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ABSTRACT Intraocular pressure (IOP) is the primary risk factor for developing glaucoma, yet little is known
about the contribution of genomic background to IOP regulation. The present study leverages an array of
systems genetics tools to study genomic factors modulating normal IOP in the mouse. The BXD
recombinant inbred (RI) strain set was used to identify genomic loci modulating IOP. We measured the
IOP in a total of 506 eyes from 38 different strains. Strain averages were subjected to conventional
quantitative trait analysis by means of composite interval mapping. Candidate genes were defined, and
immunohistochemistry and quantitative PCR (qPCR) were used for validation. Of the 38 BXD strains
examined the mean IOP ranged from a low of 13.2mmHg to a high of 17.1mmHg. The means for each strain
were used to calculate a genome wide interval map. One significant quantitative trait locus (QTL) was found
on Chr.8 (96 to 103 Mb). Within this 7 Mb region only 4 annotated genes were found: Gm15679, Cdh8,
Cdh11 and Gm8730. Only two genes (Cdh8 and Cdh11) were candidates for modulating IOP based on the
presence of non-synonymous SNPs. Further examination using SIFT (Sorting Intolerant From Tolerant)
analysis revealed that the SNPs in Cdh8 (Cadherin 8) were predicted to not change protein function; while
the SNPs in Cdh11 (Cadherin 11) would not be tolerated, affecting protein function. Furthermore, immu-
nohistochemistry demonstrated that CDH11 is expressed in the trabecular meshwork of the mouse. We
have examined the genomic regulation of IOP in the BXD RI strain set and found one significant QTL on
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Chr. 8. Within this QTL, there is one good candidate gene, Cdh11.

Glaucoma is a diverse set of diseases with heterogeneous phenotypic
presentations associated with different risk factors. Untreated, glaucoma
leads to permanent damage of axons in the optic nerve and visual field
loss. Millions of people worldwide are affected (European Glaucoma
Prevention Study et al. 2007; Leske et al. 2007) and it is the second
leading cause of blindness in the United States (Medeiros et al. 2003).
Adult-onset glaucoma is a complex collection of diseases with multiple
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risk factors and genes with differing magnitudes of effects on the even-
tual loss of RGCs. The severity of the disease appears to be dependent
on the interaction of multiple genes, age, and environmental factors
(Herndon et al. 2004). There are also a number of phenotypic risk
factors for POAG including: age, ethnicity, central corneal thickness
and axial length (Gordon et al. 2002). The primary risk factor is an
elevated intraocular pressure (IOP) (Klein et al. 2004). There are known
genetic mutations that affect IOP that result in inherited glaucoma
(Stone et al. 1997; Wiggs 2007). The prime example is MYOC, a protein
secreted by the trabecular meshwork and mutations in this protein
cause ER stress which results in a decrease in the function of the
trabecular meshwork and an elevation in IOP (Joe et al. 2003; Kasetti
et al. 2016). We know a considerable amount about the regulation of
IOP from the production of aqueous humor to the outflow pathways.
IOP is a complex trait affected by different tissues in the eye each of
which is regulated by multiple genomic loci. Interestingly, there are
very few studies (Springelkamp et al. 2014; Nag et al. 2014; Chen
et al. 2014; Choquet et al. 2017; Ozel et al. 2014; Springelkamp et al.
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2017) that have identified genomic loci in humans modulating normal

10P.

