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From rumor to genetic mutation 
detection with explanations: a GAN 
approach
Mingxi Cheng1, Yizhi Li2, Shahin Nazarian1 & Paul Bogdan1*

Social media have emerged as increasingly popular means and environments for information 
gathering and propagation. This vigorous growth of social media contributed not only to a pandemic 
(fast-spreading and far-reaching) of rumors and misinformation, but also to an urgent need for text-
based rumor detection strategies. To speed up the detection of misinformation, traditional rumor 
detection methods based on hand-crafted feature selection need to be replaced by automatic artificial 
intelligence (AI) approaches. AI decision making systems require to provide explanations in order to 
assure users of their trustworthiness. Inspired by the thriving development of generative adversarial 
networks (GANs) on text applications, we propose a GAN-based layered model for rumor detection 
with explanations. To demonstrate the universality of the proposed approach, we demonstrate its 
benefits on a gene classification with mutation detection case study. Similarly to the rumor detection, 
the gene classification can also be formulated as a text-based classification problem. Unlike fake news 
detection that needs a previously collected verified news database, our model provides explanations 
in rumor detection based on tweet-level texts only without referring to a verified news database. 
The layered structure of both generative and discriminative models contributes to the outstanding 
performance. The layered generators produce rumors by intelligently inserting controversial 
information in non-rumors, and force the layered discriminators to detect detailed glitches and 
deduce exactly which parts in the sentence are problematic. On average, in the rumor detection task, 
our proposed model outperforms state-of-the-art baselines on PHEME dataset by 26.85% in terms of 
macro-f1. The excellent performance of our model for textural sequences is also demonstrated by the 
gene mutation case study on which it achieves 72.69% macro-f1 score.

Sequential synthetic data generation such as generating text and images that are indistinguishable to human eyes 
have become an important problem in the era of artificial intelligence (AI). Generative models, e.g., variational 
autoencoders (VAEs)1, generative adversarial networks (GANs)2, recurrent neural networks (RNNs) with long 
short-term memory (LSTM) cells3, have shown outstanding generation power of fake faces, fake videos, etc. 
GANs as one of the most powerful generative models estimate generative models via an adversarial training 
process2. Real-valued generative models have found applications in image and video generation. However, GANs 
face challenges when the goal is to generate sequences of discrete tokens such as text4. Given the discrete nature 
of text, backpropagating the gradient from the discriminator to the generator becomes infeasible5. Training 
instability is a common problem of GANs, especially those with discrete settings. Unlike image generation, the 
autoregressive property in text generation exacerbates the training instability since the loss from discriminator 
is only observed after a sentence has been generated completely5. To remedy some of these difficulties, several 
AI approaches (e.g., Gumbel-softmax6,7, Wasserstein GAN (WGAN)8,9, reinforcement learning (RL)4,10) have 
been proposed11,12. For instance, the Gumble-softmax uses a reparameterization trick and softmax calculation 
to approximate the undifferentiable sampling operation on the generator output, which allows the model to 
perform backward propagation as well as provide discrete outputs approximating to actual values. GANs with 
Gumbel-softmax take the first step to generate very short sequences of small vocabulary7. WGAN method for 
discrete data directly calculates Wasserstein divergence between discrete labels and generator’s output as the 
criterion of discriminator. As a result, WGAN models can update parameters to learn the distribution of dis-
crete data and produce some short sentences in character-level9. As a result, generating natural language-level 
sentences is still non-trivial. GANs with RL can skirt the problem of information loss in the data conversion by 
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modeling text generation as a sequence of decisions and update the generator with reward function. Compar-
ing to previous methods, RL can help GANs generate interpretable text closer to natural language4. In addition 
to the recent development in GAN-based text generation, discriminator-oriented GAN-style approaches are 
proposed for detection and classification applications, such as rumor detection13. Differently from the original 
generator-oriented GANs, discriminator-oriented GAN-based models take real data (instead of noise) as the 
input to the generator. Fundamentally, the detector may get high performance through the adversarial training 
technique. Current adversarial training strategies improve the robustness against adversarial samples. However, 
these methods lead to reduction of accuracy when the input samples are clean14.

Social media and micro-blogging have become increasingly popular15,16. The convenient and fast-spreading 
nature of micro-blogs fosters the emergence of various rumors. Social media rumors / misinformation / fake 
news are major concerns especially during major events, such as the global rise of COVID-19 and the U.S. 
presidential election. Some of the coronavirus rumors have been verified later to be very dangerous false claims, 
e.g., “those that suggest drinking bleach cures the illness”17 have made social media companies such as Facebook 
to find more effective solutions18. Commercial giants, government authorities, and academic researchers take 
great effort in diminishing the negative impacts of rumors19. Rumor detection has been formulated into a binary 
classification problem by a lot of researchers. Traditional approaches based on hand-crafted features describe the 
distribution of rumors20,21. However, early works depending on hand-crafted features require heavy engineering 
skills. More recently, with the rise of deep learning architectures, deep neural network (DNN)-based methods 
extract and learn features automatically, and achieve significantly high accuracies on rumor detection22. Gen-
erative models have also been used to improve the performance of rumor detectors13, and formulate multi-task 
rumor classification systems23 to realize rumor detection, tracking, stance and veracity classification. However, 
binary rumor classification lacks explanation since it only provides a binary result without expressing which 
parts of a sentence could be the source of the problem. The majority of the literature defines rumors as “an item 
of circulating information whose veracity status is yet to be verified at the time of posting”24. Providing explana-
tions is challenging for detectors working on unverified rumors. Comparably, fake news is more well-studied, 
as it has a verified veracity. Attribute information, linguistic features, and semantic meaning of post25 and/or 
comments26 have been used to provide explainability for fake news detection. A verified news database has to be 
established for these approaches. However, for rumor detection, sometimes a decision has to be made based on 
the current tweet only. Text-level models with explanations that recognize rumors by feature extraction should 
be developed to tackle this problem.

Gene classification and mutation detection usually work with textual-gene data and also relate to a broad 
range of real-world applications, such as gene-disease association, genetic disorder prediction, gene expression 
classification, and gene selection. Machine learning-based classification and prediction tools have been pro-
posed to solve these genetic problems27,28. Since essentially a gene sequence is of textual nature, we can process 
a genetic sequence as text. Gene mutation detection looks for abnormal places in a gene sequence29. Hence, we 
propose to solve this problem by using a natural language processing-based mutation detection model. When 
comparing a gene sequence with a natural language sequence, we observe that the mutations in genetic sequences 
represent abnormalities that makes the sequence do not fit well compared to other sequences from a biological 
perspective. The known genetic mutation detection and classification problem has been effectively explored in 
the literature, while the unknown mutation detection and classification has remained as a harder problem in 
both medical and machine learning fields. To detect unknown mutations and classify them, we propose a GAN-
based framework that maintains a high performance level while facing unseen data with unknown patterns and 
providing explainability capabilities.

