
cancers

Article

Potential of Immunotherapies in Treating Hematological
Cancer-Infection Comorbidities—A Mathematical
Modelling Approach

Johnny T. Ottesen 1,2,* and Morten Andersen 1,2

����������
�������

Citation: Ottesen, J.T. ;Andersen, M.

Potential of Immunotherapies in

Treating Hematological

Cancer-Infection Comorbidities—

A Mathematical Modelling Approach.

Cancers 2021, 13, 3789. https://

doi.org/10.3390/cancers13153789

Academic Editors: Marco Rossi,

Francesco Di Raimondo and

Carmine Selleri

Received: 19 June 2021

Accepted: 23 July 2021

Published: 27 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Center for Mathematical Modeling-Human Health and Disease (COMMAND), Roskilde University,
4000 Roskilde, Denmark; moan@ruc.dk

2 IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
* Correspondence: johnny@ruc.dk; Tel.: +45-24943000

Simple Summary: The immune system protects the human body against threats such as emerging
cancers or infections, e.g., COVID-19. Mutated malignant cells may in many cases be controlled by
the immune system to be kept at an unnoticed low amount. However, a severe infection may com-
promise the immune system in controlling such malignant clones leading to escape and fatal cancer
progression. A novel mechanism based computational model coupling cancer and infection to the
adaptive immune system is presented and analyzed. The model pin-points important physiological
mechanisms responsible for cancer progression and explains numerous medical observations. The
progression of a cancers and the effects of treatments depend on cancer burden, the level of infection
and on the efficiency of the adaptive immune system. The model exhibits bi-stability, i.e., gravitate
towards one of two stable steady states: a harmless dormant state or a full-blown cancer-infection
disease state. A borderline exists and if infection exceeds this for a sufficiently long period of time
the cancer escapes. Early treatment is vital for remission and may control the cancer back into the
stable dormant state. CAR T-cell immunotherapy is investigated by help of the model. The therapy
significantly improves its efficacy in combination with antibiotics or immunomodulation.

Abstract: Background: The immune system attacks threats like an emerging cancer or infections
like COVID-19 but it also plays a role in dealing with autoimmune disease, e.g., inflammatory
bowel diseases, and aging. Malignant cells may tend to be eradicated, to appraoch a dormant state
or escape the immune system resulting in uncontrolled growth leading to cancer progression. If
the immune system is busy fighting a cancer, a severe infection on top of it may compromise the
immunoediting and the comorbidity may be too taxing for the immune system to control. Method:
A novel mechanism based computational model coupling a cancer-infection development to the
adaptive immune system is presented and analyzed. The model maps the outcome to the underlying
physiological mechanisms and agree with numerous evidence based medical observations. Results
and Conclusions: Progression of a cancer and the effect of treatments depend on the cancer size, the
level of infection, and on the efficiency of the adaptive immune system. The model exhibits bi-stability,
i.e., virtual patient trajectories gravitate towards one of two stable steady states: a dormant state
or a full-blown cancer-infection disease state. An infectious threshold curve exists and if infection
exceed this separatrix for sufficiently long time the cancer escapes. Thus, early treatment is vital for
remission and severe infections may instigate cancer progression. CAR T-cell Immunotherapy may
sufficiently control cancer progression back into a dormant state but the therapy significantly gains
efficiency in combination with antibiotics or immunomodulation.

Keywords: cancer-infection-immune coupling; cancer-infection comorbidity; immunotherapy; CAR
T-cell therapy; mathematical modelling; in silico investigation; bi-stability; dormant state; the three
E’s of immunoediting
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1. Introduction

Inflammation is a hallmark of cancer [1–5] and the purpose of the present work is
to illuminate how the immune system bridges cancer-infection comorbidities [6]. This
interaction is essential for the disease progression and in situ cancer progression [7,8]. The
present work contributes to the understanding of the complexity of the principal dynamics
of the cancer-infection coupling and to fertilize an ongoing debate on advancing existing
clinical immunotherapies [6,9–11]. Inflammation related to chronic inflammatory bowel
diseases, obesity, aging and smoking significantly increases the risk of several types of
cancers [12–15]. For cancers of the blood forming system, such as the myeloprofilerative
neoplasms (MPNs), the connection between disease development and chronic inflammation
is an active research area [16–20] and diagnostics and treatments specifically targeting the
inflammatory component of the disease are of interest to clinicians [21–23]. Hematopoietic
stem cells are located in the bone marrow and gives rise to the various blood cells in the
peripheral blood [24]. Hematopoietic stem cells interact through their microenvironment
and via immunesurveillance by the adaptive immune system [4].

The well-known logistic growth model may be used to describe growth of single
clones [25–27]. We partly adopt this approach for malignant and infectious cells and add
effects instigated by the adaptive immune system. The effector cells of the adaptive im-
mune system may be activated by malignant cells to defeat the pathogen specific malignant
cells. Kuznetsov and Knott were the first to model this in a quantitative cancer-immune
surveillance model in 1994 and 2001 [28,29]. The dynamics of the complex cancer-immune
system became quantitatively better understood by Kuznetsov and Knott’s simple model
and the principal mechanisms governing the dynamics became cemented as the theoretical
foundation for understanding the cancer-immune interaction at systemic level. This theory
is the core idea of immunotherapy. Inspired by Kuznetsov and Knott, many modeling
papers on cancer-immune system have emerged, see for example [30–34]. The novelty
of the present work is to address comorbidities in this context by presuming that the im-
mune system has a limited capacity. This agrees with the decreasing potential hypothesis
outlined in [35]. The immune system needs to balance responses to several simultaneous
attacks, which may suggest multi-modality treatments. In the present study, we consider
chimeric antigen receptor (CAR) T-cell immunotherapy [36,37]. Our model shows how
the progression of cancer and the effect of treatments inherently depend on coupling and
the levels of the cancer and infection through inflammation. Therefore, we investigate
the selected treatments in combination with anti-inflammatory or immunomodulation
treatment. We explore a threshold phenomenon where the levels of cancer and infection
in combination determine whether immune surveillance can control the outbreak of the
disease with or without treatment by immunotherapy. In order to reduce the complex
dynamics of the model of the physiological system by solely focusing on the governing
principal mechanisms, care is needed. We base our principal mechanisms on well estab-
lished biological knowledge and show that these principal mechanisms alone may explain
multiple clinical observations. Our modeling approach is best described by quoting both
George Box, “All models are wrong, but some are useful” [38], and Albert Einstein, “keep
it as simple as possible, but no simpler” (communicated by Roger Sessions in the New York
Times, 8 January 1950) [39].