In the present study, we are using the BXD recombinant inbred
(RI) strain set that is particularly suited for the study of genetics and
the effects on the severity of glaucoma. This genetic reference panel
presently consists of over 202 strains (Peirce et al. 2004), and we are
now in the unique position of being able to study the eyes in mice
with shuffled genomes from the two parental strains, C57BL/6] and
the DBA/2]. There are over 7,000 break points in our current set of
BXD strains. For this study, our group has measured IOP of 506 eyes
from 38 strains to identify genomic loci modulating IOP. A systems
genetics approach to glaucoma is a relatively new branch of quanti-
tative genetics that has the goal of understanding networks of inter-
actions across multiple levels that link DNA variation to phenotype
(Mozhui et al. 2008). Systems genetics involves an analysis of sets of
causal interactions among classic traits such as IOP, networks of gene
variants, and developmental, environmental, and epigenetic factors.
The main challenge is the need for comparatively large sample sizes
and the use of more advanced statistical and computational methods
and models. We finally have a sufficiently large number of strains to
use this approach (Geisert et al. 2009; Freeman et al. 2011). Our goal
is now to combine data across several levels from DNA to ocular
phenotype and analyze them with newly developed computational
methods to understand pre-disease susceptibility to glaucoma along
with the genetic networks modulating the response of the eye to
elevated IOP.

METHODS

Mice

This study measured the IOP in the 36 BXD strains of mice along with
the parental strains, the C57BL/6] mouse strain and the DBA/2]
mouse strain. None of the BXD strains included in this study carried
both mutations (TyrpI and Gpnmb) known to cause the severe glau-
coma phenotype observed in the DBA2/J strain. All of the mice in
this study were between 60 and 120 days of age, a time before there is
any significant elevation in IOP due pigment dispersion (Anderson
et al. 2002). The data presented in this paper is based on measure-
ments from 506 eyes with roughly equal numbers of male and female
mice. All breeding stock was ordered from Jackson Laboratories (Bar
Harbor, ME) and maintained at Emory. Mice were housed in the
animal facility at Emory University, maintained on a 12 hr light/dark
cycle (lights on at 0700), and provided with food and water ad libitum.
IOP measurements were made between 0900 and 1100. Both eyes
were measured and the data from each eye was entered into
the database. An induction-impact tonometer (Tonolab Colonial
Medical Supply) was used to measure the IOP according to manu-
facturer’s instructions and as previously described (Saleh et al
2007; Nagaraju et al. 2009). Mice were anesthetized with Avertin
(334 mg/kg) or ketamine/xylazine (100,15mg/kg). Three consecutive
IOP readings for each eye were averaged. IOP readings obtained with
Tonolab have been shown to be accurate and reproducible in various
mouse strains, including DBA/2] (Wang et al., 2005). All measure-
ments were taken approximately 10 min after the induction of an-
esthesia. These IOP measurements were made on mice prior to two
different experimental procedures, blast injury to the eye (Struebing
et al. 2018a) or elevation of IOP by injection of magnetic beads into
the anterior chamber (Struebing et al. 2018b). All of the measure-
ments were made on normal eyes. Previous studies have found sig-
nificant effects of anesthesia on IOP (Ding et al. 2011; Qiu et al
2014). When we compared the IOP of all mice anesthetized with
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Avertin to those anesthetized with ketamine/xylazine over the entire
dataset there was no significant difference between the two groups.
We specifically examined the C57BL/6] mouse strain, with 11 mice
anesthetized with Avertin (mean IOP 10.2, SD 0.15) and 27 mice
anesthetized with ketamine/xylazine (mean IOP 11.2, SD 2.9). Al-
though there was a trend for the ketamine/xylazine anesthetized
mice to have higher IOP, there was no statistically significant differ-
ence between the two groups using the Mann-Whitney U-test.

Interval Mapping of IOP Phenotype

The IOP data will be subjected to conventional QTL analysis using
simple and composite interval mapping along with epistatic inter-
actions. The means for each BXD strain were calculated and these
means were used to generate genome-wide interval maps. All of
these data are available on GeneNetwork.org. Genotype was
regressed against each trait using the Haley-Knott equations imple-
mented in the WebQTL module of GeneNetwork (Chesler et al.
2005; Rosen et al. 2003; Carlborg et al. 2005). Empirical significance
thresholds of linkage are determined by permutations (Churchill
and Doerge 1994). We correlated phenotypes with gene expression
data for whole eye and retina (Geisert et al. 2009; King et al. 2015;
Templeton et al. 2013).

