://orcid.org/0000-0002-2171-7495
http://orcid.org/0000-0002-2171-7495
http://orcid.org/0000-0002-2171-7495
http://orcid.org/0000-0002-2171-7495
http://orcid.org/0000-0002-2171-7495
http://orcid.org/0000-0003-1513-3765
http://orcid.org/0000-0003-1513-3765
http://orcid.org/0000-0003-1513-3765
http://orcid.org/0000-0003-1513-3765
http://orcid.org/0000-0003-1513-3765
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32258-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32258-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32258-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32258-4&domain=pdf
mailto:binley.chen@hku.hk
mailto:bingxu@tsinghua.edu.cn
mailto:penggong@hku.hk


better optimization strategies in pursuit of environmental justice and
efficiency. Existing studies of greenspace inequality are constrained to
the spatial extent of sampled cities10,15–20 or the measurement scope of
greenspace-oriented accessibility statistics21,22, with limited studies
considering the spatially explicit inequality of human exposure to
greenspace at the global scale, particularly on the difference in cities
between the Global South and North. Moreover, efforts led by local
governments or other agencies have often yielded different results
with unexplainable differences because of inconsistent measurement
and modeling methods. For reliable comparisons across cities and
regions, it is critical to perform greenspace exposure assessments at
multiple scales derived from the same or consistent data sources using
the same or compatible mapping and assessment methods.

To address the challenges outlined above, we undertook a global-
scale analysis to uncover differences in human exposure to green-
space, specifically at country, state, county, and city levels. This
advances on studies that report greenspace supply density without
factoring in the density of demand; we aim to make further advance-
ments by measuring at a lens of high spatial resolution and seasonal
variation. A human–greenspace demand–supply (or exposure) rela-
tionship was captured using 10-m-resolution satellite vegetation
mapping and a 100-m-resolution population dataset. We further
selected 1028 large cities (i.e., urban areas ≥100 km2) globally to assess
urban greenspace exposure, inequality, and the associated drivers.
Our presumption was that a systematic variation in population-
weighted greenspace supply globally implies variation in the oppor-
tunity for people to enjoy the health and recreational benefits afforded
by proximity to green environments. To extend our analysis to sea-
sonal inequalities, we investigated the seasonal variation of urban
greenspace exposure. Specifically, we addressed the following three
questions. (1) What are the differences in human exposure to green-
space across countries, states, and counties in a global context? (2)
What are the differences in greenspace exposure level and exposure
inequality among global cities and what are the associated drivers? (3)
How does vegetation seasonality affect greenspace exposure and
inequality?

Results
We leveraged fine-resolution global greenspace and population map-
ping in 2020 to quantify greenspace exposure across countries
(Fig. 1a), states (Fig. 1b), and counties (Fig. 1c). Results reveal a pro-
minent spatial difference in the magnitude of greenspace exposure
level at all three scales. Our greenspace exposure index is measured as
the averaged amount of greenspace coverage within people’s nearby
environment expressed as a percentage; 100% (best) indicates full
greenspace coverage, and 0% (worst) indicates no greenspace cover-
agewithin people’s nearby living environment. At the country level, we
find 45.8% and 21.0% of countries and regions have human exposure to
greenspace index values of less than 50% and 25%, respectively
(Fig. 1a). The averaged levels of human exposure to greenspace for the
top 10 populated countries are 26.5% (China), 24.3% (India), 58.0%
(US), 58.7% (Indonesia), 12.2% (Pakistan), 39.4% (Brazil), 47.2%
(Nigeria), 35.4% (Bangladesh), 54.0% (Russia), and 28.6% (Mexico). The
state-level assessment shows 41.6% and 17.0% of global states have
human exposure to greenspace index values of less than 50% and 25%,
respectively (Fig. 1b). At the county level, 37.2% and 15.9% of global
counties have greenspace exposure index values of less than 50% and
25%, respectively (Fig. 1c). By comparing greenspace exposure level
with physical greenspace coverage regardless of the proximal popu-
lation for each scale, we observe a global “overestimation” problem
when considering only greenspace coverage, i.e., our index of human
exposure to greenspace is ubiquitously lower than the physical
greenspace index (Supplementary Fig. 1). An appropriate buffer zone
of greenspace is critical for measuring greenspace exposure. Thus, in
addition to the 500-m catchment buffer—widely used for measuring

nearby greenspace exposure 3—used for our primary analysis
(Fig. 1a–c), we also changed the buffer distance to 100, 1000, and
1500m (Fig. 1d–f). Sensitivity analysis of greenspace exposure ranking
shows a consistent pattern of greenspace exposure with different
buffer distances; for country-level assessments, the resultant dis-
crepancy between 1500m and 500m derived greenspace exposure
assessments is slight, i.e., 0.56% on average (Fig. 1d). The corre-
sponding discrepancies are estimated as 0.48% and 2.63% for state-
and county-level assessments, respectively (Fig. 1e, f).