2. Materials and Methods

We propose a model describing cancer and infection growth as logistic in the absence
of the adaptive immune response [27]. Such models are well documented and have been
used to fit various in vitro data as well as in vivo data [26]. In the presence of the adaptive
immune response, additional inhibitory terms are added to the model equations. These
terms are proportional to the product of the amount of pathogens and effector cells (both
normalized relative to the respective carrying capacities) multiplied by a reaction rate
and the probability for the pathogens to subsequently become eliminated. The hitherto
uncoupled cancer and infection equations are coupled by the adaptive immune system.
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In order to reduce the large complexity of the immune system, we lump all the inhibitory
feedback mechanisms regulating the activation of pathogen specific effector T-cells into
one mechanism: the T-cell regulatory pathway. Specifically, we represent this T-cell regula-
tory pathway by a lumped compartment with a constant production rate. This choice is
conservative and establishes a bottleneck limiting the instantaneous capacity of activating
pathogen specific effector T-cells. Thus, if the host needs to allocate resources to fight a
pathogen, these resources are not available to fight other threats. Such coupling effect
via the adaptive immune response becomes pronounced for a large amount of pathogens,
while it may be insignificant for small amounts. This presumption is generally termed the
decreasing potential hypothesis [35].

The rate of change of cancer growth is assumed to consist of two terms; the first
term is the aforementioned logistic growth, whereas the second term is an additional
elimination enforced by the adaptive immune system according to the law of mass action.
The adaptive immune response may be activated by pathogens—such as infections or
malignant cells—and initiate a production of pathogen specific effector cells in order to
eliminate the pathogens in the case of infection or malignant cells. We assume that the T-cell
regulatory pathway activates the pathogen specific effector T-cells, i.e., cytotoxic T-cells.
This regulatory pathway involves cytokines, signaling molecules, antigen presenting cells,
regulatory T-cells and naïve T-cells. We associate the size of the cancer and the strength
of the immune response with cell counts and we will use these phrases interchangeably.
Furthermore, cancer and infection size will be relative to their carrying capacities, hence,
a fraction between 0 and 1 corresponding to 0% and 100%. Generally, naïve T-cells are
activated to produce cancer specific cytotoxic T-cells, Tx. Cancer specific effector T-cells bind
to the cancer cells and initiate cancer cell apoptosis, with probability px. The activation of T-
cells is mediated by antigen presenting cells, such as dendrite cells, detecting the cancerous
cells while the B-cell also plays a role. The cytotoxic T-cells are eliminated naturally or
may be depleted upon binding to cancer cells, with probability 1 − px neglecting the
possibility of reversible unbinding without effect. Several pathways regulate the depletion
of activated cytotoxic T-cells [40,41]. In addition, exhaustion of individual cytotoxic T-cells
is reported [42,43], which may be considered as removal of active cytotoxic T-cells from
the pool of such. The result of these mechanisms is a reduction in the number of activated
cytotoxic T-cells initiated by their own activity upon binding to the pathogens. Thus, we
presume that T-cell depleting pathways are initiated upon T-cells binding to pathogens
resulting in the removal of T-cells from the active cytotoxic T-cell pool with a small but
non-vanishing probability. This hypothesis is further supported by [44–47]. The simplified
mechanistic process underlying the elimination enforced by the adaptive immune system
onto the cancerous cells is illustrated in Figure 1.

Figure 1. Naïve T-cells are activated by pathogens (including cancer cells) via dendrite cells to
produce pathogen specific cytotoxic T-cells (Tx) by detecting the pathogens (x). The cytotoxic T-cells
are eliminated naturally or removed from the pool of effector cells, with probability 1− px after
binding to pathogens a number of times. The pathogens are eliminated with probability px.
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Similarly, an infectious development may be described by logistic growth with an
explicit elimination added due to the adaptive immune system [48]. In absence of immune
response, the amount of infectious pathogens would reach a plateau level in the carrying
capacity. When introducing the adaptive immune modulation, the carrying capacity
changes. A small modulation (corresponding to a few T-cells) reduces the plateau level
correspondingly, while larger modulation (corresponding to high level of T-cells) reduces
the plateau level to zero and thereby eliminates the infection. The naïve T-cells are activated
to produce infection specific cytotoxic T-cells or effector cells, Ty. Such infection specific
cytotoxic T-cells kill the infected cells with probability py. However, in addition to natural
elimination, the effector cells may be removed with probability 1− py in a second order
pathogen dependent process (according to the law of mass action). Thus, the two species,
cancer and infection, may be described by similar equations.

x′ = axx
(

1− x
Kx

)
− rx pxTxx, (1a)

y′ = ayy
(

1− y
Ky

)
− ry pyTyy. (1b)

Here x′ is the rate of change of the number of cancerous cells, x. The growth rate is denoted
ax and the intrinsic carrying capacity is denoted Kx.The last term represents the effect of
the adaptive immune system. Here, rx is the per capita rate of binding between cancer
specific cytotoxic T-cells and the cancer cells, px is the probability that the cytotoxic T-cell
initiates cancer cell apoptosis, while Tx is the amount of cancer specific cytotoxic T-cells.
Equation (1b) for the number of infected cells, y, is similar to Equation (1a). The key features
of the model are the following: (i) sufficiently strong immune response may eradicate
infectious pathogens in absence of cancers in agreement with experiences, (ii) the low
disease co-existing stable steady state may be undetectable and low in infection as well as
in malignant cells and (iii) a significant infection may instigate cancer escape in the model,
which is in accordance with speculations by clinicians.

