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Abstract: Abnormalities in the plasma amino acid and/or urinary organic acid profile have been
reported in autism spectrum disorder (ASD). An imbalance between excitatory and inhibitory
neuronal activity has been proposed as a mechanism to explain dysfunctional brain networks in
ASD, as also suggested by the increased risk of epilepsy in this disorder. This study explored the
possible association between presence of EEG paroxysmal abnormalities and the metabolic profile of
plasma amino acids and urinary organic acids in children with ASD. In a sample of 55 children with
ASD (81.8% male, mean age 53.67 months), EEGs were recorded, and 24 plasma amino acids and
56 urinary organic acids analyzed. EEG epileptiform discharges were found in 36 (65%) children. A
LASSO regression, adjusted by age and sex, was applied to evaluate the association of plasma amino
acids and urinary organic acids profiles with the presence of EEG epileptiform discharges. Plasma
levels of threonine (THR) (coefficient = −0.02, p = 0.04) and urinary concentration of 3-Hydroxy-
3-Methylglutaric acid (HMGA) (coefficient = 0.04, p = 0.02) were found to be associated with the
presence of epileptiform discharges. These results suggest that altered redox mechanisms might be
linked to epileptiform brain activity in ASD.

Keywords: autism; ASD; EEG; metabolomic; amino acids; urinary organic acids

1. Introduction

Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental condition
characterized by early onset deficit in social communication and reciprocity, together with
a restricted range of interests and repetitive patterns of behavior [1]. Its pathogenesis is not
fully understood, but complex interactions between multiple genes, epigenetic factors and
exposure to environmental modifiers likely influence the expression of the disorder [2]. No
diagnostic biomarker is currently available, and the diagnosis of ASD remains at this time
entirely clinical.

Given the considerable genetic and phenotypic heterogeneity of ASD, efforts have
been ongoing to identify more pathogenetically homogeneous subgroups that could be
more easily targeted with specific biological interventions. Thus, “syndromic ASD” has
been defined by associations with dysmorphic characteristics or other signs or symptoms
such as epilepsy, intellectual disability, or motor deficits [3]. A growing body of literature
shows that a certain number of ASD cases are associated with identifiable metabolic
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abnormalities, with potential implications for prevention or treatment [4]. In fact, some
inborn error of metabolism (IEM) could be prevented, especially when there are high levels
of consanguinity, and in some cases early treatment can result in better outcome [5,6].

IEMs are studied as a possible cause of ASD, and non-specific abnormalities of plasma
amino acids and/or urinary organic acids have been investigated with the purpose of
identifying potential biomarkers and clues to the pathogenesis of ASD [7]. Metabolomics,
which is the systematic identification and quantitation of all metabolites in a given organism
or biological sample [8], has been applied to studying ASD. Metabolomics studies in cohort
of patients with ASD have yielded generally inconsistent and sometimes contradictory
results, due to the different methods used to perform metabolomic analysis and the small
size and heterogeneity of the study samples, which varied with respect to age, sex, nd
potential pharmacological confounders [9,10]. Glutamate, GABA, and/or glutamine have
been among the most studied amino acids for their role in neurotransmission [11–17].

Many studies have tried to identify metabolic features in plasma that can help differ-
entiate between ASD and typical development. To this end, univariate, multivariate, and
machine learning methods have been used [18,19]. Research has focused on identifying
combinations of several metabolites rather than single metabolites and on the accuracy
with which these combinations can discriminate between normal and ASD populations.
Among others, Orozco and Colleagues analyzed the plasma metabolic profile of ASD,
idiopathic-developmental delay, and Down syndrome in children as compared with typi-
cally developing controls, and found a perturbation in one-carbon metabolism pathways
(i.e., the metabolic pathways converging at homocysteine metabolism, glutathione biosyn-
thesis, folate cycle, and choline/betaine metabolism) [19]. However, a small number size
is a main limitation of these studies [18,20]. Smiths et al. analyzed a large population
from Children’s Autism Metabolome Project and stratified ASD subjects into subgroups
based on shared metabolic phenotypes associated with branched chain amino acids (BCAA)
dysregulation [21]. The combination of glutamine, glycine, and ornithine identified a dys-
regulation in amino acids metabolism that was present in 16.7% of the ASD subjects with a
specificity of 96.3% and a PPV of 93.5% [21]. In a subsequent analysis from the same project,
thirty-four candidate metabotypes were identified that differentiated subsets of ASD from
typically developing participants, forming six metabolic clusters based on ratios of either
lactate or pyruvate, succinate, glycine, ornithine, 4-hydroxyproline, or α-ketoglutarate with
other metabolites [22].