We analyzed human exposure to greenspace for the 1028 global
cities and found strong global differences of greenspace exposure and
inequality (Fig. 2). Global North cities (e.g., US, European, and Aus-
tralian cities) have higher greenspace exposure (mean: 45.84%) than
Global South cities (mean: 14.39%) (e.g., China, India, and the Middle
East). Global South cities also experience much higher inequalities in
greenspace exposure (Gini: 0.47), i.e., almost twice that of Global
North cities (Gini: 0.24). By continent, as shown in Table 1, Asian cities
experience the lowest level of human exposure to greenspace
(13.49%), which is only one quarter that of North American cities
(53.45%), approximately one-third that of European cities (39.25%) and
AustralianandOceaniancities (42.51%). Similarly, people inAfrican and
South American cities experience greenspace exposure of less than
20% on average, which is much lower than the global mean level of
30.36% (Table 1). ThemeanGini index value of greenspace exposure in
Asian, African, and South American cities is in the range of 0.41–0.47,
which is almost twice that inNorthAmerican, European, andAustralian
and Oceanian cities (0.21–0.26), and highlights the urgent need for
greenspace planning for health and wellbeing in Global South cities.

Our results also show that urban greenspace exposure inequality
is dynamic seasonally (Fig. 3), with the largest discrepancy being, as
might be expected, between summer and winter (R2 = 0.13, Fig. 3b, i.e.,
much lower than that for other paired seasons: R2 = 0.22–0.71, Sup-
plementary Fig. 2). Given that vegetation phenological change modi-
fies the temporal availability of urban greenspace (Supplementary
Fig. 3) and greenspace exposure (Fig. 3a, d), we tested the Gini index
difference of urban greenspace exposure between summer andwinter
as a function of the spatiotemporal variation of greenspace exposure,
as measured by σ/u, and found it to be R2 = 0.59, p-value <
0.01 (Fig. 3c).

We incorporated five categories of covariates, including geo-
graphic, topographic, climate, landscape, and socioeconomic factors,
to examine the drivers of the spatial disparity in greenspace exposure
among cities globally. Our statistical analysis reveals that the geo-
graphic variable of latitude, climate variables of precipitation and
vapor pressure deficit, and landscape variables of greenspace cover-
age rate and greenspace edge density have a significant association
with the Gini index of greenspace exposure (Table 2 and Supplemen-
tary Table 1, p-value < 0.001). Specifically, greenspace landscape (i.e.,
greenspace provision and landscape characteristics) accounts for
most of the variation of urban greenspace exposure inequality among
cities globally (R2 = 79.0%, Table 2, Supplementary Fig. 4). Greenspace
coverage rate, as a measurement of urban greenspace provision,
contributes 21.93% of the variance (Supplementary Fig. 4). Greenspace
edge density, a measure of the configuration of greenspace indepen-
dent of quantity, has a unique effect of 3.68% (Supplementary Fig. 4).
Overall, 53.42% of urban greenspace exposure inequality is explained
jointly by greenspace coverage rate and edge density, as a combined
effect of greenspace amount and distribution (Supplementary Fig. 4).

Discussion
Rapid urbanization over the past decades has reshaped the built
environment of the world beyond recognition11,23,24. Previous studies
reported accentuating environmental inequality as urbanization pro-
ceeded, including urban greenspace provision15,16, accessibility3,17,21,22,
and exposure10 in specific cities, regions, and even the entire globe. For
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example, Huang et al. (2021) map out the maximum extent of urban
greenspace at 30-m spatial resolution and estimate the percentage of
the population having a 300-m greenspace accessibility21. Similarly,
Long et al. (2022) adopt the same accessibility measurement by cal-
culating the proportion of the population that are located inside all
300m buffer regions of greenspace in a city or country22. These
methods fall in the scope of greenspace-oriented accessibility statis-
tics. For each unit of greenspace, they estimate the inclusive popula-
tion within the corresponding buffer regions. However, there are
several noticeable shortcomings. First, the accessibility measurement
allocates equal greenspace share to a population (i.e., accessible or
non-accessible) without differentiating the real amount of greenspace
exposed to humans. Second, these methods do not account for all
greenspace coverage in urban areas by excluding greenspace areas
smaller than a certain size (e.g., the minimum area >0.5 ha or >1 ha).