The rate of change for the T-cell regulatory pathway (Tn) is provided by a baseline pro-
duction rate, α, and natural elimination rate, ε, as well as terms describing the conversion
of naïve T-cells into specific effector T-cells. The conversions are taken to be proportional
to the respective load of pathogens. The cancer specific effector immune cells are produced
proportional to the relative amount of cancer cells times the amount of naïve T-cells repre-
sented by the T-cell regulatory pathway. Moreover, they are eliminated with a constant
natural death rate in addition to the probability of becoming inactivated or exhausted
upon binding to cancer cells. Similarly, the infection specific effector cells are produced
proportional to the relative amount of infected cells times the amount of naïve T-cells. They
are eliminated with a constant natural death rate in addition to the probability of becoming
inactivated or exhausted upon binding to infected cells. These processes are illustrated
in Figure 2.

For the T-cell regulatory pathway, we have the following:

T′n = α− βxxTn − βyyTn − εTn , (2)

where Tn denotes the T-cell regulatory pathway and T′n denotes the rate of change of Tn,
with the baseline production rate α and natural death rate ε. The per capita rates by which
the cancer and infection stimulate the production of the respective specific effector cells
are denoted by βx and βy. For the amount of cancer specific effector immune cells, Tx, we
have the following:

T′x = βxxTn − rx(1− px)Txx− dxTx , (3)
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where T′x denotes the rate of change of Tx having a natural death rate dx. Finally, the
number of infection specific effector cells, Ty, with rate of change T′y and natural death rate
dy is provided by the following.

T′y = βyyTn − ry
(
1− py

)
Tyy− dyTy . (4)

The presence of malignant cells and infected cells result in activation of the respective
immune effector cells, which subsequently try to eliminate the cancer and infected cells.
Hereby, the cancerous system and the infectious system are specifically coupled and share
resources of the adaptive immune system. As a consequence, the size of the CD8+ T-cell
pool is limited, e.g., during virus infections in agreement with [8,49–51].

Figure 2. The T-cell regulatory pathway, which involves the naïve T-cells, is denoted Tn. The baseline
production rate is denoted α and natural elimination rate ε. The pathogen specific cytotoxic T-cells
are produced from this T-cell regulatory pathway. The amount of cancer cells is denoted by x, while
that of infected cells is denoted by y. The amount of the cancer specific effector cells is denoted Tx

and is produced with the per capita rate βxx while the amount of the infection specific effector cells
is denoted Ty and is produced with the per capita rate βyy. The effector cells have natural death rates
dx and dy, respectively. In addition, active cytotoxic T-cells may become inactivated or exhausted,
which adds an extra removal from the pools of active cytotoxic T-cells. The removal per time is
assumed proportional to the respective binding with cancer cells and infected cells multiplied by the
probabilities 1− px and 1− py, respectively.

In the following, we limit ourselves to consider cancer (with a time scale months-years)
and infection (with a time scale weeks-years) with slow dynamics compared to the faster
dynamics of the immune system (with a time scale hours-days). Thus, the slow manifold
approximation may be legitimated by the use of singular perturbation theory [52,53], see
Appendix A. This approximation results from letting the right-hand side of the three
differential equations for the immune cells to vanish. Hence, we arrive at the following.

Tn =
α

βxx + βyy + ε
(5a)

Tx =
βxx

rx(1− px)x + dx
Tn (5b)

Ty =
βyy

ry
(
1− py

)
y + dy

Tn . (5c)

Inserting these equations into Equations (1a) and (1b), describing cancer and infection, and
introducing dimensionless variables X = x

Kx
, Y = y

Ky
and τ = axt, we obtain the following

reduced model

dX
dτ

= X(1− X)− A1
X2

(A2X + A3Y + 1)(A4X + 1)
(6a)

dY
dτ

= B0Y(1−Y)− B1
Y2

(A2X + A3Y + 1)(B4Y + 1)
. (6b)

Equations (6), which coins the coupled cancer-infection-immune model, is investigated in
the following: The parameters Ai and Bi consist of clusters of the original parameters, see
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Table 1. We emphasize that the system of equations in Equation (6) has seven parameters
governing the progression of the coupled cancer-infection-immune system. This reduction
in the number of parameters from the 14 physiological parameters in the original equations
is advantageous. One may easily calculate the values of the clustered parameters from
the physiological ones but not vice versa. The reduction in the number of governing
parameters greatly advances the analysis of the model. The interpretation of the clustered
parameters are as followes: A4 and B4 represent the ratio of the strengths of the respective
second order elimination of effector cells to their natural death rates. A2 and A3 represent
the ratio of the rate of production of the respective effector cells per capita to the natural
death rates of their predecessor. A1 and B1 represent the product of the ratio of the baseline
production of the predecessor to the growth rate of the pathogens with the ratio of the
binding reaction rate multiplied by the probability of the pathogen being eliminated to
the natural death rate of the effector cells (times A2 and A3, respectively). B0 is the ratio
between the intrinsic growth rate for infection and that for cancer.

Table 1. The parameters in Equation (6) expressed in terms of the original parameters and their
nominal values.

A1 A2 A3 A4 B0 B1 B4

αrx px
axdx

A2
βxKx

ε
βyKy

ε
rxKx(1−px)

dx

ay
ax

αry py
axdy

A3
ryKy(1−py)

dy

5.7× 104 7.5× 103 5.6× 103 1× 103 3.04 1.01× 105 20

The dynamics of the coupled cancer-infection-immune system in Equation (6) are
quantitatively studied by in silico methods (using Matlab2020a) and the principal mech-
anisms governing the dynamics are qualified and interpreted. Simulations are made for
MPNs, which often develops unnoticed over 20–40 years, while the characteristic times
scale for cancer development is in years. However, the actual time scale does not affect
the model outcome qualitatively, meaning that the results for at least non-solid tumors are
similar except for the time scale. Where nothing else is emphasized, the default parameter
values are taken from our previous estimates as described in Appendix A.

3. Results
3.1. General In Silico Dynamics and Disease Progression

The model encapsulates earlier model results for cancer progression without infection
and infection without malignant cells. If no malignant cells are present, low or high burden
infection may occur. If no infection exists, low or high cancer burden may occur (noticing
that fully sterile environment is an idealization). The low-level burden and high-level
burden are separated by threshold values. In this paper, we are interested in examining
robust dynamics, i.e., allowing small perturbations of infections and malignant mutations.
None of the aforementioned states with vanishing infection or malignant cells are stable.
Particularly, the trivial state with no infection and no malignant cells is not stable. Thus,
we focus on the co-existing states in the remaining part of the article.