A number of hypotheses have been proposed to explain the possible pathogenetic
effect of metabolic abnormalities in ASD. Most hypotheses involve complex interactions
between inflammatory response, gut-brain axis, and altered redox state [23]. Indeed, ac-
cumulating evidence suggests that altered bidirectional interactions between the central
nervous system and the gastrointestinal tract (brain-gut axis) may have a role in ASD [24],
with possible implications for the development of microbiome-mediated therapeutic inter-
ventions [25].

Among the hypothesized pathogenetic mechanisms in ASD, altered redox appears
to be especially relevant since increased oxidative stress in the brain may have functional
consequences in terms of a chronic inflammatory response, increased mitochondrial super-
oxide production, and oxidative protein and DNA damage [26,27]. The redox status can be
defined as the balance between cellular oxidants species (i.e., free radicals and other reactive
species) and antioxidant capability: a disruption of this equilibrium toward an oxidized
state results in oxidative stress, with effect on immune system activation, regulation of
mitochondrial function, cell cycle regulation, cell differentiation, enzyme activity regulation
and many other consequences. An imbalance between excitation and inhibition has also
been suggested as a mechanism to explain dysfunctional brain networks in ASD [28–31],
and might be linked to metabolic abnormalities. An inhibition/excitation imbalance is
also consistent with the increased risk of epilepsy [32–34] and the frequent finding of EEG
paroxysmal abnormalities in ASD [35–37].
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This study was aimed at examining the relationship between the presence of EEG
paroxysmal abnormalities and the metabolic profile of plasma amino acids and urinary
organic acids in a sample of children with ASD.

2. Materials and Methods
2.1. Design and Participants

This was a cross-sectional study of 55 consecutively referred children (mean age
53.67 ± 37.42 months, range 25–203 months, corresponding to 2–16 years) at the University
of Turin-Pediatric Hospital Regina Margherita Outpatient Service for Neurodevelopmental
Disorders. Following a comprehensive evaluation conducted by trained child psychiatrists,
the children met DSM-5 diagnostic criteria for ASD. Parents gave informed permission to
participate, and all the procedures were approved by the local ethics committee. All the
children received the following assessments.

2.2. Plasma Amino Acids

EDTA plasma from fasting patients was collected and deproteinized with sulfosalicylic
acid. Specimens were stored at −20 ◦C until analyzed. The amino acids profile was obtained
with Biochrom 20Plus Amino Acid Analyser based on ion exchange chromatography with
post column derivatization with Ninhydrin [38,39]. Ninhydrin derivatives were analyzed at
2 wavelengths (i.e., 570 and 440 nm) to assess peak purity. Quantitation was performed with
two internal standards (norleucine and amino-ethyl-cystine) and an external calibration
curve (Amino Acid Standards Physiological® by Sigma Aldrich, St. Louis, MO, USA). In
each analytical series were analyzed as Internal Quality Control, AMI.02-1 and AMI.02-2
(Control Amino Acid MCA—The Netherlands). The laboratory is certified ISO 9001:2015
and participates in Erndim international External Quality Schemes. Eighty metabolic
variables (24 plasma amino acids and 56 urinary organic acids) were collected.

2.3. Urinary Organic Acids

Urines from the first morning void were collected: creatinine was determined in
fresh urine and then samples were stored at −20 ◦C until analysis. Organic acids and an
acylglycine profile were obtained by Gas Chromatography coupled with Mass Spectrom-
etry [38,39]. Urine was diluted to obtain a concentration of 2 mM of creatinine and the
oximation of α-ketoacids was performed. Extraction of organic acids and acylglycines
was carried out with ethyl acetate from the acidified sample. The dried extracts were
added with a derivatization agent to obtain trimethylsilyl of metabolites. The analysis
was accomplished on a GC-MS equipped with an Electron Ionization (EI) source. MS
spectra were acquired by Scan Mode and a simultaneous Selected ion monitoring (SIM)
mode was used to increase sensitivity of less abundant clinical important molecular species
(e.g., 3-hydroxyglutaric, succinylacetone, mevalonolactone, most acylglycines). Two inter-
nal standards were used: 2-keto-caproic for 2-keto acids, and tropic acids for other acids
and acylglycines.