Given the heterogeneous landscape of cities, certain greenspace types
such as street plantation, lawns, and small gardens and parks that play
an important role in providing ecosystem services to high-rise and
high-density urban areas25,26 may be omitted. Third, the derived
accessibility statistics can represent one-layer reflection of the mag-
nitude in human exposure/accessible to greenspace, but they cannot
quantify inequality in a spatially explicit way to account for the share of
greenspace benefit for each person. In our study, we extend this
research to the global context by characterizing the wall-to-wall fine-
resolution footprints of greenspace and population, and mapping the
multiscale differences in human exposure to greenspace from country
to state, county, and city levels. Based on the results, we further
employed the Gini index to quantify the greenspace exposure
inequality for global 1028 cities. Our results reveal prominent spatial
differences in human exposure to greenspace globally. This

Fig. 1 | Multiscale heterogeneities of human exposure to greenspace across the
globe. a–c Country-level, state-level, and county-level assessments of human
exposure to greenspace using 500m buffer zones, respectively, with darker green
colors showing higher levels of greenspace exposure. Sensitivity of different buffer

distances from 100 to 1500m to thed country-level, e state-level, and f county-level
assessments of human exposure to greenspace. The list of countries, states, and
counties are ordered by greenspace exposure level estimated using the 500-m
buffer zone.
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heterogeneous phenomenon occurs because of the combined effects
of the quantity and distribution of (a) greenspace and (b) population.
On the one hand, greenspace coveragewill over- or underestimate real
greenspace exposure. For example, the greenspace coverage in New
York City, United States is 58.01%, but the estimated human exposure
to greenspace is only 25.73% (Supplementary Fig. 5a); the greenspace
coverage in Billings, United States is 46.79%, but the greenspace
exposure is 48.89% (Supplementary Fig. 5b). On the other hand, higher
greenspace coverage (supply) of specific administrative units does not
guarantee a corresponding higher greenspace exposure (useful sup-
ply). The comparison in Supplementary Fig. 5a, b shows that the
greenspace coverage inNewYorkCity is higher than in Billings, but the
real greenspace exposure in Billings is higher than in New York City.
Similar findings can also be observed in Global South cities (Supple-
mentary Fig. 5c, d). We observed this “overestimation” at all scales
(Supplementary Fig. 1 and Figs. 6–8). The finding, which is consistent
with the results of previous studies in China10, reinforces the impor-
tanceof considering human–greenspace supply-demand relationships
when assessing the adequacy of provision9.

Our analysis reveals strong contrast between Global South and
North cities. Global South cities have only one-third of the greenspace
exposure level of Global North cities, and their greenspace exposure
inequality is twice that of Global North cities (Table 1). The population
of Global North cities in the United States, Canada, European coun-
tries, and Australia are much better supplied with greenspace near

their living environments, and there is much less unevenness between
their cities. Nevertheless, we note that Global North cities have a
relatively high standard deviation (Table 1) of greenspace exposure,
highlighting the importanceof local city planning andpolicy regarding
the supply of this vital class of public good in land markets that would
otherwise tend to price out green. For example, out of 180 European
cities, 17 are categorized as having “medium inequality” and they are
clustered in southern Europe (Fig. 2). Similarly, 23 and 10 out of 293
North American cities are categorized as having “medium inequality”
and “high inequality” in greenspace exposure, respectively (Fig. 2). We
find a notable association between the Gini index value of urban
greenspace exposure and greenspace spatial configuration (green-
space provision and greenspace arrangement) after accounting for
other confounding factors. Higher greenspace coverage, as an indi-
cator of greenspace provision in general, tends to reduce greenspace
exposure inequality (Table 2, Supplementary Fig. 4). Moreover, dif-
ferent greenspace arrangements in terms of amount and distribution
spatially lead to varying greenspace landscapes that have the potential
to modify greenspace exposure equality. We note that cities in the
Northmayhave a longer history of formal greenspace planning; higher
municipal revenues over a century or so to allocate to urban greening;
and more mature community feedback systems (including local
democracy) to translate demand to supply.