Thorough analysis shows that the parameter space divides into two qualitatively
different situations. In the first case (Type I) a unique and stable co-existing steady state
exists and, in the other case (Type II), two stable steady states exist (and one unstable
steady state), simultaneously. Treatments affecting the parameter values may shift the
situation from one case to the other. The disease burdens related to the steady states vary
with the values of the parameters. The case of a single co-existing stable steady state has
been reported and discussed elsewhere [19,54–56]. Thus, the present focus will be on the
novel case of two co-existing stable steady states (bi-stability) and we will choose a suitable
set of the parameter values denoted by the default parameter values, which will permit
this case (see Appendix A). One of the two steady states has low cancer and infection
burden, while the other has high cancer and infection burden; thus, we associate these with
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a dormant or pre-cancerous state and a full-blown disease state, respectively. A curve in
the phase-space has cancer burden on the first axis and infection burden on the second axis
and separate points are attracted toward the dormant state from those that are attracted
toward the full-blown cancer-infection state. This separatrix divides the phase plane of
feasible states into two regions, the basin of attraction for the dormant state and the basin
of attraction for the full-blown disease state, as illustrated in Figure 3. The exhaustive
numerical examinations show that high levels of either infection or cancer in the dormant
state are rare. Likewise, low levels of infection or cancer in the full-blown disease state are
rare and extreme parameter values are needed to be realized (see the sensitivity analysis
in Appendix A). The following observations hold for the generic Type II case represented
by our default parameter values. All non-boundary states, i.e., states with non-vanishing
infection and malignant cells, are attracted toward either of the two co-existing stable
steady states over time.

(a) (b)
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Figure 3. Cancer-infection-immune dynamics. Populations are normalized by their carrying capaci-
ties. (a) The phase plane with relative cancer size on first axis and relative infection burden on second
axis. Circles, red for the full-blown disease state (to the upper right) and magenta for the dormant
state (to the lower left) indicate the two stable co-existing steady states. Notice that the dormant state
has very low but non-vanishing levels of malignant cells and infection. The solid blue curves are
solution curves evolving over time toward one of the stable steady states. Green arrows indicate the
flow direction at any point as these are tangent to the solution curves of Equation (6). The phase
plane is divided into two regions by the red curve (the separatrix) depending on which stable steady
state is approached. (b) The red curve is cancer progression while the blue curve is the progression
of infection. Single mutations may be eliminated for sufficiently strong immune responses. If the
immune response is less strong, the cancer and infection will start growing. For small times, the
growth of both cancer and infection is logistic and each approaches an equilibrium (grey region).
Thereafter, the exhaustion of cancer specific cytotoxic T-cells is imposed at year 22 (stipulated curves
in right white region), which enforces the cancer and infection to escape. The exhaustion is included
by allowing active cytotoxic T-cells to become inactivated with an exhaustion rate. As a result, the
three E’s of immunoediting follows from the model. The full curves before escape may not cause
symptoms but the stipulated part of the curves will sooner or later result in diagnosable conditions as
these will continue increasing toward a value near 1 (not shown). However, the degree of exhaustion
determines the escape growth rate.

3.2. The Three E’s of Immunoediting Is a Consequence of the Cancer-Infection-Immune Response

The three E’s of immunoediting are elimination, equilibrium and escape follow from
the model. The model predicts elimination of the mutations if the adaptive immune system
is sufficiently strong, e.g., if α is large corresponding to A1 and B1 being large. If not, a
logistic growth will initiate, resulting in an equilibrium. The equilibrium is a saturation
level and in the case of bi-stability it is interpreted as a dormant state also denoted by a
pre-cancerous state. The exact level of infection and malignant cells in such dormant state
depends on the values of the parameters. If a sufficient amount of infection or cancer is
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suddenly added, the system may progress into full-blown cancer, see Figure 3. Another
possibility is that some parameters may be perturbed such that the dormant equilibrium
disappears and the only stable steady state left is the full-blown cancer-infection state,
which then will be globally stabilize in the open half-plane, meaning that all co-existing
states will approach the full blow cancer-infection state over time (see below). This is
identified as the escape phase, where the infection and cancer are growing toward a new
equilibrium of high cancer and infection.

3.3. Infection Trigger Cancer Escape from Immune Surveillance

Consider a case where a single cancer mutation occurs each year (see Figure 4). The
immunosurveillance may eradicate these mutations through the innate immune response.
If this response is insufficient the adaptive immune system will attempt to suppress the
amount of malignant cells. Thus, the state will return to the dormant state in the absence
of a severe infection. Adding an infection during suppression of a low cancer load may
result in cancer escape. This is due to the allocation of active immune cells for defeating the
infection, thereby taxing the immune system and limiting the activation of cancer specific
effector cells that are fighting the cancer. Thus, the immune system becomes increasingly
challenged as the cancer grows in size, see Figure 4.
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Figure 4. Despite an annual malignant mutation, the cancer is eradicated or kept in a dormant state
(upper panel) for the first ten years by immunosurveillance in the absence of infection. At year
10, a severe infection is imposed (middle panel) and, thereafter, malignant mutation blooms into a
cancerous clone capable of growing exponentially for a while whereas the development at the later
stage is logistic (lower panel). This is caused by the infection taking resources from the immune
system in fighting the malignant mutations. Whenever the cancer grows in size, it takes further
resources from the immune system. Thus, the infection assists the cancer escape and whenever the
immune system fails to eliminate the cancer, the infection grows too. This is a self-promoting spiral
accelerating both the cancer progression and infection.

If the infection is raised abruptly in the model, then the immune system responds by
activating infection specific effector cells to deal with the infection. The larger the amount of
additional infection, the larger the response by the immune system. Such response results
in a proportional reduction in cancer specific effector cells causing the cancer to escape by
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growing exponentially. The separatrix constitutes a ’threshold’ below which the infection
is defeated by the adaptive immune system and above which it escapes the immunoediting
and cancer progresses. Hence, this separatrix separates cancer-infection progression and
self-recovery. In the case of low additional infection, the immune system is capable of
combating the infection while the cancer grows slightly before returning to the dormant
state level. In the case of large additional infections, the immune system is not capable of
defeating the infection sufficiently fast while the cancer increases above the escape level.
In the case of escape, the infection declines for some time while the cancer grows. The
immune system tries to defeat the cancer but the increasing cancer level requires increasing
resources from the immune system in an attempt to win the battle. At a certain instant,
the infection escapes the immune system and, simultaneously, the cancer blows up. The
outcome depends crucially on which side of the separatrix the state is moved to at the time
period right after the additional infection has been imposed.