In this work, we propose a GAN-based layered framework that overcomes the afore-mentioned technical 
difficulties and provides solutions to (1) text-level rumor detection with explanations and (2) gene classifi-
cation with mutation detection. In terms of solving the technical difficulties, our model keeps the ability of 
discriminating between real-world and generated samples, and also serves as a discriminator-oriented model 
that classifies real-world and generated fake samples. We overcome the infeasibility of propagating the gradient 
from discriminator back to the generator by applying policy gradient similar to SeqGAN4 to train the layered 
generators. In contrast to prior works, we adopt a RL approach in our framework because by combining the 
GAN and RL algorithmic strategies the framework can produce textural representations with higher quality and 
balance the adversarial training. The training instability of long sentence generation is lowered by selectively 
replacing words in the sentence. We solve the per time step error attribution difficulty by word-level generation 
and evaluation. We show that our model outperforms the baselines in terms of addressing the degraded accuracy 
problem with clean samples only.

Our GAN-based framework consists of a layered generative model and a layered discriminative model. The 
generative model generates high-quality sequences by first intelligently selecting items to be replaced, then choos-
ing appropriate substitutes to replace those items. The discriminative model provides classification output with 
explanations. For example, in the gene classification and mutation detection task, the generative model mutates 
part of the genetic sequence and then the discriminative model classifies this genetic sequence and tells which 
genes are mutated. The major contributions of this work are: (1) this work delivers an explainable rumor detec-
tion without requiring a verified news database. Rumors could stay unverified for a long period of time because 
of information insufficiency. Providing explanations of which words in the sentence are problematic is critical 
especially when there is no verified fact. When a verified news database is achievable, our model is capable to 
realize fake news detection with minor modifications. (2) Our model is a powerful textural mutation detection 
framework. We demonstrate the mutation detection power by applying our proposed model to the task of gene 
classification with mutation detection. Our model accurately identifies tokens in the gene sequences that are 
exibiting mutations, and classifies mutated gene sequences with high precision. (3) The layered structure of 
our proposed model avoids the function mixture and boosts the performance. We have verified that using one 
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layer to realize two functions either in generative or discriminative model causes function mixture and hurts 
the performance.

Results
Rumor detection with explanations.  Rumors, defined as “items of circulating information whose 
veracity status is yet to be verified at the time of posting”24, usually emerge when there are influential events 
and spread rapidly with the rise of social media. Far-reaching and fast-spreading rumors can cause serious 
consequences, for example, they are growing threats to the democratic process30. Rumor detection suffers from 
the limitation of datasets scale and the uncertain nature of rumors makes the early-detection and classification 
with explanation challenging. In this section, the proposed discriminator-oriented GAN framework utilizes 
the layered generative model to generate augmented rumor dataset, and uses Dclassify to classify a rumor while 
relying on Dexplain to indicate which parts of the sentence are suspicious. The detailed model description can be 
found in “Methods” section.

Detection results.  Table 1 and Fig. 1 illustrate a comparison between the proposed model Dclassify and the base-
lines for rumor detection. In this experiment, we use PHEME data to train our model. During training, our 
model generates PHEME’ to enhance the discriminative model. Data in PHEME are either rumor (R), or non-
rumor (N), and generated data in PHEME’ are all labeled as R since we would like our Dclassify to be conservative 
and filter out human-written non-rumors. Hence, all models in Table 1 perform 2-class classification (R/N). In 
real world applications, the original clean dataset is available all the time. However, the modified or adversarial 
data that contains different patterns are not always accessible. Models like LSTM and CNN do not have gener-
alization ability and usually perform worse facing adversarial input. Generative models such as GANs are more 
robust. In VAE-LSTM and VAE-CNN, we first pre-train VAEs, then LSTM and CNN are trained under latent 
representations of pre-trained VAEs. Under the first evaluation principle, our model and the variation of our 

Table 1.   Macro-f1 and accuracy comparison between our model and baselines on the rumor detection 
task. The models are trained on PHEME and tested on both original dataset PHEME and augmented dataset 
PHEME+PHEME’. *indicates the best result from the work that proposed the corresponding model. L 
represents the model is evaluated under leave-one-out principle. Variance results in cross-validations are 
shown in Table 2. The best results are marked in bold.

PHEMEv5 PHEMEv9

PHEMEv5 PHEME+PHEME’v5 PHEMEv9 PHEME+PHEME’v9

Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy

LSTM 0.6425 0.6542 0.4344 0.4345 0.6261 0.6269 0.4999 0.5283

CNN 0.6608 0.6660 0.4792 0.4833 0.6549 0.6552 0.5028 0.5253

VAE-LSTM 0.4677 0.5625 0.2582 0.2871 0.4454 0.4589 0.4231 0.4326

VAE-CNN 0.5605 0.5605 0.4655 0.4902 0.3859 0.5029 0.2513 0.2778

GAN-GRU​ 0.7810
∗

0.7810
∗ – – – – – –

Our model-LSTM 0.8242 0.8242 0.6259 0.6302 0.8066 0.8066 0.6884 0.7044

Our model-CNN 0.8475 0.8476 0.6524 0.6777 0.8084 0.8095 0.7620 0.8085

LSTM (L) 0.5693 0.6030 0.5260 0.5710 0.5217 0.5827 0.5055 0.5906

CNN (L) 0.5994 0.6406 0.5324 0.5779 0.5477 0.6035 0.5051 0.5769

VAE-LSTM (L) 0.3655 0.3996 0.3620 0.3959 0.4256 0.5367 0.4284 0.5397

VAE-CNN (L) 0.4807 0.5190 0.4816 0.5214 0.4316 0.4597 0.4314 0.4587

DATA-AUG (L) 0.5350
∗

0.7070
∗ – – – – – –

Our model-LSTM (L) 0.6666 0.6866 0.5703 0.6411 0.5972 0.6272 0.5922 0.6371

Our model-CNN (L) 0.6745 0.7016 0.6126 0.6342 0.6207 0.6438 0.6016 0.6400

Table 2.   Variance results in cross-validations on the rumor detection task.