Immunohistochemistry

For immunohistochemical experiments mice were deeply anesthe-
tized with a mixture of 15 mg/kg of xylazine (AnaSed) and 100 mg/kg
of ketamine (Ketaset) and perfused through the heart with saline
followed by 4% paraformaldehyde in phosphate buffer (pH 7.3). The
eyes were embedded in paraffin as described by Sun et al. (Sun et al.
2015). The eyes were dehydrated in a series of ethanol and xylenes
changes for 20 min each (50% ETOH, 70% ETOH, 90% ETOH, 95%
ETOH, two changes of 100% ETOH, 50% ETOH with 50% xylenes,
two changes of 100% xylene, two changes of paraffin). The eyes
were then embedded in paraffin blocks. The eyes were sectioned
with a rotary microtome at 10nm and mounted on glass slides.
Paraffin was removed from the sections and the sections were
rehydrated. The sections were rinsed in PBS, and then placed in
blocking buffer containing 2% donkey serum, 0.05% DMSO and
0.05% Triton X-100 for 30 min. The sections were rinsed in PBS,
and then placed in blocking buffer containing 2% donkey serum,
0.05% DMSO and 0.05% Triton X-100 for 30 min. The sections
were incubated in primary antibodies (1:500) against Cadherin
11 (Thermofisher, Cat. #71-7600, Waltham, MA) overnight at 4°.
After rinsing, the sections were incubated with secondary anti-
body conjugated to AlexaFluor-488 (donkey anti-rabbit, Jackson
Immunoresearch Cat #711-545-152, Westgrove, PA), (1:1000), for
2 hr at room temperature. The sections were then rinsed 3 times in
PBS for 15 min each. Then they were counterstained with
TO-PRO-3 iodide purchased from Invitrogen (T3605, Invitrogen,
Eugene OR). The slides were flooded with Fluoromount-G (South-
ernBiotech Cat #. 0100-01, Birmingham, AL), and covered with a

Table 1 Primers designed for Cdh11 and Cdh8 and Myoc

Cdh11 Forward 5" GAAACCAAAGTCCCAGTGGCC 3’
Reverse 5" TGGTCCATTGGCTGTGTCGT 3’
Cdh8 Forward 5" AGCCTCCGGTCTTCTCTTCAC 3’
Reverse 5’ CAGTGTGGCGGTCAATGGAAA 3’
Myoc Forward 5" GCTGGCTACCACGGACACTT 3’
Reverse 5 CGCTCAAGTTCCAGGTTCGC 3’
Ppia Mm_Ppia_1_SG QuantiTect Primer Assay
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coverslip. All images were photographed using a Nikon Eclipse
TE2000-E (Melville, NY) confocal microscope and images were
acquired by Nikon’s EZ-C1 Software (Bronze Version, 3.91).

PCR Validation

Reverse transcription-quantitative polymerase chain reaction (RT-
qPCR) were used to validate the mRNA expression level of Cdh11
and Cdh8 and Myoc in whole eyes of C57BL/6] mice. Primers were
designed for Cdh11, Cdh8 and Myoc using Primer BLAST-NCBI so
that predicted PCR products were approximately 150bp long.
Sequences of the PCR primers are listed in Table 1. PCR reactions
were carried out in triplicate in 10l reactions containing 5ul of 2x
QuantiTect SYBR Green PCR Master Mix (Qiagen, Cat #204141
Hilden, Germany), 0.5 pl of forward primer (0.5uM), 0.5 pl of
reverse primer (0.5 uM), 2pl of template cDNA(10ng) and 2l of
RNA free H,0. PCR of mouse genes was performed using a program
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Figure 1 The distribution of IOP
across the BXD strains is illustrated in
a bar chart with means and Standard
Error of the Mean In the 38 strains of
mice the IOP ranged from a low of
10.9 mmHg to a high of 17.1 mmHg.
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beginning at 95° for 15 min, followed by 40 cycles of reaction with
denaturation at 94° for 15 sec, annealing at 59° for 30 sec and
extension at 72° for 30 sec of each cycle. The cycle threshold (Ct)
values were normalized to a mouse housekeeping gene peptidyl-
prolyl isomerase A (Ppia) to generate Delta Ct values (ACt) for
each gene. Fold changes (FC) were calculated from the differences
of each gene when compared with Cdh1I1(AACt) using the formula
FC= 2A(-AACT). Data were represented as mean * SE of mean.
Four biological independent samples were used for statistical analysis
using Mann-Whitney-U-test (Figure 4).