Quantitative analyses were performed with external calibration using a home-made
standard curve in the urine matrix. Samples concentrations were normalized to urine
creatinine content. In each analytical series, ORG.02-1 and ORG02.2 (Control Organic
Acid MCA—The Netherlands) were analyzed as internal quality control. The laboratory is
certified ISO 9001:2015 and participates in Erndim international External Quality Schemes.

2.4. Electroencephalography

EEGs were obtained with the international 10–20 system of electrode placement. The
recording included hyperventilation and photic stimulation. Trained pediatric neurologists
evaluated the EEGs for presence and localization of paroxysmal abnormalities (epilepti-
form discharges).
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2.5. Statistical Analysis

Statistical analyses were performed using the statistical programming language R
(version 4.0.5) [40]. Descriptive statistics was applied to the sociodemographic and clinical
data. Continuous variables were described by mean and SD, and categorical data as
percentages. A z-test was used to evaluate differences between proportions of categorical
variables. Group differences for continuous variables were assessed with a two-tailed
Mann–Whitney U test. A p-value <0.05 was considered statistically significant.

Given the high number of metabolic variables that were tested (24 plasma amino acids
and 56 urinary organic acids), we employed the least absolute shrinkage and selection
operator (LASSO) penalized regression for selecting the variables predictive of abnormal
EEG. Children’s age and sex were also considered in the same model as adjunctive pre-
dictors. λ value parameter values for L1-penalized least absolute shrinkage were selected
using 5-fold cross-validation based on AUC in glmnet. The method proposed by Liu and
colleagues was used to calculate confidence intervals and make inferences [41].

3. Results

A total of 55 children, 81.8% males, participated in the study. Their characteristics are
presented in Table 1: the mean age was 53.67 months (SD 37.42, range 25–203 months). Five
children had a diagnosis of epilepsy, and one a diagnosis of febrile seizure plus (FS+). Two
of the patients were receiving pharmacological treatment at the time of the study (both of
them were on valproic acid, and one was also on clobazam).

Table 1. Demographics and clinical characteristics.

All
n = 55

with Abnormal
EEG

n = 36

with Normal
EEG

n = 19
p-Value

Males, n (%) 45 (81.8) 30 (83.3) 15 (78.9) 0.97
Age at evaluation,
months, mean (SD)

years

53.67 (37.42)
47.39 (36.08) 65.58 (37.96) 0.04

[M1] 4.5 (3.1)
Epilepsy or FS+, n (%) 6 (11.1) 6 (16.7) 0 (0)

Statistically significant values are bold.

EEG paroxysmal abnormalities were found in 36 children (65.45%). This group with
EEG paroxysmal abnormalities was younger (47.39 ± 36.8 months) than the group with
normal EEG (65.58 ± 37.96 months) (p = 0.04), with no sex difference (Table 1). The most
common localization of paroxysmal abnormalities was fronto-central (n = 18, 50%) (Table 2).
Other localizations were multifocal/diffuse (n = 4, 11.11%), central (n = 3, 8.3%), frontal
(n = 3, 8.3%), fronto-temporal (n = 3, 8.3%), centro-temporal (n = 3, 8.3%), and temporo-
occipital (n = 2, 5.5%) (Table 3).

Table 2. EEG findings.

Localization
Patients with EEG Abnormalities,

n = 36
n (%)

Multifocal or diffuse 4 (11.1)
Fronto-central 18 (50.0)

Frontal 3 (8.3)
Central 3 (8.3)

Centro-temporal 3 (8.3)
Fronto-temporal 3 (8.3)

Temporo-occipital 2 (5.6)
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Table 3. Assessed plasma amino acids and urinary organic acids.