Methods/variance

PHEMEv5 PHEME+PHEME’v5 PHEMEv9 PHEME+PHEME’v9

Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy

LSTM (L) 0.0028 0.0060 0.0003 0.0024 0.0262 0.0036 0.0022 0.0016

CNN (L) 0.0022 0.0013 0.0003 0.0012 0.0215 0.0048 0.0017 0.0015

VAE-LSTM (L) 0.0204 0.0086 0.0001 0.0006 0.0103 0.0082 0.0067 0.0013

VAE-CNN (L) 0.0037 0.0029 0.0013 0.0014 0.0006 0.0031 0.0020 0.0020

Our model-LSTM (L) 0.0022 0.0025 0.0015 0.0020 0.0095 0.0059 0.0093 0.0066

Our model-CNN (L) 0.0013 0.0023 0.0022 0.0029 0.0101 0.0048 0.0079 0.0051
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model with LSTM cells outperform all baselines in terms of both macro-f1 and accuracy. Accuracy is not suffi-
cient when the test data are not balanced, hence macro-f1 is provided for comprehensive comparison. Under the 
first evaluation principle, the robustness and generalization ability of our model are shown by comparing with 

Figure 1.   Macro-f1 (a) and accuracy (b) comparison between our model (-CNN and our model-LSTM) and 
baselines on the rumor detection task. The models are trained on augmented dataset PHEME+PHEME’ and 
tested on both original PHEME and augmented PHEME+PHEME’. L represents the model is evaluated under 
leave-one-out principle.
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baselines under PHEME+PHEME’. Our model reaches the highest values in both versions of PHEME+PHEME’ 
and the variation of our model with LSTM cells follows as the second best. Under leave-one-out (L) principle 
(i.e., leave out one news topic for test and use the rest for training), our proposed model and the variation achieve 
the highest macro-f1 scores in all cases. These results confirm the rumor detection ability of the proposed layered 
structure under new, out-of-domain data. Adversarial training of baselines improves generalization and robust-
ness under PHEME+PHEME’, but hurts the performance under clean data as expected. Although our model and 
the variation are trained adversarially, they achieve the highest macro-f1 under clean data PHEME. The results 
confirm that our model outperforms the baselines in terms of addressing the accuracy reduction problem.   

Table 3 shows two examples that are correctly detected by our model but incorrectly detected by other base-
lines. For the first rumor, baselines CNN, LSTM, VAE-CNN, and VAE-LSTM provide scores 0.9802, 0.9863, 
0.4917, and 0.5138, respectively. Our model provides a very low score for a rumor, while other baselines all 
generated relatively high scores, and even detect it as non-rumor. This is a very difficult example since from the 
sentence itself, we as human rumor detection agents even cannot pick the suspicious parts confidently. However, 
our model gives a reasonable prediction and shows that it has the ability to understand and analyze complicated 
rumors. For the second non-rumor, baselines CNN, LSTM, VAE-CNN, and VAE-LSTM provide scores 0.0029, 
0.1316, 0.6150, and 0.4768, respectively. In this case, a non-rumor sentence gains a high score from our model, 
but several relatively low scores from the baselines. This example again confirms that our proposed model indeed 
captures the complicated nature of rumors and non-rumors.

Explanation results.  A component for decision explanation is realized by Dexplain , which offers insight into the 
detection problem by suggesting suspicious parts of given rumor texts. Our model’s Dexplain recognizes the mod-
ified parts in sequences accurately. In 2-class PHEME experiments, its macro-f1 on PHEME’v5 and PHEME’v9 
are 80.42% and 81.23% , respectively. Examples of Dexplain predicting suspicious parts in rumors are shown in 
Table 4. In the first rumor, “hostage escape” is the most important part in the sentence, and if these two words 
are problematic, then the sentence is highly likely to be problematic. Given an unverified or even unverifiable 
rumor, Dexplain provides reasonable explanation without requiring a previously collected verified news database.

Rumor/non‑rumor, true/false, and real/fake.  Misinformation, disinformation, fake news, and rumor classifica-
tions have been studied in the literature23,30–32 and frequently suffer from small-scale datasets. The difference 
between misinformation, disinformation, fake news, and rumor is not well-defined and the labeling in these 
tasks is sometimes ambiguous and imprecise. In this work, we specifically refer rumor as a piece of information 
whose veracity is not verified, and its label in detection task is rumor (R)/non-rumor (N). With the considera-
tion of veracity status, we refer facts as true (T) and false statements as false (F). Furthermore, we refer purely 
human-written statements as real (E) and machine-generated statements as fake (K). In the previous detection 
section, we do binary classification in rumor detection task. Our generative model replaces parts of a sequence 
and due to the uncertain nature of rumors, we label the generated (modified) rumors as R, and non-rumor in 
original dataset as N to emphasize the purpose of filtering out non-rumor in real-world applications. However, 
with real / fake and true/false labeling in misinformation or fake news classification, the labeling should be pre-
cise and 2-class labeling is not sufficient anymore for the generated (modified) sequences. Specifically, if an input 
sequence is labeled as Y, its modified version (i.e., the output of our generative model) is labeled as Y ′ to repre-
sent that it is modified from a sequence with label Y. In what follows, we perform the following experiments: (1) 
rumor classification with PHEME again using 4-class labels: R, R′ , N, N ′ ; (2) misinformation (disinformation) 
classification with FMG (a misinformation/fake news dataset) using 4-class labels: T, T ′ , F, F ′ ; and (3) fake news 
classification with FMG using 4-class labels: E, E′ , K, K ′.

Experimental results of PHEME (4-class) are shown in Table 5. Similar to previous PHEME experiment 
in Table 1, we generate a dataset PHEME’ to do data augmentation. However, different than before, this new 

Table 3.   Examples of Dexplain and Dclassify ’s prediction on rumor (first) and non-rumor (second). The 
suspicious words in the rumor predicted by Dexplain are marked in bold. Dclassify provides a score ranging from 
0 to 1. 0 and 1 represent rumor and non-rumor, respectively.

0.1579 Who’s your pick for worst contribution to sydneysiege mamamia uber or the daily tele

0.8558 Glad to hear the sydneysiege is over but saddened that it even happened to begin with my heart goes out to all those affected

Table 4.   Examples of Dexplain predicting suspicious words in rumors (marked in bold). Dclassify outputs 
probabilities in range [0, 1], where 0 and 1 represent rumor and non-rumor, respectively.

0.0010 Breaking update 2 hostages escape lindt café through front door 1 via fire door url sydneysiege url

0.0255 Newest putin rumour his girlfriend just gave birth to their child url cdnpoli russia

0.0300 Soldier gets cpr after being shot at war memorial in ottawa url

0.0465 Sydney’s central business district is under lockdown as gunman takes hostages at a cafe live stream as it unfolds url

0.2927 So in 5mins mike brown shaved his head and changed his scandals to shoes i think your being lied too
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generated PHEME’ (4-class) has four labels: R, R′ , N, N ′ and our GAN models are trained with 4-class classifica-
tion. In addition, we train baselines with augmented dataset PHEME+PHEME’ (4-class) and test it with PHEME. 
Moreover, we find that training with augmented data improves the performance of baselines. Our models (-LSTM 
and -CNN) still provide best results compared to (augmented) baselines.

Besides rumor detection, we apply our framework in misinformation and fake news detection tasks using a 
fake news dataset (FMG)33, which includes both real/fake and true/false data. In real/fake task, models differen-
tiate between purely human-written statements and (partially or fully) machine-generated statements, while in 
true/false task, models are required to identify true statements and false claims. We augment the original dataset 
(denoted as FMG) with our GAN-generated data (denoted as FMG’) and train several models with the augmented 
dataset (denoted as FMG+FMG’). Similarly in PHEME (4-class) experiments, we find that models trained with 
augmented FMG+FMG’ achieve higher performance on original FMG as shown in Table 6. From these experi-
mental results, we conclude that our framework is effective in data augmentation and helps models to achieve 
higher accuracy. One thing to note is that in this experiment, our models do not outperform augmented LSTM 
and CNN in provenance classification task (although it is better than unaugmented ones). This could be due to the 
fact that the nature of provenance classification is to distinguish patterns between human-written and machine-
generated sentences. In the early training process of our model, the training data (generated sequences) of our 
discriminative model are low-quality since the generative model is not well-trained. The generated sequences 
contain our machine-generated noisy patterns, which could make our model converge to suboptimal results. 