Data Availability

All of the IOP data used in this study is presented in Table S1. The means
from each strain and the standard deviations are provided in Table S2.
The mapping file (Record ID 19520) for the data present in this paper
can be found on GeneNetwork.org.

Trak 1D: Temp : Usr_TMP_MWuOutnd

Mapping for Dataset: BXD, mapping on All Chromosomes
Using Haldane mapping function with no control for other QTLs
Using Genotype file: New Genotypes (2017)
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Figure 2 A genome-wide interval map of IOP. The interval map plots the likelihood ratio statistic (LRS) across the genome from chromosome 1 to
chromosome X. The light gray line is the suggestive level and the light red line is genome-wide significance (P = 0.05). When the IOP measures
were mapped to the mouse genome there was a significant association between IOP and a locus on Chromosome 8.
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Figure 3 The interval map for Chr. 8: 90 to 110 Mb is illustrated. A is the gene tract, that identifies the locations of known genes across the
genome. B is a haplotype map for the different BXD Rl strains listed to the right and ranked from the highest IOP to the lowest IOP. The location
of genomic markers is indicated by black vertical lines. C is an expanded version of the interval map for IOP. Finally, the bottom trace (yellow)
identified the location of SNPs between the C57BL/6 mouse and the DBA2/J mouse. The genomic location is indicated along this lower trace.
Notice that the peak of the QTL in C sits in a region of the genome that contains very few known genes (A).

RESULTS

The overall goal of the present investigation was to determine if specific
genomic loci modulate IOP in the BXD Rl strains. IOP was measured in
506 eyes from 38 BXD RI strains and the two parental strains C57BL/6]
mouse and DBA2/] mouse. To create a mapping file the strain averages
and standard errors were calculated (Figure 1). The mean IOP measured
across the 38 strains was 13.2 mmHg and the standard error of the
mean was 1.5 mmHg. The strain with the lowest IOP was DBA2/J, with
an average IOP of 10.9 mmHg. The strain with the highest IOP was
BXD48 with an average IOP of 17.1 mmHg. The IOP of the parental
strains was 11.6 mmHg for the C57BL/6] and 10.9 mmHg for the
DBA2/]. This is a substantial amount of genetic transgression across
the BXD RI strain set. This type of phenotypic variability is a clear
indication that IOP is in fact a complex trait. These data can also be
used to calculate the heritability of IOP. Figure 1 reveals a considerable
variability in the IOP from strain to strain and the standard error for
each strain is rather small. This type of data suggests that the genetic
variability has a greater effect than the environmental variability. These
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data can be used to calculate the heritability H? of IOP. H? is the genetic
variance (Vg) of the trait divided by the sum of genetic variance plus the
environmental variance (Vg +Ve). The genetic variance can be esti-
mated by taking the standard deviation of the mean of IOP for each
strain (Vg = 1.7 mmHg). The environmental variance can be estimated
by taking the mean of the standard deviation across the strain (Ve =
3.2 mmHg). Using the formula for heritability, H> = Vg/(Vg + Ve), the
calculation of 1.7 mmHg /(1.7 mmHg + 3.2 mmHg) reveals that H? =
0.35. Thus, IOP is a heritability trait in the BXD RI strain set.