3.4. Exhaustion of Cancer Specific Cytotoxic T-Cells Causes Cancer Escape

The adaptive immune system reacts to pathogens by activating pathogen specific
cytotoxic T-cells and a cascade of cytokines, chemokines, etc., result. After a while, the regu-
latory T-cells dampen the inflammatory response if the pathogen is successfully downregu-
lated. However, if the inflammation is not controlled, it may result in chronic inflammatory
diseases and the exhaustion of the cytotoxic T-cells. Such exhaustion may be imposed in
the model as active cancer specific cytotoxic T-cells (CD8+) become inactivated (CD8) after
certain exposure, e.g., as the accumulated response of regulatory T-cells reaches a certain
threshold level. In the model, we imposed an exhaustion effect by inactivating cytotoxic
T-cells by a first order depletion rate after a period of exposure. As a result, the three E’s of
immunoediting follows as an intrinsic feature of the model. After elimination for strong
immune responses or a growth phase resulting in temporary equilibrium, an additional
exhaustion mechanism or inactivation of cancer specific effector T-cells may allow the
cancer to escape towards full-blown cancer if it is not treated afterward, as illustrated in
Figure 3. To illustrate this effect, a dysregulated additional exhaustion of the cytotoxic
T-cells is initiated at year 22 and the increase in the resulting plateau of the equilibrium is
studied. If the exhaustion rate is relatively low, e.g., 9.2 times the natural death rate (dx)
and starts at year 22, the 50% allele burden appears at year 65. If the exhaustion rate is
slightly lower, e.g., nine times the natural death rate, the escape takes place much later and
the 50% allele burden appears at year 110. By increasing the exhaustion rate, e.g., to 10.5
times the natural death rate, the 50% allele burden appears earlier, e.g., at year 48. Thus,
the growth of the escape is very sensitive to the exhaustion rate but in all cases the cancer
escapes and ultimately results in full-blown cancer; the cancer progression is then followed
closely by a corresponding progression in infection. For exhaustion rates smaller than nine
times the natural death rate, the escape happens after an average human lifetime for our
default parameter values.

3.5. Early Treatment of Infection Prevents Cancer Progression

A dormant state with small cancer load can result in escape upon obtaining a severe
or sustainable infection and, subsequently, full-blown cancer progression as depicted in
Figure 4. This observation makes it tempting to perform an in silico investigation of how
such a situation is affected by antibiotics. Presuming that a significant infection (moving
the state to above the separatrix) is imposed at year 11, the cancer starts to progress
exponentially, see Figure 5. In the absence of treatment, the cancer develops into full-blown
cancer accompanied by a high level of infection. In this case, it is tempting to conclude
that the infection drives the cancer progression. However, the dynamics are a common
phenomena. The cause-action is not uni-directed and the two pathogens affect each other in
a circular manner. Treatment suppressing the infection to a modest level (moving the state
to below the separatrix) at year 18 reverses the development and the cancer and infection
returns to the dormant state. Henceforth, the immune response controls the disease.
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However, if the treatment is instead initiated later, at year 25, reducing the infection to the
same level as in the preceding case while the cancer has developed (resulting in a state
above the separatrix) then a temporary decrease in cancer is observed but ultimately a
relapse follows. The state approaches the full-blown cancer-infection state over time, see
Figure 5.
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Figure 5. Progression of cancer (red) and infection (blue). Model response to a sudden additional
infection introduced at year 11 (left grey region). A threshold value for the additional infection exists,
which separates cancer-infection progression (dotted curves) and recovery (full curves). If modest
infection is added, the immune system is capable of defeating the infection (full blue curve) while the
cancer only blooms slightly before eventually returning to the dormant state level. In the case of high
infection, the immune system is not capable of defeating the infection sufficiently fast (dotted curves).
The infection is lowered for some time while the cancer grows (dotted curves). However, if the
infection is treated sufficiently fast (middle grey region), e.g., 7 days after infection onset (dash dotted
curves), then the state comes below the separatrix and the immune system is capable of defeating the
growing amount of malignant cells as well as the infection. Treating infection downwards (right grey
region/stipulated curves) may be insufficient and result in infection-cancer escape.

3.6. CAR T-Cell Immunotherapy Shows Good Effect but Is Improved in Combination
with Antibiotics

In the last decades, chimeric antigen receptor (CAR) T-cell therapy has developed
as novel and promising immunotherapy [57]. T-cells extracted from patient blood are
modified in vitro to express artificial receptors targeted to specific tumor antigen.

In the following, we simply assume CAR T-cell therapy affects the virtual patient by
adding an additional amount of effective T-cells to the cancer specific effector pool per time.

However, the mechanisms are different from that of normal T-cells, since CAR T-
cells identify the tumor antigen without involving the major histocompatibility complex.
Despite this fact, we denote the ‘strength’ of the CAR T-cell therapy in percentage in terms
of the normal cytotoxic T-cell response, i.e., the CAR T-cell dosage refers to the effect it
causes in percent of effect of the otherwise normal cancer effector T-cell response.