Limitations and error cases in rumor detection.  Examples of error cases of our model in rumor detection task 
are presented in Table 7. For some short sentences, Dexplain sometimes fails to predict the suspicious parts. The 
reason is that the majority of training data are long sentences, hence Dexplain performs better with long sentences. 

Table 5.   Marco-f1 and accuracy comparison between our model and baselines on the extended 4-class 
experiments of rumor detection task on PHEME dataset. U indicates that the model is trained on 
PHEME+PHEME’, otherwise it is train on original PHEME dataset. All models are tested on PHEME (R/N) 
and PHEME+PHEME’ (R/N/R′/N ′). The best results are marked in bold.

PHEMEv5 PHEMEv9

PHEMEv5 (2-class)
PHEME+PHEME’v5 
(4-class) PHEMEv9 (2-class)

PHEME+PHEME’v9 
(4-class)

Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy

LSTM 0.6095 0.6259 0.2753 0.4121 0.6304 0.6484 0.2788 0.4179

LSTM (U) 0.6774 0.7480 0.5082 0.5073 0.6836 0.7446 0.5194 0.5205

CNN 0.6052 0.6210 0.2766 0.4135 0.6211 0.6396 0.2759 0.4135

CNN (U) 0.6760 0.7534 0.5109 0.5083 0.6678 0.7402 0.5239 0.5229

VAE-LSTM 0.5188 0.6591 0.2464 0.2753 0.4693 0.5205 0.1976 0.2416

VAE-LSTM (U) 0.4877 0.5810 0.2473 0.2578 0.4879 0.5351 0.2135 0.2602

VAE-CNN 0.4983 0.5629 0.2239 0.2529 0.4303 0.7495 0.1514 0.2504

VAE-CNN (U) 0.4912 0.5361 0.2566 0.2719 0.4813 0.5214 0.2160 0.2617

Our model-LSTM 0.7776 0.8271 0.5703 0.5678 0.7830 0.8339 0.5631 0.5610

Our model-CNN 0.7485 0.8017 0.5352 0.5419 0.7693 0.8232 0.5558 0.5600

Table 6.   Marco-f1 and accuracy comparison between our model and baselines on the extended 4-class 
experiments of provenance (real/fake) and veracity (true/false) tasks. U indicates that the model is trained on 
FMG+FMG’, otherwise it is train on FMG. All models are tested on FMG and FMG+FMG’. The best results are 
marked in bold.

Provenance Veracity

FMG (E / K) FMG+FMG’ (4-class) FMG (T / F) FMG+FMG’ (4-class)

Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy

LSTM 0.3963 0.3965 0.2752 0.3745 0.4786 0.4890 0.1792 0.2739

LSTM (U) 0.7062 0.7989 0.6401 0.6450 0.6339 0.7689 0.4985 0.5194

CNN 0.3964 0.3965 0.2738 0.3730 0.5478 0.6352 0.1940 0.2984

CNN (U) 0.7082 0.7824 0.6287 0.6325 0.6802 0.7724 0.5392 0.5613

VAE-LSTM 0.4967 0.6305 0.2137 0.2288 0.5099 0.6175 0.2268 0.2740

VAE-LSTM (U) 0.4871 0.6910 0.2630 0.2797 0.5105 0.6172 0.2793 0.2920

VAE-CNN 0.4624 0.5055 0.2207 0.2494 0.4676 0.4989 0.2075 0.2495

VAE-CNN (U) 0.5122 0.6158 0.2607 0.2615 0.5013 0.6007 0.2644 0.2650

Our model-LSTM 0.6562 0.7529 0.5027 0.5054 0.6560 0.7524 0.5027 0.5054

Our model-CNN 0.5639 0.6984 0.4543 0.4615 0.7134 0.7779 0.5637 0.5673
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We can solve this problem by feeding more short sentences to our model. In most cases, although Dexplain does 
not generate predictions, Dclassify still can provide accurate classification. As shown in Table 7, Dclassify outputs 
low score, i.e., classifies the input as rumor, for four out of five rumors.

Gene classification with mutation detection.  Genetic sequence classifications, gene mutation detec-
tion/prediction, DNA / RNA classification all work with genetic sequences, and deep learning-based methods 
in the literature take sequential data as input, and output the classification results27,28,34. Since our proposed 
framework demonstrates very good results for sequential / textural data (as shown in previous sections), next, 
we adopt a textural representation35,36 of gene sequences and investigate a gene mutation phenomenon. Note 
that binary format representation of genetic sequences is also frequently used in the literature37,38. In our GAN 
framework, the input to the models is first encoded into a high-dimensional vector, therefore, the binary for-
matting does not affect the experimental results. In this experiment, we first perform a mutation in genetic 
sequences by the generative model, and then use Dclassify to classify a genetic sequence and predict which parts of 
the sequence is mutated. We find that our framework not only provides high accuracy in classification task, but 
also accurately identifies the mutations in the generated sequences.

In this experiment, all models are trained under NN269+NN269’ (an augmented dataset) to ensure fairness, 
and we follow the labeling rule in misinformation/fake news detection task. When testing with NN269+NN269’, 
there are 8 classes in total: AP, AN, DP, DN from NN269 (original splice site dataset) and AP′ , AN ′ , DP′ , DN ′ 
from NN269’ (generated dataset). Detailed experiment setup can be found in “Methods” section. If solely clean 
data from NN269 is accessible during training, then our proposed model and the variation of our proposed 
model are the only models that can recognize if a given sequence is modified or unmodified. Comparison 
between our model’s (and the variation’s) Dclassify and baselines is shown in Table 8. Under long acceptor data, 
baselines perform significantly worse than our model and the variation. Under short donor data, our model 
and the variation achieve highest AURoCs. This implies that our model and the variation are stronger when the 
input are long sequences. The layered structure and adversarial training under the augmented dataset provide 
our model the ability of extracting meaningful patterns from long sequences. For short sequences, our model and 
the variation provide highest AURoC, and simpler models such as CNN can also give good classification results. 
This is because for short sequences, textural feature mining and understanding is relatively easier then in long 

Table 7.   Examples of Dexplain failing to predict suspicious words in some short rumors. Dclassify outputs 
probabilities in range [0, 1], where 0 and 1 represent rumor and non-rumor, respectively.