Greenspace exposure level, access, and inequality vary according
to season.Many green spaces in high-latitude climates lose some or all
their greenness in winter, whereas many green spaces in arid regions
lose greenness during dry seasons. Our study leveraging time series
remote sensing imagery for seasonal greenspace mapping reveals the
magnitude of the seasonal difference in the Gini index (Fig. 3). Because
of the different phenological patterns of evergreen and deciduous
vegetation across latitudes, the seasonal pattern of urban greenspace
exposure also varies between cities of the South and North (Fig. 3a). In
winter, some cities have a more stable level of greenspace exposure
inequality, while others have a much higher level of greenspace
exposure inequality (Fig. 3b). Additionally, human exposure to differ-
ent greenspace types has been linked with different health benefits27.
By differentiating the two key components of urban greenspace, i.e.,
tree (shadowed) and shrub/grass (non-shadowed), we identified some
cities distributed in the US–Mexico border region and in North Africa
that account for much higher proportions of shrub/grass exposure
(Supplementary Figs. 9-10) because of their arid and semiarid
climates28. Nevertheless, our analysis reveals that tree exposure

Table 1 | Statistics of city-level human exposure to green-
space and greenspace exposure inequality across regions

Region (# of cities) Greenspace exposure Gini of greenspace
exposure

Global North (522) 45.84 ± 20.71% 0.24± 0.13

Global South (506) 14.39 ± 9.57% 0.47± 0.13

North America (293) 53.45 ± 22.09% 0.21 ± 0.14

South America (60) 19.89 ± 8.09% 0.41 ± 0.12

Europe (180) 39.25± 11.43% 0.26± 0.08

Africa (63) 17.66 ± 10.21% 0.46 ± 0.14

Asia (420) 13.49 ± 9.52% 0.47± 0.12

Australia/Oceania (12) 42.51 ± 8.33% 0.22± 0.06

Global (1028) 30.36 ± 22.58% 0.35 ± 0.17
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40-60%
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Fig. 2 | Greenspace exposure levels and the associated greenspace exposure
inequalities measured by the Gini index for 1028 cities globally. Larger bubble
sizes represent higher levels of greenspace exposure, and warmer colors represent

higher levels of greenspace exposure inequality. Administrative boundaries with
light blue (pink) shading represent Global North (South) countries.
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dominates the total greenspace exposure of cities globally (68.66% on
average, Supplementary Fig. 9) with high correlation of R2 = 0.91
(Supplementary Fig. 10).

In summary, we found that residents of Global South cities have
lower levels of greenspace exposure and that around the lower mean,
inequality is higher. This finding is highly relevant regarding both
prioritization of greening policies and management actions for miti-
gating environmental disparity and progress toward achieving sus-
tainable development goals in Global South cities and, ultimately, for
the living planet. First, the multi-scale greenspace assessment results

provide evidence and insights for central and local governments to
have a better understanding of the difference between physical
greenspace coverage and realistic greenspace exposure, which will
help policymakers and planners to implement more effective and
sustainable greening programsadjusted to different regional contexts.
Second, this study helps detect vulnerable greenspace exposure hot-
spots in the Global South, which supports local policies and strategies
to prioritize improving greenspace supply and creating greener com-
munities, especially in areas of limited and unequal greenspace
exposure. Third, our study reveals that greenspace landscape includ-
ing both provision and spatial configuration, are the main drivers for
explaining the variation of urban greenspace exposure inequalities,
which calls for coordinated practices among policymakers, city plan-
ners, and landscape architects to balance greenspace supply and
demand as well as optimize greenspace arrangement for facilitating
sustainable and equitable greening management. Specifically, city
planners and mayor’s offices looking to make their cities healthier
through green infrastructure should be wary of aggregate targets,
including misleading pro-rata green/person metrics. What matters
more is where the green enhancements are located in relation to the
urban population. Moreover, it is a fallacy that all kinds of urban
greenspace ecosystem services are equally served by a single green-
space plan and configuration. City-scale biophysical and biodiversity
benefitsmaybemonitored using aggregate greenspace supplyfigures.
Micro-climate benefits such as targeted urbancool-space design, some

Table 2 | Summary of multiple linear regression models

Category Covariate Model 1 Model 2 Model 3 Model 4
Intercept 0.355*** 0.355*** 0.355*** 0.355***