Genome Wide Mapping

Taking the average IOP from 38 strains of mice we performed an unbiased
genome-wide scan to identify genomicloci (QTL) that modulate IOP. The
genome-wide interval map (Figure 2) identifies one significant peak on
Chr. 8. Examining an expanded view of Chr.8, 90 to 110 Mb (Figure 3),
the peak of the IOP QTL reaches significance from the genomic marker
1s3661882 (96.2 Mb) to rs13479958 (103 Mb). BXD strains with higher
IOPs (Figure 3B) tend to have the C57BL/6] allele (red) and strains with

-=.G3:Genes| Genomes | Genetics



lower IOPs tend to have the DBA2/] allele (green). When the distri-
bution of genes within this region is examined (gene track Figure 3A)
the significant portion of the QTL peak covers a region of the genome
that is a gene desert. Within this region there are only 4 annotated
genes: Gm15679 (predicted gene 15679, Chr.8: 99.01- 99.03Mb),
Cdh8 (cadherin 8, Chr.8: 99.03-99.42Mb), Cdhll (cadherinll,
Chr.8:102.63-102.79Mb) and Gm8730 (predicted gene 8730, Chr.8:
102.86- 102.87Mb). Using the tools available on GeneNetwork (gen-
enetwork.org) we are able to identify potential candidates for modu-
lating IOP in the BXD RI strains. The candidate genes can either be
genomic elements with cis-QTL or they can be genes with nonsynon-
ymous SNPs changing protein sequence and affecting protein func-
tion. Within this region there are only two putative candidate genes.
None of the candidate genes had valid cis-QTL in either the eye
dataset (Geisert et al. 2009) or the DoD normal retinal dataset on
GeneNetwork (King et al. 2015). Two of the genes in this region had
non-synonymous SNPs: Cdhl11 and Cdh8.

For the initial evaluation of the two candidate genes we examined
their expression level in a microarray dataset hosted on GeneNetwork:
the eye database (Eye M430v2 (Sep08) RMA). In the eye dataset, the
highest level of expression for a valid Cdhl11 probe set (1450757_at) is
10.8 Log,. This dataset is on a Log, scale with the mean mRNA ex-
pression set to 8. Thus, Cdh11 is expressed at approximately eightfold
above the mean. For Cdh8 the highest expression of a valid probe set
(1422052_at) is 7.3 Log, or approximately twofold below the mean.
These data demonstrate that Cdh11 is expressed at a level over eightfold
higher in the whole eye relative to the expression of Cdh8.

To confirm the expression levels of Cdh11 and Cdh8 in the eye, we
examined the levels of mRNA in the whole eye by RT-qPCR (Figure 4).
In 4 biological replicate samples, we examined the levels of Cdh11, Cdh8
and Myoc (a marker of trabecular meshwork cells, (Takahashi et al.
1998)). Our PCR analysis confirmed the general findings of the micro-
array data sets. In the 4 biological samples of whole eye, Cdhll was
more highly expressed than Cdh8. The average of the 4 samples dem-
onstrated a more than twofold higher expression of Cdhll (ACt =
5.75 = 0.27) than Cdh8 (ACt = 7.36 £ 0.33). Myoc (ACt = 527 =
0.38) was expressed at a higher level than both Cdh8 and Cdh11. All of
these data taken together indicate that Cdh11 is the prime candidate for
an upstream modulator of IOP in the mouse. Using the RNA-seq data
presented in the study by Carnes et al. (Carnes et al. 2018), we exam-
ined the expression level of CDH11 and CDH8 in the human trabecular
meshwork. CDHI1I is highly expressed in adult human trabecu-
lar meshwork; while CDHS is expressed at very low levels if at all.
The levels of CDHI1 are more than 55 times higher than that for
CDHS8(FPKMcpni1 = 88.5 vs. FPKMcpus = 1.6, FPKM: Fragments
Per Kilobase Million). This remains true for fetal human trabecular
meshwork (FPKMcp11 = 270.1 vs. FPKMcppg = 4.6).