0.0112 Ottawa police report a third shooting at rideau centre no reports of injuries

0.0118 Breaking swiss art museum accepts artworks bequeathed by late art dealer gurlitt url

0.0361 Breaking germanwings co pilot was muslim convert url

0.4451 Germanwings passenger plane crashes in france url

0.5771 The woman injured last night ferguson url

Table 8.   Comparison between our model and baselines on the gene classification with the mutation detection 
task. *The best result from the corresponding paper. 2-class refers to AP, AN for acceptor, and DP, DN for 
donor. 4-class refers to AP, AN, AP′ , AN ′ for acceptor, and DP, DN, DP′ , DN ′ for donor. A and D indicate 
acceptor and donor. The best results are marked in bold.

NN269 (2-class) NN269+NN269’ (2-class) NN269+NN269’ (4-class)

Macro-f1 Accuracy AURoC Macro-f1 Accuracy AURoC Macro-f1 Accuracy AURoC

LSTM (A) 0.8120 0.8870 0.9305 0.7794 0.8580 0.9036 0.7800 0.8580 0.9715

CNN (A) 0.5663 0.7933 0.6324 0.5594 0.7808 0.6131 0.5593 0.7808 0.8875

VAE-LSTM (A) 0.7664 0.8566 0.8451 0.6781 0.8323 0.7780 0.6531 0.8342 0.8806

VAE-CNN (A) 0.5657 0.7539 0.6135 0.5744 0.7651 0.6219 0.5379 0.7470 0.8411

EFFECT (A) – – 0.9770
∗ – – – – – –

Our model-LSTM (A) 0.9131 0.9458 0.9781 0.8794 0.9243 0.9658 0.8758 0.9223 0.9879

Our model-CNN (A) 0.9175 0.9494 0.9807 0.8831 0.9301 0.9691 0.8839 0.9311 0.9894

LSTM (D) 0.8336 0.8214 0.9003 0.8148 0.7998 0.8802 0.7648 0.7530 0.9246

CNN (D) 0.9131 0.9393 0.9795 0.9025 0.9323 0.9746 0.8336 0.8583 0.9596

VAE-LSTM (D) 0.8011 0.8515 0.9218 0.7336 0.8329 0.8217 0.5774 0.7692 0.9194

VAE-CNN (D) 0.8386 0.8772 0.9554 0.7909 0.8593 0.8528 0.5585 0.7415 0.9190

EFFECT (D) – – 0.9820
∗ – – – – – –

Our model-LSTM (D) 0.9272 0.9484 0.9822 0.8802 0.9140 0.9766 0.8113 0.8580 0.9541

Our model-CNN (D) 0.9274 0.9494 0.9810 0.8988 0.9296 0.9635 0.8119 0.8470 0.9776



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5861  | https://doi.org/10.1038/s41598-021-84993-1

www.nature.com/scientificreports/

sequences. Under NN269’, our model’s Dclassify and Dexplain achieve 92.25% and 72.69% macro-f1, respectively. 
Examples of Dexplain ’s prediction are shown in Table 9. The results suggest that our model can not only classify 
a gene-sequence, but also provide an accurate prediction that explains which part of the sequence is modified. 

Discussion
Rumor, as a piece of circulating information without verified veracity status, is hard to detect, especially when we 
have to point out why it is a rumor. Misinformation, whose veracity is determined, can be detected where there 
exists a verified database containing information about why the misinformation is wrong. Rumor detection is a 
hard problem and rumor detectors in the literature usually suffer from the low accuracy. The reason for unsatis-
factory performance is multi-fold: for example, rumor dataset is usually small and imbalanced. The data-driven 
machine learning detectors don’t have sufficient high-quality data to work with, hence the data shortage causes 
the low or extremely imbalanced performance. Rumors usually emerge violently during emergent national or 
even international events and confirming the veracity of rumors can take a long time and an aggressive amount of 
human resource. Therefore, rumors could stay as floating and circulating pieces of information without veracity 
confirmed for a long time and provoke social panic, such as in the recent coronavirus breakout events. Rumors 
are associated with different events, so if the detector is trained with previously observed rumors on other events, 
the detection of current unseen rumors associated with the new event usually results in low accuracy because 
the patterns of the rumors are changed. Compared to the detection problem, pointing out the problematic parts 
of the rumors is even more difficult due to the similar reasons.

We propose a framework that addresses the afore-mentioned issues. To solve the limited and imbalance 
data issue and the low performance problem, our proposed GAN-based framework augments the dataset by 
generating new rumors/misinformation/fake news and uses the augmented data to train the discriminators to 
achieve high accuracy. The layered generative model intelligently decides about where and how to modify the 
input sequences. This process injects noise in data and pushes the discriminators to learn the essential semantic 
and syntactic features of the rumors. Therefore, this process alleviates the impact of event-associated patterns. 
To provide reasonable explanations of why the sentence is potentially a rumor, we improve the discriminator 
in GAN to include a layered structure to (1) make the detection decision, (2) generate the explanation, and (3) 
provide a corresponding layered model-tuning signal to the layered generative model.

Genetic sequences classification, genetic mutation detection/prediction, gene-disease association, and DNA 
expression classification all work with gene sequences. Machine learning-based methods such as support vector 
machines and deep neural networks have already been used to solve these problems. We propose and verify the 
applicability of our designed framework on gene classification and mutation detection in this work. The funda-
mental rationality comes from that the genetic sequence essentially is textual data. Since our proposed framework 
is aiming to take textual data as input and make classification decisions, it is reasonable to apply the framework 
to gene data. Mutation detection in gene data is to find the abnormal places in a gene sequence and rumor detec-
tion with explanation is to find the abnormal places in a sentence. One problem facing by gene mutation detec-
tion is that there might be some unknown patterns in the gene sequence, which is similar to the generalization 
problem in rumor detection: unknown patterns exist in unobserved rumors. Hence, our proposed GAN-based 
model can alleviate this issue by intelligently augmenting the dataset. From an algorithmic perspective, the prob-
lem of rumor detection and gene classification can be formulated as a textual sequence classification problem. 
(Although genetic sequence representation can be in binary format, we have discussed that binary formatted 
genetic sequences can be further encoded into vectors as the input to our model, which does not generate dif-
ferent results in our experiments). Therefore, our framework as a sequential data classification model should be 
applicable to both rumor and gene classification. We can learn which parts are suspicious/machine generated in 
a rumor, and this is no different than given a sequence, we learn which parts contain abnormal patterns. Follow-
ing similar reasoning, in gene mutation detection task, our model learns which parts in a genetic sequence are 

Table 9.   Examples of the generative model modifying gene sequences and the discriminative model detecting 
the modifications (marked in bold).