Plasma Amino Acids Urinary Organic Acids

s-Aspartic acid
s-Hydroxyproline
s-Threonine
s-Serine
s-Asparagine
s-Glutamic acid
s-Glutamine
s-Proline
s-Glycine
s-Alanine
s-Citrulline
s-α-Aminobutyric acid
s-Valine
s-Cystine
s-Methionine
s-Isoleucine
s-Leucine
s-Tyrosine
s-Phenylalanine
s-Ornithine
s-Lysine
s-Histidine
s-Tryptophan
s-Arginine

u-Lactic acid
u-Glycolic acid
u-Glyoxylic acid
u-2-Hydroxybutyric acid
u-Oxalic acid
u-Pyruvic acid
u 3-Hydroxybutyric acid
u 3-Hydroxyisobutyric acid
u Malonic acid
u 3-Hydroxyisovaleric acid
u Methylmalonic acid
u2-Ethyl-3-Hydroxypropionic
acid
u 4-Hydroxybutyric acid
u Ethylmalonic acid
u Phenylacetic acid
u Succinic acid
u Methylsuccinic acid
u Glyceric acid
u Fumaric acid
u 5-Hydroxyhexanoic acid
u Isobutyryl Glycine
u Propionyl Glycine
u Mevalonolactone
u Glutaric acid
u 3-Methylglutaric acid
u 3-Methylglutaconic acid
u Glutaconic acid
u Mandelic acid

u Isovalerylglycine
u Pyroglutamic acid
u 7-Hydroxyoctanoic acid
u Tiglil Glycine
u 2-Hydroxyphenylacetic acid
u 2-Hydroxyglutaric acid
u 3-Hydroxyglutaric acid
u Phenyllactic acid
u3-Hydroxy-3-Methylglutaric
acid
u 4-Cyclohexylacetic acid
u 2-ketoglutaric acid
u 4-Hydroxyphenylacetic acid
u Hexanoyl Glycine
u N-Acetylaspartic acid
u 2-Hydroxyadipic acid
u Octenedioic acid
u 3-Hydroxyadipic acid
u Suberic acid
u 2-Ketoadipic acid
u cis_Aconitic acid
u Citric acid
u Methylcitric acid
u 4-Hydroxyphenyllactic acid
u4-Hydroxyphenylpyruvic
acid
u N-Acetyl Tyrosine
u Hexadecanedioic acid
u Malic acid
u Adipic acid

We then evaluated whether the combined plasma amino acids and urinary organic
acids profiles differed between patients with and without paroxysmal EEG abnormalities
using LASSO regression with post-selection inference. The model was also adjusted by
the patient’s sex and age. Fifteen important variables (i.e., variables with coefficients not
shrunk to zero) were identified (Table 4). A distance from zero of the coefficients informs
the magnitude of the importance in the prediction model. Of the fifteen variables identified,
THR and HMGA were found to be significantly associated with the presence of EEG
epileptiform discharges. In particular, lower circulating levels of THR (coefficient −0.02,
p = 0.04) and higher urinary concentrations of HMGA (coefficient = 0.04, p = 0.02) were
associated with epileptiform discharges on the EEG (Table 4).

Table 4. Least absolute shrinkage and selection operator (LASSO) penalized regression analyses:
important variables for EEG-based classification.

Coefficients IC (95%) p-Value

Threonine THR (p) −0.02 −0.08 −0.01 0.04
Serine (p) −0.00 −0.01 0.08 0.17

Asparagine (p) −0.00 −0.01 0.01 0.67
Glutamine (p) −0.00 −0.01 0.01 0.59

Alanine (p) 0.00 −0.00 0.02 0.28
Citrulline (p) 0.00 −0.07 0.09 0.83

Valine (p) 0.00 −0.02 0.02 0.84
Leucine (p) 0.00 0.01 0.12 0.06

3-Hydroxyisobutyric acid (u) 0.00 −0.05 0.12 0.52



Children 2022, 9, 540 6 of 10

Table 4. Cont.

Coefficients IC (95%) p-Value

3-Hydroxyisovaleric acid (u) 0.01 −0.02 0.09 0.28
Succinic acid (u) 0.01 −0.02 0.07 0.30

Pyroglutamic acid (u) 0.01 −0.01 0.04 0.22
3-Hydroxy-3-methylglutaric acid

HMGA (u) 0.04 0.02 0.13 0.02

2-Ketoglutaric acid (u) −0.01 −0.03 0.00 0.24
Citric acid (u) −0.00 −0.00 0.00 0.69

Statistically significant values are bold.