Geographic lat 0.086*** 0.007*

Climate prcp −0.029*** −0.007**

vpd 0.078*** 0.027***

Landscape gcr −0.115*** −0.104***

ed −0.047*** −0.040***

Adjusted R2 25.6% 26.5% 79.0% 81.1%

lat latitude; prcp precipitation; vpd vapor pressure deficit; gcr greenspace coverage rate; ed
greenspace edge density.
***p-value <0.0001, **p-value <0.001, *p-value < 0.01.
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Fig. 3 | Seasonal change of greenspace exposure inequality for 1028 cities
globally. a Histogram of seasonal greenspace exposure variation of each city,
measured by the coefficient of spatiotemporal variation – std (σ/u). b Difference
between the Gini index of greenspace exposure in summer (x-axis) and winter
(y-axis). The bubble size represents the magnitude of the spatial and seasonal
greenspace exposure variation of each city, measured by std (σ/u). Larger bubble

sizes denote higher seasonal variation. c Attribution of the Gini index difference of
greenspace exposurebetween summer andwinter to the differenceofσ/u between
summer andwinter with a significant positive correlation (R2 = 0.59, p-value < 0.01).
dDifference between the Gini index of greenspace exposure in summer and winter
overlaid on Global South and Global North.
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kind of more specific biodiversity benefits, and human health benefits
require more attention to how greenspace is configured in shape and
proximity to human and urbanwildlife populations.We also revealed a
seasonal rhythm of urban greenspace exposure inequality and found
that the magnitude of changing inequality, as measured by the dif-
ference in the Gini index, is highly dependent on the spatiotemporal
variation of greenspace exposure. This evidence provides valuable
insight for assessing urban green spaces and the associated health
benefits by considering both spatial and temporal heterogeneities and
represents a quantitative indicator for measuring the bounding range
of urban greenspace exposure inequality, as a proxy for the green-
space limit and potential of each city.

Our study is subject to several levels of uncertainty. First, people
move during their daily routines, being exposed greenspace environ-
ments beyond those near to their place of residence. The spatial dis-
tributions of greenspace and population footprints mapped in this
study are static at the aggregated level, rather than differentiating
spatiotemporal interactions between greenspace and mobile indivi-
duals. Nevertheless, we believe that the use of population-weighted
models can be interpreted as a useful assessment of human exposure
to greenspace for each administrative unit, given thatwhile individuals
in a population cluster will travel for work and other purposes, their
movements will nevertheless be focused on their place of residence.
Our next step is to integrate the human mobility dataset with green-
space observations toderive a spatially and temporally explicit human-
greenspace interaction framework and realize a real-time assessment
of human exposure to greenspace. Second, differences in population
groups are not considered in this study, and we note that different
greenspace types, such as trees, grasses, and shrubs, or even different
greenspace species of each type will have varying environmental
impacts and health benefits for different population groups27. There-
fore, feeding spatially explicit datasets about demographic attributes
such as age, race, income, etc. into the greenspace exposure assess-
mentmodel can helpdetecthotspots in shortageofgreenspace supply
for specific vulnerable population groups and potentially explain the
variability of health outcomes. Third, our study achieves a multiscale
assessment of greenspace exposure globally for 2020 but does not
delineate long-term temporal changes accounting for socioeconomic
and climatic changes. The emerging need for research efforts in the
next step is to synthesize the past and future for viewing and pro-
jecting temporal changes in greenspace exposure and the associated
inequalities as a dynamic complex system of evolving interactions
among urbanization, climate change, and human interventions. These
represent an open topic for further study in this field. Despite the
uncertainty inherent in our modeling, our analysis provides a holistic
understanding of human greenspace exposure in the global context,
especially regarding the contrasting patterns identified between cities
of the Global South and North. Upgrading the low levels of health-
facilitating greenspace in the Global South and the poor greenspace-
provision areas of the Global North cities, will require decisive gov-
ernment and community action, and our analysis serves as a bench-
mark against which a wide range of future research, practices, and
optimizations could be assessed.

Methods
Research design
A flowchart outlining the entire research design was provided in Sup-
plementary Fig. 11. We combined fine-resolution population and
greenspace mapping with population-weighted exposure models to
explore the spatial differences in human exposure to greenspace
globally, specifically at country, state, and county levels. Focusing on
global large cities, we conducted a comprehensive assessment and
comparison of their urban greenspace exposure and the associated
inequality. We further performed statistical analysis to examine the
main drivers of the highlighted greenspace exposure inequality. To

address the third question posed in the introduction, we leveraged
time series greenspace observations to investigate the impact of
vegetation growth seasonality on greenspace exposure level and
inequality.