In the model the CAR T-cell therapy is simulated by adding an additional source
to the right hand side of Equation (4). The in silico effect of such immunotherapy on
cancer-infection progression for default parameter values after an escape is examined,
see Figure 6. For large dosages of CAR T-cells (100% above normal), the cancer burden
initially decays relative rapidly but ends with a prolonged slow decay, while infection
demonstrated a delayed shoulder response before decaying.
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Figure 6. The progression of cancer (red curves and left axis) and infection (blue curves and right
axis) for default parameter values upon escape (full curves). (a) At year 22, a virtual patient with
full-blown cancer-infection is exposed to CAR T-cell therapy by adding modified cancer specific
effector T-cells. By adding 60% and 80% CAR T-cell of the otherwise normal response (stipulated
curves and dash-dotted curves, respectively), cancer and infection are reduced but not normalized.
Increasing the dosage to 100% causes the virtual patient to be cured but after an insufficiently long
period of time (50 years). Cancer burden decays ’exponentially’ while infection shows a pronounced
shoulder in the response before continuing the fast decay. Ultimately the state approaches the
dormant state. If treatment is stopped before the infection level becomes sufficient low, the virtual
patient experiences a relapse (not shown). If treatment is stopped after both cancer and infection
have been lowered to the neighborhood of the dormant state, no relapse is observed. (b) Similar
to left panel but, in addition to CAR T-cell therapy, there is also an anti-inflammatory treatment
provided with similar dosages. These combi-treatments result in significantly improved effects of the
in silico treatments compared to the corresponding CAR T-cell mono-therapy. For the 80% dosage,
the combination treatment becomes successful. For the largest dosage of 100%, the treatment time to
reach success is reduced from 50 years to 12 years and the time to cure is halved compared to the
combination treatment with 90% dosage.

For the virtual response to CAR T-cell therapy (see Figure 6) the infection level first
declines fast, while the cancer load declines faster. For the infection, a temporal shoulder is
noticed, which has a delayed impact on cancer reduction. When the cancer level is very
low, the decline in infection becomes fast. Ultimately, the state approaches the dormant
state. Over time, the natural immunoediting takes over and controls the state to remain
in a narrow neighbourhood of the dormant state if not further perturbed. As for other
treatments, a threshold for sufficient treatment dose must be crossed to approach the
dormant state. If treatment is stopped prematurely, the virtual patient shows a relapse
(not shown). This is in contrast to ending the treatment when the cancer-infection state
has reached the basin of attraction for the dormant state where no relapse appears. For
even stronger dosages of CAR T-cells, the cancerous decay is faster and the duration of
the shoulder becomes much shorter. Decreasing the dosage (e.g., to 80% above normal)
significantly amplifies the shoulder phenomena and treatment has only partial effect during
a person’s lifetime. For even smaller dosage of CAR T-cells (e.g., 60% above the normal)
the cancer-infection does not cross the separatrix in due time as in the case of 80% dosage,
but an intermediate plateau in the basin of attraction for the full-blown cancer-infection
state is reached. Treatment cessation will cause a rapid relapse in this case.

The size of sufficient dosage depends on the actual individual parameter values and
the amount of cancer when the treatment start. If in addition to CAR T-cell therapy, an
anti-inflammatory treatment is also given. The treatment period is substantially reduced
compared to the CAR T-cell mono-therapy. The in silico combination treatment results
in a significantly improved effect compared to the CAR T-cell mono-therapy. For the
80% dosage, the combination treatment is successful. For the largest dosage of 100%, the
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treatment time to reach success is reduced from 50 years to 12 years and the time halves
compared to the combination treatment with 90% dosage.

However, the infusion of CAR T-cells may cause the patient’s immune system to react
by diminishing the otherwise natural T-cell formation as a response to the cancer. In the
model, we imposed such combined treatment with inhibitory feedback on the natural T-cell
production by adding CAR T-cells while simultaneously lowering the natural production
of T-cells in response to the cancer. Specifically, this is performed by decreasing either the
rate by which cancer stimulates the adaptive immune system to activate cancer specific
effector cells (βx) or the baseline production rate of the T-cell regulatory pathway (α),
or both. In the case where only α is reduced to, e.g., 80%, the CAR T-cell therapy only
results in a partial effect over a life-time. The cancer reduces by approximately 25% while
the infection is reduced by 10% or less. For 90% and 100% CAR T-cell in combination
with anti-inflammatory treatment, the time to remission is approximately doubled. From
simulations, it follows that the cancer reduction is much more pronounced if the infection
is reduced too. This is because the cancer burden declines faster whenever the infection
declines fast. While βx has some reducing effect on infection, α does not affect the infection
noticeably. The case where both α and βx are reduced to, e.g., 90% is very similar to the
situation where βx is changed but the dynamics are slower. Here, the treatment needs to be
prolonged by 25% to reach remission. If α or β or both are reduced further, the treatment
effect becomes less effective. Thus, a patient whose immune system counteracts the therapy
may show poor response to the CAR T-cell therapy.

In conclusion, in order to force the cancer to a neighborhood of the dormant state in
order to obtain a permanent effect on the virtual patient, the CAR T-cell therapy should
be sufficiently strong and the treatment last sufficiently long. The effect of CAR T-cell
treatment is significantly improved when combined with antibiotics.

4. Discussion

We have used mathematical modeling and in silico experiments to investigate the
basic principles of the interaction of malignant and infected cells with the adaptive immune
system. Pathogens stimulate the adaptive immune system to activate specific effector
cells, i.e., the cancer and infection effector cells, to fight the respective pathogens. By
presuming that these effector cells share common predecessors or more precisely regulated
pathways, the two diseases are coupled to each other by the immune system. In situ, such
pathways involve naïve T-cells as predecessors shared by the pathogen specific cytotoxic
T-cells (but the limiting factor could be the antigen presenting cells or regulatory cytokines
without changing the outcome of the simulations). Thus, these effector cells may compete
in taking resources from one another, e.g., increasing infection may require more infection
specific effector cells and thereby reduces the production of cancer specific effector cells
and vice versa. This hypothesis is implemented in the mathematical model, which is the
coupled cancer-infection-immune model, and the consequences are examined. The simple
model explains many well-known evidence-based observations. These observations are
reduced to consequences of the simple ‘theory’ constituted by the proposed model. Of
course, this is an idealization of the reality and a cover for many subcomponents working
together. Inter-variations and intra-variation and noise appear in the real world, but, when
comprehensively interpreted, the model outcome and predictions are qualitatively robust
to situations.