Original GGT​GGG​TGT​AGC​CGT​GGC​TAG​GGC​TGA​CGG​GGC​CAC​TTG​GGC​TTG​GCC​GCA​TGC​CCC​TGT​GCC​CCA​CCA​GCC​ATC​CTG​
AAC​CCA​ACC​TAG​

Modified GGTGGGTGTAGCCGTGGCTAGGGCTGACGGGGCCACTTGGGCTTGGCAGCATGNNNCTGTGCCCCACCAGCCATGC

TGAACCCAACCTAG

Prediction GGTGGGTGTAGCCGTGGCTAGGGCTGACGGGGCCACTTGGGCTTGGCAGCATG

NNNCTGTGCCCCACCAGCCATGCTGAACCCAACCTAG

Original GCG​CGG​GGC​GCT​GAG​CTC​CAG​GTA​GGG​CGC​GCA​GCC​TGG​TCA​GGT​GGC​AGC​CTT​ACC​TCA​GGA​GGC​TCA​GCA​GGG​
GTC​CTC​CCC​ACC​TGC​

Modified GCGCGGGGCGCTGAGCTCCAGGTAGGGCGCGCAGCCTGGTCAGGTGGCAG

GNTTATSTCAGGAGGCTCAGCAGGGGTCATCCCCACCTGC

Prediction GCGCGGGGCGCTGAGCTCCAGGTAGGGCGCGCAGCCTGGTCAGGTGGCAGG

NTTATSTCAGGAGGCTCAGCAGGGGTCATCCCCACCTGC

Original TGG​TGG​CTA​ATT​CAG​GAA​TGT​GCT​GCT​GTC​TTT​CTG​CAG​ACG​GGG​GCA​AGC​ACG​TGG​CAT​ACA​TCA​TCA​GGT​CGC​ACG​
TGA​AGG​ACC​ACT​

Modified TGGTGGCTAATTCAGGAATGTGNTGNTGTSTTT

GTGCAGACGGGGGCAAGCACGTGGCATACATCATCAGGTNGCACGTGAAGGACCACT

Prediction TGGTGGCTAATTCAGGAATGTGNTGNTGTSTTTG

TGCAGACGGGGGCAAGCACGTGGCATACATCATCAGGTNGCACGTGAAGGACCACT
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abnormal. The difference is that language has intuitive semantic meanings, however, genetic sequence may have 
unknown hidden semantic meanings. Our goal is to investigate them both even though are different in order to 
provide this as an example of a methodology for interdisciplinary research and analysis.

In summary, we proposed a layered text-level rumor detector and gene mutation detector with explanations 
based on GAN. We used the policy gradient method to effectively train the layered generators. Our proposed 
model outperforms the baseline models in mitigating the accuracy reduction problem, that exists in case of 
only clean data. We demonstrate the classification ability and generalization power of our model by comparing 
with multiple state-of-the-art models in both rumor detection and gene classification with mutation detection 
problems. On average, in the 2-class rumor detection task, our proposed model outperforms the baselines on 
clean dataset PHEME and enhanced dataset PHEME+PHEME’ by 26.85% and 17.04% in terms of macro-f1, 
respectively. Our model provides reasonable explanation without a previously constructed verified news database, 
and achieves significantly high performance. In the gene classification with mutation detection task, our model 
identifies the mutated gene sequence with high precision. On average, our model outperforms baselines in both 
NN269 and NN269+NN269’ (2-class) by 10.71% and 16.06% in terms of AURoC, respectively. In both rumor 
detection and gene mutation detection tasks, our model’s ability of explanation generation is demonstrated by 
identifying the mutations accurately (above 70% macro-f1). We find that using two discriminators to perform 
classification and explanation separately achieves higher performance than using one discriminator to realize 
both functions. We also found the pre-train of Dclassify and varying Nreplace contribute to the high accuracy of 
Dexplain.

Despite the high performance in both applications, we do find a limitation of our framework. Dexplain some-
times fails to provide explanations in rumor experiments when the input sentences are very short, even though 
the corresponding Dclassify generates accurate predictions. One potential reason for this result is that the dataset 
contains a small number of short sentences and the model is not trained enough in short sentence cases. We also 
observed Dexplain performs a bit worse in gene mutation detection experiments than in rumor detection task. 
It could be caused by the choice of Nreplace (the number of items to be replaced in a sequence), which is a hyper 
parameter that affects the mutation detection ability. As part of our future work, to improve the performance of 
the discriminators, we would like to choose Nreplace intelligently. To enhance the performance of our generators, 
we would like to explore the application of hierarchical attention network39. We will also investigate the depend-
encies between the discriminators of our model to benefit Dexplain from the accurate Dclassify.

We believe our proposed framework could be beneficial to numerous textual data-based problems, such as 
rumor and misinformation detection, review classification for product recommendation, twitter-bot detection 
and tracking, false information generation and attack defense, and various genetic data-based applications. 
We connect the genetic data processing and the natural language processing field and provide new angles and 
opportunities for researchers in both fields to contribute mutually.

Methods
Our model—overview.  Figure 2 shows the architecture of our proposed model. We have a layered genera-
tive model, which takes an input sequence and makes modifications intelligently; then a layered discriminative 
model to do classification and mutation detection. In rumor detection task, the generators must intelligently 
construct a rumor that appears like non-rumor to deceive the discriminators. Given a good lie usually has some 
truth in it, we choose to replace some of the tokens in the sequence and keep the majority to realize this goal. In 
our framework, two steps for intelligently replacing tokens in a sequence are: (1) determine where (i.e., which 
words / items in the sequence) to replace, and (2) choose what substitutes to use. Gwhere and Greplace are designed 
to realize these two steps. Having constructed the strong generators, the discriminators are designed to provide 
a defense mechanism. Through adversarial training, the generators and discriminators grow stronger together, 
in terms of generating and detecting rumors, respectively. In the rumor detection task, given a sentence, there 
are two questions that need to be answered: (1) is it a rumor or a non-rumor, and (2) if a rumor, which parts 
are problematic. Dclassify and Dexplain are designed to answer these two questions. We found that realizing two 
functions in one layer either in discriminative model or generative model hurts the performance. Hence, our 
framework was designed to embed a layered structure, and the detailed descriptions of the generative and dis-
criminative model are as follows.

Our model—generative model.  The sequence generation task is done by the generative model: Gwhere 
and Greplace . Given a human-generated real-world sequence input x = (x1, x2, . . . , xM) with length M, such as 
a tweet-level sentence containing M words, Gwhere outputs a probability vector p = (p1, p2, . . . , pM) indicating 
the probabilities of each item xi ( i ∈ [1,M] ) to be replaced. p is applied to input x to construct a new sequence 
xwhere with some items replaced by blanks. For example, x2 becomes a blank and then xwhere = (x1, _ , . . . , xM).

where f (·) binarizes the input based on a hyperparameter Nreplace . It determines the percentage of the words to 
be replaced in a sentence. Operator ◦ works as follows. If a = 1 , then a ◦ b = b . If a = 0 , then a ◦ b = _ . Greplace 
is an encoder-decoder model with the attention mechanism. It takes xwhere and fills in the blank, then outputs a 
sequence xreplace = (x1, x

replace
2

, . . . , xM) . The generative model is not fully differentiable because of the sampling 
operations on Gwhere and Greplace . To train the generative model, we adopt policy gradients40 from RL to solve 
the non-differentiable issue.

xwhere = f (p) ◦ x = f (Gwhere(x)) ◦ x,
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Greplace GRU‑based encoder.  Gated Recurrent Units (GRUs)41 are the improved versions of standard 
RNNs that use update gates and reset gates to resolve the vanishing gradient problem of a standard RNN. In our 
GRU-based encoder, the hidden state ht is computed as GRUencoder(x

where
t , ht−1):

where Wenc
z  , Wenc

h  , bencr  , bencz  , bench  , Wenc
r  , Uenc

z  , Uenc
h  and Uenc

r  are encoder weight matrices. σ(·) is the sigmoid func-
tion. ⊙ represents element-wise multiplication. z, r, and h′ are update gate, reset gate, and candidate activation 
in encoder, respectively.