Global hierarchy of administrative unit layers
We used the Global Administrative Unit Layers (GAULs) of the Food
and Agriculture Organization of the United Nations at country, state,
and county administrative levels in 2015 as hierarchical units for the
spatial analysis of greenspace exposure globally. GAULs represent the
compilation and dissemination of the best available information on
administrative units for all countries in the world, providing a con-
tribution to the standardization of the spatial dataset representing
administrative units29.

Global urban areas
In addition to GAULs, we quantified greenspace exposure for 1028
urban areasglobally. Different from the commonlyused administrative
boundaries, urban area boundaries were based on the latest Global
Urban Boundaries shapefiles for 2018, representing the continuous
built-up areas30. This dataset was extracted from 30-m-resolution
Landsat imagery using a hierarchical approach to improve the homo-
geneity of built-up areas in urban centers and to maintain the hetero-
geneity of built-up areas at the urban fringes30. To ensure a sufficient
sample size for statistical analyses using the Gini index, we selected
urban areas with a geographic area of >100 km2, which resulted in a
total of 1028 urban areas (i.e., 522 are located in Global North and 506
are located in Global South, Supplementary Fig. 12). This group of
global 1028 urban areas is used for city-level analysis. To clarify terms:
we refer to 1028 ‘cities’ throughout the manuscript to represent the
1028 continuous built-up areas selected for this part of our analysis.

Population
We used the WorldPop dataset for 2020 to quantify the spatially
explicit distribution of population. WorldPop provides the estimated
number of people residing in each 100 × 100mgridbasedon a random
forestmodel and a global databaseof administrative unit-based census
information31, which has much finer spatial resolution and update
frequency than other population datasets such as the GWP32 and
LandScan33.

Greenspace
We leveraged the European Space Agency’s latest global baseline land
cover product for 2020 (WorldCover) at 10m spatial resolution to
quantify the spatial distribution of greenspace. The WorldCover map
includes 11 different land cover classes with overall accuracy of 75%
globally34. The joint use of Sentinel-1 and Sentinel-2 satellite data not
only enhances the spatial resolution of the WorldCover map to 10m,
but alsoprovides reliable land cover information in areaswithpersistent
cloud cover34. We extracted all types of forest, shrub, grass, herbaceous
wetland, and mangrove from the WorldCover maps as greenspaces.

Greenspace coverage
We first aggregated the 10m WorldCover greenspace binary map to
100m grids to realize the mean fractional greenspace coverage, to
ensure the greenspace data is spatially consistent with the 100m
population data (Supplementary Fig. 13). Then, we calculated the
physical greenspace coverage rate by overlapping the derived green-
space fractional map with different GAULs according to Eq. (1):

GC =
∑N

i= 1 Gi

N
ð1Þ

whereGi represents the fractional greenspace coverage of the i-th grid,
N is the total number of grids within the specific administrative unit,
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and GC is the physical greenspace coverage rate for this
administrative unit.

Human exposure to greenspace
We applied the population-weighted exposure model9,10,35,36 to quan-
tify the spatial interaction between population and greenspace. The
population-weighted model is a bottom-up assessment that considers
the density and distribution of both population and greenspace by
allocating higher weights proportionately to greenspace exposure
where more people reside according to Eq. (2):

GEd =
∑N

i= 1 Pi ×G
d
i

∑N
i = 1 Pi

ð2Þ

where Pi represents the population of the i-th grid, Gi
d represents the

fractional greenspace coverage of the i-th grid considering nearby
green environments with a buffered radius of d (i.e., 500, 1000, and
1500m in this study), N is the total number of grids within the corre-
sponding administrative unit, andGE is the corresponding population-
weighted greenspace exposure level.

Greenspace exposure inequality
We adopted the widely used Gini indexmetric37 as a measure to assess
the global inequality in greenspace exposure following the approach
of Song, et al.10. Details of the modeling process are provided in the
Supplementary Information. The Gini index ranges from 0 (absolute
equality) to 1 (absolute inequality), with a lower value indicating that
the amount of greenspace exposure is more even and vice versa.