We apply the aforementioned quantitative approach and provide the criteria for suffi-
cient immune surveillance or, contrarily, the escape of a malignant clone. The proposed
model encapsulates and explains the dynamics behind the three E’s of immunoediting [5,58].
In the model, all cancer-infection states are generally either attracted toward a dormant
state of low disease burden or toward a full-blown state with high disease burden. A sepa-
ratrix is separating regions of states attracted toward the two states. Mutations may happen
frequently in the modeling framework but in rare cases, e.g., of severe infection, they may
escape the immune surveillance and grow into diagnosable cancer. Related to this, in silico
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treatment of cancer may either be successfully interpreted as the malignant clones have
been eradicated or at least were forced back into a dormant pre-cancerous state or were un-
successful, i.e., the cancer may relapse after treatment ends. The CALR mutation frequently
seen in MPNs may be eradicated corresponding to the number of malignant cells in the
dormant state becoming smaller than one or at least so low that normal fluctuations in the
innate immune response are capable of eradicating the malignancy. The proposed model
suggests that this treatment may bring the allele burden below aforementioned separatrix
and, thereafter, the immune system may eradicate the cancer. In contrast, the JAK2V617F
mutation also seen in MPNs is harder to eradicate, which in the model is explained by an
inappropriate low but not vanishing number of malignant cells in the dormant state.

In the present paper, we focus on advantages, possibilities and obstacles of im-
munotherapy [59]. We consider immunotherapy in silico, i.e., chimeric antigen receptor
(CAR) T-cell therapy [36,37,60]. The model shows how the progression of cancer and the
effect of treatments inherently depend on the coupling and the levels of cancer and infec-
tion. Therefore, the treatments are also investigated in combination with anti-inflammatory
treatment. The bi-stability of the model is important for separating a dormant state and
a full-blown cancer-infection state. The separatrix lies much closer to the dormant state
than to the full-blown cancer-infection state. Thus, a relatively small perturbation at the
dormant cancer-infection state may result in escape while a large perturbation is needed
for reversing the disease progression.

Briefly three major conclusions arise in silico: Firstly, the treatment with a given
dosage is vital for good response while a slightly later onset of treatment with similar
dosages may be unsuccessful. Secondly, severe infections, e.g., by COVID-19 virus and by
Morbus Crohn or maybe from obesity, aging and smoking, may result in cancer escape.
Thirdly, sufficient large dosages are recommendable if not causing severe side effects and
the treatment effects improve significantly in combination with antibiotics.

Our overall findings based on the model and by exhausting investigations of the
possible values of the parameters may be summarized as follows:

1. Ongoing mutations may either be eradicated by the immunoediting, kept in low
numbers in a dormant state or a malignant clone may escape the immunoediting
and expand which results in diagnosable cancer that will progress toward full-blown
cancer if left untreated. The dormant state may be thought of as a potentially pre-
cancerous state, since malignant cells at low burden are rarely symptomatic. In
hematopoietic cancers, such dormant states are referred to as clonal hematopoiesis of
indeterminate potential (CHIP) and it requires an activation of the immune system by
the malignant cells in order to control the cancer;

2. The model illustrates how tumor immunoediting explains the transitions between
health and disease depending on the inflammatory load caused by non-cancerous
infectious factors. Such inflammation could include chronic inflammation, e.g., caused
by inflammatory bowel diseases and severe virus infections such as COVID-19 or
even obesity, aging and smoking;

3. The model explains how an infection may compromise the immunosurveillance con-
trolling the cancer as they are sharing pathways of the immune system. In particular,
a severe infection or T-cell exhaustion may result in cancer escape;

4. The model explains which pathophysiology, e.g., which disturbances of the com-
mon integrated system, results in cancer progression and which of these are ‘easily’
reversed or are harder to reverse by immunotherapies;

5. In accordance with evidence-based knowledge, most patients show relapse after
treatment is paused, e.g., in JAK2V617F-positive MPNs, while the treatment result
may last in CALR-positive MPNs;

6. In silico investigation of CAR T-cell therapy implies that strong and sufficient persis-
tent immunotherapy may last;

7. Sufficient early and strong treatment with CAR T-cell therapy shows good response
for the virtual patient while postponed treatment may fail;
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8. Combining CAR T-cell therapy with immune-modulating antibiotic improves the ef-
fect of the treatment significantly and, in some cases, renders unsuccessful treatments
successful;

9. The model confirms the evidence-based experiences described by the “three E’s of
immunoediting”, elimination, equilibrium and escape.

The conclusions must be taken with some precaution since these depend on the
decreasing potential of hypothesis [35]. In order to reduce the huge complexity of the
immune system, we have lumped all the inhibitory feedback mechanisms regulating the
activation of pathogen specific effector T-cells into one mechanism, the T-cell regulatory
pathway. Thus, we have represented the T-cell regulatory pathway by a single lumped
compartment, with a limited production rate. This approach hides many details and blurs
the contribution of the individual mechanisms. The choice to keep the production rate
α constant is conservative and it represents a limiting bottleneck for the instantaneous
capacity of activating pathogen specific effector T-cells. We emphasize that the lumped
nature of the T-cell regulatory pathway may render both α and ε dependent on the specific
pathogens considered. Nevertheless, the model proposes an idea for how the immune
system bridges different cancers and cancer associated infectious diseases, which may be
the common unifying explanation for the clinical observations listed above.
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Appendix A

Appendix A.1. Parameter Values

Despite large variation in parameter values between different cancers, the dynamics of
the system is robust. Two different dynamical topologies are possible corresponding to the
existence of either one or two co-existing stable steady sates. Thus, the specific values are
illustrative but should be taken with care. In the sequential, we extract parameter values
for JAK2 positive Philadelphia negative MPNs and HIV-1 infection from literature.

In cancers, we estimated ax to 1 × 10−3 per day [61], which is of the same order
as in cancer medicine [20], where we estimated ax from three individual low cancer
burden in vivo data sets to be in the range 0.2–8.5 cell per year. This corresponds to
0.5× 10−3–2× 10−2 per day. Thus, we choose ax = 1.25× 10−3 per day, which is slow com-
pared to most other cancers (for which ax lies between 0.01–1.5 per day [29,34,55,59,62–68]).

In [19,69], the carrying capacity, Kx, is estimated indirectly to be 104 while [70] used
2× 104. We chose Kx = 1.2× 104, which agreed well with measurements of the number of
hematopoietic stem cells [71] and our earlier estimate 3× 104 in [55].