Greplace GRU‑based decoder with attention mechanism.  Our encoder-decoder Greplace utilizes atten-
tion mechanism42 to automatically search for parts of a sentence that are relevant to predicting the target word. 
The content vector ct summarizes all the information of words in a sentence. It depends on the annotations ht 
and is computed as a weighted sum of these ht:

where etj scores how well the inputs around position j and the output at position t match. Alignment model a is 
a neural network that jointly trained with all other components. The GRU decoder takes the previous target yt−1 
and the context vector ct as input, and utilizes GRU to compute the hidden state st as GRUdecoder(yt−1, st−1, ct):

where Wdec
z  , Wdec

s  , Wdec
r  , Udec

z  , Udec
s  , Udec

r  , Cdec
z  , Cdec

s  and Cdec
r  are decoder weight matrices. z′ , r′ , and s′ are update 

gate, reset gate, and candidate activation in decoder, respectively. Through this attention-equipped encoder-
decoder, Greplace intelligently replaces items in sequences and outputs adversarial samples.

Our model—discriminative model.  The generated adversarial samples xreplace combined with original 
data x are fed to the discriminative model. Dclassify and Dexplain are trained independently. We note that the two 
discriminators can depend on each other, but we have chosen to explore the dependency as part of our future 

ht = (1− zt)⊙ ht−1 + zt ⊙ h′t ,

zt = σ(Wenc
z xwheret + Uenc

z ht−1 + bencz ),

h′t = tanh(Wenc
h xwheret + Uenc

h (rt ⊙ ht−1)+ bench ),

rt = σ(Wenc
r xwheret + Uenc

r ht−1 + bencr ),

ct =

M∑

j=1

αtjhj , αtj =
exp(etj)∑M
k=1

exp(etk)
, etj = a(st−1, hj),

st = (1− z′t)⊙ st−1 + z′t ⊙ s′t ,

z′t = σ(Wdec
z yt−1 + Udec

z st−1 + Cdec
z ct),

s′t = tanh(Wdec
s yt−1 + Udec

s (r′t ⊙ st−1)+ Cdec
s ct),

r′t = σ(Wdec
r yt−1 + Udec

r st−1 + Cdec
r ct),

Figure 2.   Our proposed framework. The generative model (shown on the left hand side) consists of two 
generators Gwhere and Greplace . The discriminative model (shown on the right hand side) consists of two 
discriminators, namely Dexplain for explainability and Dclassify for classification.
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work. Dclassify provides a probability in rumor detection, and Dexplain provides the probability of each word in 
the sentence being problematic. The explainability of our model is gained by adversarial training. We first insert 
adversarial items in the sequence, then train Dexplain to detect them. Through this technique, our model can not 
only classify data with existing patterns, but also classify sequences with unseen patterns that may appear in the 
future. Adversarial training improves the robustness and generalization ability of our model.

Training.  In the rumor detection task, a sequence x has a true label Y being either a rumor R or a non-rumor 
N. After manipulating the sequence x , output of the generative model xreplace is labeled as R since it is machine 
generated. The objective of a φ-parameterized generative model is to mislead the θ-parameterized discrimina-
tors. In our case, Dθ

classify(x
replace) indicates how likely the generated xreplace is classified as N. Dθ

explain(x
replace) 

indicates how accurately Dθ
explain detects the replaced words in a sequence. The error attribution per time step is 

achieved naturally since Dθ
explain evaluates each token and therefore provides a fine-grained supervision signal to 

the generators. For example, a case where the generative model produces a sequence that deceives the discrimi-
native model. Then the reward signal from Dθ

explain indicates how well the position of each replaced word con-
tributes to the error result. The reward signal from Dθ

classify represents how well the combination of the position 
and the replaced word deceived the discriminator. The generative model is updated by applying a policy gradient 
on the received rewards from the discriminative model.

The rumor generation problem is defined as follows. Given a sequence x , Gφ

where is used to produce a sequence 
of probabilities p indicating the replacing probability of each token in x . Gφ

replace takes xwhere and produces a new 
sequence xreplace . This newly generated xreplace is a sentence, part of which is replaced and labeled as R. At time 
step t, the state s consists of swhere and sreplace . swhere = (p1, . . . , pt−1) , sreplace = (x

replace
1

, . . . , x
replace
t−1

) . The policy 
model Gφ

where(pt |p1, . . . , pt−1) and Gφ

replace(x
replace
t |x

replace
1

, . . . , x
replace
t−1

) are stochastic. Following RL, Gφ

where ’s objec-
tive is to maximize its expected long-term reward:

where QGφ

Dθ (s0, a) is the accumulative reward following policy Gφ starting from state s0 = {swhere
0

, s
replace
0

} . 
−Dθ

explain(s
replace) indicates how much the generative model misleads Dθ

explain . a is an action set that contains 
output of both Gφ

where and Gφ

replace . RT is the reward for a complete sequence. Similarly to Gφ

where , G
φ

replace maximizes 
its expected long-term reward:

We apply a discriminative model provided reward value to the generative model after the sequence is produced. 
The reason is that our Gφ

replace doesn’t need to generate each and every word in the sequence, but only fills a few 
blanks that are generated by Gφ

where . Under this assumption, long-term reward is approximated by the reward 
gained after the whole sequence is finished.

The discriminative model and the generative model are updated alternately. The loss function of discrimina-
tive model is defined as follows:

where �explainD  and �classifyD  are the balancing parameters.
We adopt the training method in GANs to train the networks. In each epoch, the generative model and the 

discriminative model are updated alternately. Over-training the discriminators or the generators may result in a 
training failure. Thus hyper-parameters GSTEP and DSTEP are introduced to balance the training. In each epoch, 
the generators are trained GSTEP times. Then discriminators are trained DSTEP times.

Experiment setup—model setup.  Our model contains a layered generative model, Gwhere and Greplace , 
and a layered discriminative model, Dexplain and Dclassify . The architecture setup is as follows. Gwhere consists of 
an RNN with two Bidirectional LSTM (BiLSTM) and one dense layer and seeks to determine the items in a 
sequence to be replaced. The Gwhere architecture we used in all experiments has the architecture of EM-32-32-16-
OUT, where EM, OUT represent embedding and output, respectively. Greplace is an encoder-decoder with atten-
tion mechanism and is responsible for generating the substitutes for the items selected by Gwhere . The encoder 
has two GRU layers, and the decoder has two GRU layers equipped with attention mechanism. The architecture 
of Greplace we used in all experiments is EM-64-64-EM-64-64-OUT. Dexplain has the same architecture as Gwhere 
and is responsible for determine which items are problematic. Dclassify is a CNN with two convolutional layers 
followed by a dense layer. It is used for classification. The architecture we used in all experiments is EM-32-64-
16-OUT.