Model validation
We used three types of greenspace metric (greenspace fraction,
population-weighted greenspace exposure, and the Gini index of
greenspace exposure), derived from the classification maps of the
Sentinel-2 optical satellite images, as benchmarks to evaluate the
accuracy of those greenspace metrics derived from the 10-m-
resolution European Space Agency WorldCover map. Four major
steps were involved in this task. First, we used a maximum value
composite approach to generate the yearly vegetation green metrics
across 1028 urban cities globally by selecting the maximum normal-
ized difference vegetation index (NDVI) value on a pixel-by-pixel basis
from the clear-sky satellite time series. In addition to the maximum
NDVI value, we also recorded the corresponding surface reflectance of
blue, green, red, and near-infrared spectral bands, and the normalized
difference water index for the following image classification purpose.
Tominimize the uncertainty of cloud cover and cloud shadows for the
NDVI composition, we excluded low-quality pixels through the appli-
cation of cloud and cloud shadowmasks obtained from the Sentinel-2
cloud probability product, which records the pixel-based cloud prob-
ability using a machine learning approach (https://developers.google.
com/earth-engine/tutorials/community/sentinel-2-s2cloudless). The
default cloudmask parameters suggested by the Sentinel Hub services
and Sentinel Hub cloud detector were adopted in this cloud and cloud
shadow removal process. Second, using the composited Sentinel-2
image, we conducted a vegetation and non-vegetation classification
using a random forest machine learning approach with a total of 3607
training samples (749 pixels for vegetation and 2858 for non-vegeta-
tion) and 15 decision trees. To assess the accuracy of the Sentinel-2
classification, we randomly generated a total of 20,560 validation
samples across 1028 urban cities globally (20 validation samples for
each city), and excluded 34 of the validation samples that were
encompassed by the cloud or cloud cover masks. Consequently,
20,526 effective validation samples were obtained (Supplementary
Fig. 15). The vegetation cover conditions of those validation points
were determined by the following two steps. 1) We conducted a linear

spectral unmixing with the three endmembers of vegetation, non-
vegetation, and water across the selected global urban cities and
labeled all validation samples with a vegetation fraction larger than the
threshold of 0.60 as vegetation pixels. 2) For the remaining validation
samples, we classified them as vegetation or not through visual inter-
pretation of both composited Sentinel-2 and high-resolution Google
Earth images. With the classification of validation samples, we eval-
uated the accuracy of the Sentinel-2 classification results, which
revealed satisfactory performance for the four widely used metrics
(overall accuracy: 0.95, precision: 0.94, recall: 0.95, and F1-score: 0.95,
Supplementary Table 2). We also randomly selected 16 urban cities
covering the major continents as samples to demonstrate the visual
assessment of the Sentinel-2 classification results (Supplementary
Fig. 16), which revealed reasonable spatial patterns of classification
when compared with the raw Sentinel-2 images. These independent
visual and quantitative evaluations collectively supported the feasi-
bility and robustness of the integration of Sentinel-2 imagery and the
random forest classifier for deriving greenspace metrics. Third, we
applied the calibrated random forest classifier to the Sentinel-2 images
across the global urban cities to classify the images into vegetation and
non-vegetation components, and we then calculated the city-level
greenspace fraction, population-weighted greenspace exposure, and
Gini index of greenspace exposure. Finally, we used these greenspace
metrics as references to evaluate the accuracy of the corresponding
greenspace metrics extracted from the European Space Agency
WorldCover map, which revealed overall acceptable accuracy with the
estimated regression slope of close to one and high Pearson’s corre-
lation coefficients (Supplementary Fig. 17). The slight difference
between the greenspace metrics from the two dataset sources is
attributable to the greenspace seasonality that arises from vegetation
phenology dynamics.

Seasonal change in greenspace exposure inequality
To explore the seasonal impact of vegetation phenology on green-
space exposure inequality, we first generated Sentinel-2 image com-
positions in 2020 using themaximumNDVI value composite approach
for global urban areas in spring, summer, autumn, and winter. Speci-
fically, in Northern Hemisphere, spring runs from March to May,
summer runs from June to August, autumn runs from September to
November, andwinter runs fromDecember to February. The Southern
Hemisphere is the opposite case, i.e., spring runs from September to
November, summer runs from December to February, Autumn runs
fromMarch toMay, andwinter runs from June toAugust.We thenused
the random forest models to classify the seasonal composites of the
Sentinel-2 images. By modeling the spatial human–greenspace inter-
action using Eq. (2), we further calculated the Gini index of greenspace
exposure in each season. We finally investigated the dynamics in the
Gini index of greenspace exposure through pairwise comparison (e.g.,
summer Gini vs. winter Gini) using scatter plots for the four seasons.