Across various cancers, the values of the product rx · px varies ranging from 5× 10−11–
0.5 per day [34,62–66,68]. Kuznetsov [28,29] took a value for px near to but smaller than 1,
e.g., 0.998, for BCL1 lymphoma in non-chimeric mice based on data from [72]. For leukemia,
rx px = 0.002 per capita per day are used in [19,70]. We choose to use a slightly smaller
value px = 0.8565 than Kuznetsov did which corresponded to rx = 2.3233× 10−2 per
capita per day. Thus, our value for rx(1− px) becomes 1.9900× 10−3 per capita per day.

Natural death rates for active cytotoxic T-cells are reported to be in the range
4.12× 10−2–0.12 per day [62,64–66,73]. We chose dx = 0.4 per day.

The initial exponential growth has been carefully fitted to the data in [74], resulting in
the value for βx = 0.18 per capita per day. However, [75] estimate βx by optimal control to
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around 0.02 per capita per day while [76,77] report βx to be around 4× 10−4 per capita per
day. We choose βx = 0.125 per capita per day.

The baseline production rate α is reported as high than 225 cells per day [78], but
in [68] it is estimated to be 0.33 per day, while [19] found 0.19 per day. We chose α = 0.5025
per day as a compromise.

In [65], the natural death rate for naïve T-cells is measured at 2.4× 10−2 per day. We
chose ε = 2× 10−2 per day as our default value, which is also in agreement with [79] who
have measured it to be in the range 0.01–0.1 per day. We used these values to represent
those of the T-cell regulatory pathway.

Particular infectious agents are all different, some develop fast, e.g., bacterial infec-
tions such as those involved in Sepsis [80] or some viruses, e.g., acute HIV-1 infection [81],
whereas other are slow. The growth rate for acute HIV-1 infection measured in plasma is
estimated to be between 0.37 and 2.7 per day in [81]. Slow viruses have long incubation pe-
riods ranging from months to years and are caused by slow replication rates [82]. Examples
of slow viruses encompass Measles virus (1–10 years) [83], Rubella virus (10–20 years) [83],
Rabies virus (3–12 weeks) [84], JC virus (years-life) and BK virus (year–life), whereof the
last two are observed in immunosuppressed patients only [83]. Since we mainly consider
slow infections, we decided on ay = 3.8× 10−3 per day.

We use a modest value for the carrying capacity Ky = 1200, where [85] has a peak
value around 109 cells.

In [85], βy is measured to be 0.96 per capita per day, while [86] has 0.52 per capita per
day. We chose our βy = 0.933 per capita.

In addition, [85,86] have measured the natural death rate dy to be 0.6 and 0.65 per day,
respectively. We have chosen dy = 0.4 per day in agreement with that for dx.

The authors of [86] have measured ry · py to 5.74× 10−4 per capita per day while [85]
measured it to be a factor of 100 less. Thus, we chose ry · py = 3.7× 10−4 per capita per
day. We have no source on ry and py individually but chose these to be approximately rx
and px, respectively, and at the same time they possess the right product. Hence, we chose
ry = 5.198× 10−3 and py = 0.7178. These choices provides ry · (1− py) = 1.5× 10−4 per
capita per day.

Appendix A.2. Sensitivity Analysis

We emphasize that the analysis of the model has qualitatively two types of dynamics.
These are determined by the dimensionless parameter values, which are clusters of the
physiological parameter. More precisely, the dimensionless parameters depend, e.g., on
the fractions βx/ε (for A2), βy/ε (for A3), rx/dx (for A1 and A4), ay/ax (for B0), ry/dy (for
B1 and B4) and ax/α and ay/α (for A1 and B1) but not on the individual values of these
physiological parameters (see Table 1 in main text).

The dynamics of the system is completely determined by the nullclines as the intersec-
tions of these determine the steady states. Below, we show how the nullclines and their
intersections vary with the parameters with an onset in the default values found above.
Varying the parameter values changes the number of stable steady states and their exact
location in R2

+. As mentioned, the number of stable steady states are either one or two.
We vary the parameter values by factors 0.1, 0.5, 1, 2, 3 and 5 of their default values and
observe the effect on the nullclines, see Figure A1 and by factors 10−2, 10−1, 1, 101, 102 and
103 in Figure A2. Notice that A1 and A4 only affect the nullcline of X by lowering the
curves for increasing parameter values and, similarly, B1 and B4 only affect the nullcline of
Y by moving these leftward with increasing parameter values, while A2 and A3 affect both
nullclines by moving the X nullclines downward and moving the Y nullclines leftward.
The steady state values become more extreme as the full-blown state approaches (1,1),
while the dormant state approaches (0,0). Similarly, the unstable steady state approaches
(0,0) with increasing parameter values. Before reaching (0,0) the dormant state fuses with
the unstable steady state and both disappear in a bifurcation.
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Figure A1. By modest variation in the individual parameter values by factors 0.1, 0.5, 1, 2, 3 and
5 of their default values, the effects on the nullclines and the steady states are observed. The grey
region illustrates the physiological feasible range of the variables while a broader range is shown to
emphasize the nullclines. Pairwise nullclines have the same color code while the X nullclines are full
curves and the Y nullclines are stipulated.

Figure A2. By larger variation in the individual parameter values by factors 10−2, 10−1, 1, 101, 102 and
103 of their default values, the effects on the nullclines and the steady states are observed. Pairwise
nulclines have the same color code while the X nullclines are full curves and the Y nullclines are
stipulated while the grey square represents the physiologically feasible states. Note that the pairwise
nullclines at most have three intersections whereof at most two correspond to stable steady states.
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Appendix A.3. Quasi-Steady State Approximation

The time scale for cancer growth is ax = 1.25× 10−3 per day while that of infection
is ay = 3.8× 10−3 per day. Likewise, the time scale for cytokines, naïve cancer specific
cytotoxic and infection specific cytotoxic T-cells are α = 0.5025 per day, βxKx = 1.5× 103

per day and βyKy = 1.12× 103 per day, respectively. Thus, the fraction of the time scales
between cancer and infection development versus immune cell growth is 106. Being
interested in the long term development, the transient dynamics of the immune system
are fast. Thus, this part denotes the fast manifold behavior as it enters into ’equilibrium’
instantaneously compared to the slower part of the system (the slow manifold). Hence, the
slow manifold approximation follows from requiring the derivatives of Tn, Tx and Ty to be
zero. For further interest in such model reductions, see [87].
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