4. Discussion

This exploratory study found that the presence of abnormalities in brain activity as
shown by EEG epileptiform discharges was associated with lower plasmatic levels of THR,
and higher urinary levels of HMGA in children with ASD. Lower levels of THR in ASD
have been documented compared with normal controls [42–44]. Previous research has sug-
gested that THR plasma levels can affect the neurotransmitter balance in the brain [45,46].
Moreover, a deficiency in THR has been associated with increased seizure susceptibility in
mice [47,48], and a diet supplemented with THR and other ketogenic amino acids has been
shown to reduce seizure susceptibility [49]. Thus, the data from our study are consistent
with a number of previous studies in both humans and rodents, and provide further support
to the possible pathogenetic role of a deficiency of THR in the brain hyperexcitability seen
in ASD. Lower THR levels were also found in another group of children with ASD and EEG
epileptic abnormalities, compared with ASD without those abnormalities, together with
significantly lower plasma levels of glycine, histidine, ornithine, lysine, α-aminobutyric
acid, and arginine, and higher plasma levels of asparagine [50].

The elevated urinary concentration of HMGA found in our study in the ASD patients
with paroxysmal abnormalities is also consistent with previous studies [51,52], and suggests
that altered brain activity may be associated with mitochondrial dysfunction.

Numerous studies have highlighted the importance of the epigenetic mechanisms
and the role of DNA methylation in affecting ASD phenotypes [52,53]. Bam et al. found
HGMA to be among the urinary metabolites that most correlate with the mitochondrial
DNA (mtDNA) copy number. An increase in mtDNA copy number is known to be a com-
pensatory effect to mitochondrial dysfunction. Moreover, HMGA has been found to impair
mitochondrial function in the rat brain by decreasing activities of glutathione peroxidase
and citric acid cycle enzymes. This organic acid induces oxidative stress and disrupts
mitochondria bioenergetics, dynamics and ER-mitochondria crosstalk [54]. Oxidative stress
has been reported in patients with deficiency of the mitochondrial matrix enzyme that
catalyzes the last step of ketogenesis and leucine catabolism (3-hydroxy-3-methylglutaryl
coenzyme A lyase), leading to elevated HMGA urinary levels [55].

A deeper understanding of the role of mitochondrial dysfunction in the pathogenesis
of ASD may lead to new therapeutic targets. Delhey and colleagues have reported clinical
improvement in children with ASD by boosting the mitochondrial activity of complex I,
complex IV and citrate synthase with the administration of fatty acid, folate and B12 [56]. A
ketogenic diet, which is known to improve autistic behaviors in both humans and rodents,
was shown to recover both mitochondrial function and morphology in mice [57]. Finding
a depletion of THR, which is known to have also a ketogenic effect, in children with
epileptiform discharges further supports its possible pathogenetic relevance. The finding
of an elevation of urinary HGMA in the present study can help understand the complex
metabolic mechanisms underlying ASD as a step towards designing customized therapies
for specific mitochondrial dysfunctions.

Although altered levels of both THR and HMGA have been associated with ASD
and/or brain hyperexcitability, the link between the two molecules have not been studied
yet and, to our knowledge, there is no metabolic pathway where both THR and HMGA
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interact. Indeed, it is likely that the altered levels of these molecules are part of wider
metabolic abnormalities that stem from oxidative stress and altered amino acid metabolism
and lead to brain hyperexcitability.

This study has several limitations. First, the study evaluated a relatively small sample
of ASD children, without including a comparison group of typically developing children.
Second, the study sample had a male preponderance, which is consistent with the greater
prevalence of ASD in the male population, but still limits inferences to female patients.
Third, the EEG clinical evaluation was not accompanied by quantitative EEG measures, and
thus the identification of paroxysmal abnormalities was subject to human error. Moreover,
no standardized measures of the intensity and frequency of paroxysmal abnormalities were
available. Fourth, although regularization techniques can help in reducing the number of
variables, drawing post-selection inference on a large number of variables with a lower
number of subjects is still challenging, and the results should be carefully considered in
light of this limitation.

Further studies with larger samples and more in-depth EEG methodology are needed
to confirm and better clarify our findings.

5. Conclusions

In conclusion, in an exploratory study of the relationship between presence of EEG
epileptiform abnormalities and plasma and urine metabolic profiles in children with ASD,
statistically significant associations were found with lower plasma levels of the amino
acid THR and higher urinary levels of HGMA. These data, taken together with previous
reports in humans and rodents, further support these metabolic characteristics as possible
mediators of an excitatory/inhibitory imbalance in ASD, and can contribute to identifying
more biologically homogeneous subgroups within the ASD clinical construct.
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