To account for the seasonal difference in urban greenspace
exposure inequality, we used a dimensionless measure of dispersion,
i.e., the coefficient of spatial variation (csv), to quantify the spatial
variability of greenspace exposure. This coefficient is defined as the
ratio of the standarddeviation (SD) value (σ) to themean value (μ). The
csv was calculated based on gridded greenspace exposure for each
city:

csv= σ=μ ð3Þ

We further calculated the SD value over the four seasons to
quantify the overall spatial and temporal variation (cstv) of greenspace
exposure:

cstv= stdðfcsvi : i= 1, 2, 3, 4gÞ ð4Þ

Article https://doi.org/10.1038/s41467-022-32258-4

Nature Communications |         (2022) 13:4636 7

https://developers.google.com/earth-engine/tutorials/community/sentinel-2-s2cloudless
https://developers.google.com/earth-engine/tutorials/community/sentinel-2-s2cloudless


Drivers of greenspace exposure inequality
We compiled a suite of variables to examine their associations with
urban greenspace exposure inequality, as measured by the Gini index
of greenspace exposure. The inclusive variables comprised five cate-
gories (Supplementary Table 1): (i) geographic variables (latitude and
longitude), (ii) topographic variables (elevation and slope), (iii) climate
variables (mean monthly precipitation, mean monthly temperature,
and mean monthly vapor pressure deficit), (iv) socioeconomic vari-
ables (nighttime light intensity per km2 as a proxy of Gross Domestic
Product, population density per km2, and road length per km2 within
the urban areas), and (v) landscape variables (greenspace coverage
rate as a proxy of composition, mean patch size, largest patch size,
mean patch perimeter–area ratio, mean patch shape index, and edge
density as proxies of configuration). We first rescaled all variables to
the range of 0–1. Pearson’s correlation was calculated to check the
correlations between the Gini index of greenspace exposure and these
five-category variables (Supplementary Table 1, Supplementary
Fig. 11). We then conducted a partial correlation analysis to further
quantify the relationships between the Gini index of greenspace
exposure and each explanatory variable by controlling the effects of
the other variables (Supplementary Table 1, Supplementary Fig. 18).
Based on a set of rules including a significance level of a p-value <
0.001, |Pearson’s r | > 0.1, and |partial correlation coefficient | >0.1, we
refined the five explanatory variables for further analysis, including
latitude (lat), precipitation (prcp), vapor pressure deficit (vpd),
greenspace coverage rate (gcr), and edge density (ed). We then built
four ordinary least squares multiple linear regression models to
investigate the association between the variables from the different
categories and the Gini index of greenspace exposure. The first model
included only the geographic variable of latitude. The second model
included only the climatic variables of precipitation and vapor pres-
sure deficit. The third model included only the landscape variables of
greenspace coverage rate and edge density. The fourth model inclu-
ded all the variables included in models 1–3. Based on the full model
result (model 4), we used the variance inflation factor to measure the
multicollinearity among the variables. Results showed that the all-
inclusive variables achieved a variance in inflation factor of <4 (Sup-
plementary Fig. 19), demonstrating plausible model performance. The
adjusted R2, standardized coefficient, and p-values were used to assess
the regression performance. In addition, we applied a machine learn-
ing algorithm, i.e., the random forest model, to build the association
between all 16 explanatory variables and the Gini index of urban
greenspace exposure. Variable importance was quantified by the
indicators of the increase in mean square error and the increase of
node purity (Supplementary Fig. 20).

We further employed variance partitioning using the ‘vegan’
package of R to quantify the relative variations in the Gini index of
urban greenspace exposure, which can be explained by the landscape
factors into four fractions: (1) unique effect of greenspace provision
(i.e., greenspace coverage rate), (2) unique effect of greenspace con-
figuration (i.e., greenspace edge density), (3) joint effects of green-
space provision and spatial configuration, and (4) unexplained
residuals.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data used in this study are collected from the following sources: The
global hierarchy of administrative unit layers are from the Food and
Agriculture Organization of the United Nations (https://data.apps.fao.
org); Global urban area boundaries are from FROM-GLC research
group of Tsinghua University (http://data.ess.tsinghua.edu.cn); Popu-
lation dataset is from WorldPop (https://www.worldpop.org); Global

baseline land cover product for 2020 (WorldCover) is from the Eur-
opean Space Agency (https://esa-worldcover.org); Sentinel-2 images
for validation purpose are from the Sentinel-2 data Archive in Google
Earth Engine (https://earthengine.google.com). The resulting green-
space exposure assessments at country, state, and county scales and
the greenspace exposure and inequality assessments for global 1028
cities have been deposited at the following repository: https://
datahub.hku.hk/projects/GreenExposure/140290.

Code availability
All code used to produce the necessary data and results in this study
are available in the following repository: https://datahub.hku.hk/
projects/GreenExposure/140290.
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