To determine if any of the non-synonymous SNPs in either Cdh8 or
Cdh11 could affect protein function, we ran a SIFT (Sorting Intolerant
From Tolerant) analysis (Kumar et al. 2009). The SNP in Cdh8
(rs37017336 cysteine to arginine) had a SIFT value of 0.19 indicating
that this mutation in the protein would be tolerated, not affecting pro-
tein function. The two SNPs in Cdh11 (rs30742273 valine to methio-
nine, and rs33464298 glutamic acid to aspartic acid) both had SIFT
values of 0.03, predicting that each of these SNPs would not be tolerated
and would be deleterious to protein function. All of these data point to
Cdh11 as the one good candidate gene.

Distribution of Cadherin 11 in the Eye
To determine if Cadherin 11 is found in structures associated with the
control of IOP, we stained sections of the eye for Cadherin 11. In these
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Figure 4 Expression of Cdh11, Cdh8 and Myoc in whole eye. The
mRNA expression levels of Cdh11, Cdh8 and Myoc in mice whole
eye are shown as fold changes normalized to Cdh11. Significant
changes in gene expression were observed using a Mann-Whitney
U-test.
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sections, there was antibody-specific staining of several structures
(Figure 5A) as demonstrated by the lack of staining in control sections
stained with secondary antibody only (Figure 5B). There is extensive
labeling of all layers of the cornea. The epithelium of the ciliary body is
also heavily labeled as well as labeling of pars plana. There is also light
labeling of the retina. At higher magnification (Figure 5C), clear label-
ing of the trabecular meshwork (arrow) is observed. These data reveal
that the expression pattern of Cadherin 11 in the mouse eye and its
specific expression in the cells of the trabecular meshwork is appropri-
ate for a protein involved in regulation of IOP.

DISCUSSION

The normal regulation of intraocular pressure is a balance between
production in the ciliary body and outflow (Brubaker 1991; Goel et al.
2010). In the human, IOP can range from a relatively low pressure to an
extremely high one that occurs in acute angle closure glaucoma. It is
generally accepted that the “normal” range for IOP in humans is from
12mmHg to 22mmHg (Hollows and Graham 1966; Renard et al. 2010).
In addition, monitoring throughout the day reveals IOP is pulsatory
and has a diurnal variability (Aptel et al. 2016). These findings tell an
interesting story about the regulation of pressure in the eye; however,
the primary driving force behind the intense investigation of IOP in
humans is the fact that it is the primary risk factor for developing
glaucoma (Sommer et al. 1991). Furthermore, all of the current treat-
ments for glaucoma center around lowering IOP either by pharmaco-
logical approaches or surgery (Cohen and Pasquale 2014; Gedde et al.
2013).

The known association between elevated IOP and glaucoma has
driven most of the study of IOP in human populations (Gordon et al.
2002; Ojha et al. 2013; Ozel et al. 2014). Most of these studies involve
the study of glaucoma, but a few have a primary focused on the regu-
lation of IOP. These studies have found that IOP is a heritable trait with
estimates of heritability ranging from 0.39 to 0.64 (Klein et al. 2004;
Chang et al. 2005; Carbonaro et al. 2009; van Koolwijk et al. 2007). In
the present study, we found that the heritability of IOP in the BXD RI
strains was 0.35. Thus, the mouse strains demonstrated a heritability
near the lower end of the human populations. The interest has prompted
studies to identify genes regulating IOP. In a genome-wide association
study of IOP involving 11,972 subjects, significant associations were
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Figure 5 The distribution of cadherin 11 in the limbal area of the eye is illustrated. The section in A was stained with an antibody specific to
cadherin 11 (green) and for DNA (blue). This staining is specific to the primary antibody for it is not observed in a section stained with the
secondary antibody alone (B). The staining pattern of the trabecular meshwork is shown at higher magnification in C (arrow). A and B are taken at

the same magnification and the scale bar in panel B represents 25 pm.

observed with SNPs in two genes, GAS7 and TMCOI (van Koolwijk
et al. 2012). Both of these genes are expressed at high levels in the
ciliary body and trabecular meshwork (Liton et al. 2006) and both of
the genes interact with known glaucoma risk genes (van Koolwijk
et al. 2012). TMCOL1 is also known to be associated with severe
glaucoma risk (Burdon et al. 2011).