Jwhere(φ) = E[RT |s0,φ] =
∑

p1

G
φ

where(p1|s
where
0 ) · QGφ

Dθ (s
replace
0

, a),

QGφ

Dθ (s
replace
0

, a) = −Dθ
explain(s

replace
0

)+ Dθ
classify(s

replace
0

),

Jreplace(φ) =
∑

x
replace
1

G
φ

replace(x
replace
1

|s
replace
0

) · QGφ

Dθ (s
replace
0

, a).

LD =�
explain
D L

explain
D + �

classify
D L

classify
D ,

L
explain
D =− E

y∼f (G
φ

where(x))
[ylog(Dθ

explain(x
replace))+ (1− y)log(1− Dθ

explain(x
replace))]

L
classify
D =− Ey∼Y [ylog(D

θ
classify(x

replace))+ (1− y)log(1− Dθ
classify(x

replace))]
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Experiment setup—data collection and augmentation.  We evaluate our proposed model on a 
benchmark Twitter rumor detection dataset PHEME43, a misinformation/fake news dataset FMG33, and a splice 
site benchmark dataset NN26944. PHEME has two versions. PHEMEv5 contains 5792 tweets related to five news, 
1972 of them are rumors and 3820 of them are non-rumors. PHEMEv9 contains 6411 tweets related to nine 
news, 2388 of them are rumors and 4023 of them are non-rumors. The maximum sequence length in PHEME 
is 40, and we pad the short sequences with zero padding. FMG dataset contains two parts corresponding to a 
veracity detection task (i.e., determine a news is true/false) and a provenance classification task (i.e., determine a 
news is real/fake), respectively. Input sequences with true label in veracity classification task are verified fact and 
false sequences are verified false statements. Input sequences with real label in provenance classification dataset 
are purely human-written sentences while the fake data are generated with pre-trained language models. We set 
the maximum sequence length as 1024 and 512 in true/false and real/fake tasks, respectively, and we pad the 
short sequences with zero padding and do post truncation on the text longer than length threshold. NN269 data-
set contains 13231 splice site sequences. It has 6985 acceptor splice site sequences with length of 90 nucleotides, 
5643 of them are positive AP and 1324 of them are negative AN. It also has 6246 donor splice site sequences with 
length of 15 nucleotides, 4922 of them are positive DP and 1324 of them are negative DN.

In rumor detection task, we generate a rumor/fake news/misinformation dataset denoted as PHEME’ (and 
FMG’), and then augment the original dataset with the generated sequences. Similarly, for the gene classification 
with mutation detection task, the proposed model generates a dataset NN269’ by replacing nine characters in 
acceptor sequences and three characters in donor sequences. We label the generated sequences by the follow-
ing rules. In rumor detection with explanation task, (1) generated rumors based on PHEME are labeled as R 
(rumor) in 2-class classification (corresponds to results in Table 1); (2) in 4-class classification (corresponds to 
results in Table 5 and Table 6), if the input sequence x has label Y, then the output sequence xreplace is labeled as 
Y ′ , indicating that xreplace is from class Y but with modification. In gene mutation detection task, we follow the 
labeling rule described in (2), and the final classification output of our model is two-fold: AP, AN for acceptor, 
or DP, DN for donor. We merge the generated classes AP′ , AN ′ and DP′ , DN ′ with original classes to evaluate the 
noise resistance ability of our model. Given a sequence, our model can classify it into one of the known classes, 
although the sequence could either be clean or modified.

Experiment setup—baseline description.  In the rumor detection task, we compare our model with 
six popular rumor detectors: RNN with LSTM cells, CNN, VAE-LSTM, VAE-CNN, a contextual embedding 
model with data augmenting (DATA-AUG)45, and a GAN-based rumor detector (GAN-GRU)13. One of the 
strengths of our proposed model is that under the delicate layered structure that we designed, the choice of 
model structure affects the results but not significantly. To showcase this ability of the layered structure, we 
generate a variation of the proposed model by replacing Greplace with a LSTM model as one baseline. It utilizes 
an LSTM-based encoder-decoder with architecture EM-32-32-EM-32-32-OUT as Greplace . Our model gener-
ates a set of sequences by substituting around 10% of the items in original sequences. We pre-train the Dclassify 
by fixing the number of replacement Nreplace = 10% . We then freeze Dclassify and train the other three models. 
During training, we lower Nreplace from 50% to 10% to guarantee data balancing for Dexplain and better results 
in terms of explanations. All the embedding layers in the generators and discriminators are initialized with 50 
dimension GloVe46 pre-trained vectors. Early stopping technique is applied during training. The generated data 
in the rumor task are labeled as R, and we denote this dataset as PHEME’. For fairness and consistency, we train 
baselines LSTM, CNN, VAE-LSTM, and VAE-CNN with PHEME and PHEME+PHEME’. For all baselines, we 
use two evaluation principles: (1) hold out 10% of the data for model tuning, i.e., we split the dataset into training 
(with 90% data) and test (with 10% data) set. (2) Leave-one-out (L) principle, i.e., leave out one news for test, and 
train the models on other news. E.g., for PHEMEv5, where there are 5 events in the dataset, we pick 1 event as 
our test set and use the remaining 4 events as our training set. (Similarly, for PHEMEv9, where there are 9 events 
in the dataset, we pick 1 event as our test set and use the remaining 8 events as our training set.) Moreover, with 
L principle, we apply 5- and 9-fold cross validation for PHEMEv5 and PHEMEv9, respectively. Final results are 
calculated as the weighted average of all results. L principle constructs a realistic testing scenario and evaluates 
the rumor detection ability under new out-of-domain data. For DATA-AUG and GAN-GRU, we import the best 
results reported in their papers.

In gene classification with mutation detection task we compare our models with five models: RNN with 
LSTM cells, CNN, VAE-LSTM, VAE-CNN, and the state-of-the-art splice site predictor EFFECT47. The first 
four baselines are trained under NN269+NN269’, and tested on both NN269+NN269’ and clean data NN269. 
We import EFFECT’s results from the original work47. The architectures of baselines LSTM, CNN, VAE-LSTM, 
and VAE-CNN used in both tasks are defined as in Table 10. VAE-LSTM and VAE-CNN use a pre-trained VAE 
followed by LSTM and CNN with the architectures we defined in Table 10. The VAE we pre-trained is a LSTM-
based encoder-decoder. The encoder with architecture EM-32-32-32-OUT has two LSTM layers followed by a 
dense layer. The decoder has the architecture IN-32-32-OUT, where IN stands for input layer.
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