In an effort to understand the regulation of IOP and its effects on the
retina, many research groups have used inbred mouse strains (Savinova
et al. 2001; Struebing and Geisert 2015; Sappington et al. 2010; Cone
et al. 2010; Samsel et al. 2011; Chintalapudi et al. 2017). IOP varies
widely across different strains of mice (Savinova et al. 2001; Wang et al.
2005), ranging from a low of 11lmmHg in the BALB/c mouse strain to a
high of 19mmHg in the CBA/Ca mouse strain. In the present study, the
average measured IOP across the 34 strains was 13.2mmHg. The lowest
measured IOP was 10.9mmHg in the DBA/2] strain and the highest
was 17.1mmHg in the BXD48 strain. All of these studies are compli-
cated by the difficulties of measuring IOP in the mouse (Wang et al.
2005; Ding et al. 2011). The present study examines IOP in the anes-
thetized mouse and there is substantial evidence that anesthesia can
affect IOP (Ding et al. 2011; Qiu et al. 2014). That being said the present
study relies on the variability across the BXD RI strains. All of the
current data suggests that anesthesia affects the absolute IOP value;
however, the relative differences in IOP between BXD strains is suffi-
cient to map a QTL. Thus, we were able to use these measures to map a
single significant QTL on Chr. 8 that modulates IOP in the mouse. The
peak of the QTL was in a gene desert and within this region there were
only two potential candidate genes that could be modulating IOP in the
BXD strain set. Based on expression of mRNA in the eye microarray
dataset, the findings of real time PCR and functional analysis of SNPs,
Cdhl1l appears to be the best candidate. Cdh11 is expressed approxi-
mately eightfold higher in the eye than is Cdh8. A recent study of
human trabecular meshwork using RNA Seq found that CDHI1I is
expressed at relatively high levels and at least 55-fold higher that the
expression of CDH8 (Carnes et al. 2018). Furthermore, CDHII is
highly expressed in cultured human trabecular meshwork cells
(Paylakhi et al. 2012). We found that Cadherin 11 is expressed in the
trabecular meshwork of the mouse using indirect immunohistochem-
istry. All of these data suggest that the expression of Cadherin 11 in the
trabecular meshwork modulates IOP across the BXD RI strain set.

How is it possible that a cadherin can modulate IOP in the mouse
eye? IOP is regulated by fluid resistance at the trabecular meshwork and
Schlemm’s canal (Ethier et al. 1986; Brubaker 1975). The stiffness of
these structures is determined by the extracellular matrix within the
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trabecular meshwork and Schlemm’s canal (Zhou et al. 2012). The
contractile nature of the cells within the inner wall is considered to play
an important role in regulating outflow resistance (Bradley et al. 1998;
Johnson 2006; Vranka et al. 2015). The dysregulation or poor organi-
zation of extracellular matrix may increase the fluid resistance, leading
to an elevation of the IOP. Cdhll was recently revealed to be a novel
regulator of extracellular matrix synthesis and tissue mechanics (Row
et al. 2016), and it is also found to be highly expressed in cultured
human trabecular meshwork cells (Paylakhi et al. 2012). It is possible
that the IOP can be regulated by Cdh11 and related pathways by alter-
ing the extracellular matrix structure of the trabecular meshwork. Fu-
ture studies about the role of Cdhl1 in the trabecular meshwork may
give insights into the mechanism of IOP modulation.
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