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Abstract: Most neurodegenerative diseases are currently incurable, with large social and economic
impacts. Recently, there has been renewed interest in investigating natural products in the modern
drug discovery paradigm as novel, bioactive small molecules. Moreover, the discovery of potential
therapies for neurological disorders is challenging and involves developing optimized animal models
for drug screening. In contemporary biomedicine, the growing need to develop experimental models
to obtain a detailed understanding of malady conditions and to portray pioneering treatments
has resulted in the application of zebrafish to close the gap between in vitro and in vivo assays.
Zebrafish in pharmacogenetics and neuropharmacology are rapidly becoming a widely used organism.
Brain function, dysfunction, genetic, and pharmacological modulation considerations are enhanced
by both larval and adult zebrafish. Bioassay-guided identification of natural products using zebrafish
presents as an attractive strategy for generating new lead compounds. Here, we see evidence that
the zebrafish’s central nervous system is suitable for modeling human neurological disease and we
review and evaluate natural product research using zebrafish as a vertebrate model platform to
systematically identify bioactive natural products. Finally, we review recently developed zebrafish
models of neurological disorders that have the potential to be applied in this field of research.

Keywords: Alzheimer’s disease; bioassay-guided purification; drug discovery; natural products;
neurodegenerative disorder; neurodegenerative model; Parkinson’s disease; schizophrenia; transgenic;
zebrafish

1. Introduction

Central nervous system (CNS) diseases and disorders, including Alzheimer’s disease (AD),
schizophrenia (SCZ), Huntington’s disease (HD), and Parkinson’s disease (PD) [1-3], signify a global
burden on society in terms of disability, economic loss, and human suffering. Globally, more than a
million people have CNS disorders [4]. CNS disorders are multifaceted diseases with unclear causes
and often ineffective therapies, with only a few therapeutic drugs being clinically effective [5]. Natural
products (NPs) are small molecules synthesized from living organisms (plants, bacteria, and fungi)
and are similar to secondary metabolites. Among all existing sources for drug discovery against single
targets of new lead compounds [6], NPs are most promising but are underutilized. Crude extracts
from NPs are a complex mixture of mostly uncharacterized compounds, some of which may have
unwanted effects. Worldwide, nearly 30% of all top-selling drugs are NPs or their derivatives. NPs are
an excellent source of new drug-like compounds to be discovered, and their diversity of chemicals
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has helped to develop drugs for a wide range of neurodegenerative disorders. Most new drugs have
been authorized from either NPs themselves or NPs over the past 30 years [7-9]. In complex NP
extracts, the isolation and structural characterization of bioactive small molecules involves several new
methodologies that need considerable time and effort [10,11]. Furthermore, there are several methods
involved in testing NPs in high-throughput screening (HTS). Combinatorial libraries with NP-like
compounds have been recently used in HTS [9].

A vital component of the drug discovery program for NPs is bioassay-guided separation.
In bioassay-guided separation, each chromatographic fractionation undertakes biological evaluation
for further fractionation, and only biologically active fractions are selected. The crude extracts are
fractionated and evaluated in bioassays. Further fractionation is repeated until the chosen activity
isolates pure compounds and then characterizes them structurally. Novel pharmaceutically active
NPs had been identified through screening and fractionation of crude extracts using several presently
regarded in vitro assays, collectively with (i) cell fractions, (ii) entire cellular assays, or (iii) recombinant
enzymes as target molecules [12]. Notwithstanding its application for HTS identification, the biomedical
relevance of the isolated active metabolites can be limited when using only enzymatic or in vitro assays.
To overcome this limitation, high-resolution micro-fractionation can be coupled with high-content
bioassays to further analyze the separate constituents. In contrast to cell-based reporter or enzymatic
assays, high-content bioassays (e.g., phenotypic assays using some cells or organisms) allow for an
impartial investigation of pharmacological activity. Many in vivo animal models offer the possibility of
independent screening of biomedically relevant bioactivities. However, milligrams of compounds are
required for mammalian models and are thus not ideal for in vivo platforms for micro-fractionation
and rapid HPLC profiling approaches.

Moreover, many naturally derived active compounds not only play a role as drugs but also help
in the development of many new model structures for synthetic molecules through combinatorial
chemistry. During the last 20 years, about 50% of drugs introduced to the market have been derived
indirectly or directly from small bioactive molecules. As a source of chemical diversity, unfulfilled
expectations from current R&D strategies and emerging trends have led to interest in NPs [7,13].
NPs have attracted considerable attention in the treatment of CNS diseases due to their neuroprotective
and therapeutic effects. NPs are excellent sources of safe, precise, and effective anti-neurotherapeutic
agents and thus are useful in the development of safer substitutes to pharmaceuticals. Recent literature
suggests that many bioactive compounds have both neurotrophic and neuroprotective actions [14];
therefore, for peripheral neuropathy early treatment using phytochemical approaches could be one of
the important strategies in preventing many neurological disorders.

Many presently known bioactive NPs have been previously recognized for their activity-guided
extract isolation through the use of in vitro assays. Biologically active NPs have been identified by
physical characteristics using chromatography, mass spectrometry, and NMR spectroscopy analysis.
In vivo bioassay-guided fractionation has not widely been used for the discovery of drug-like NPs,
as traditional in vivo models (e.g., mice and rats) are low-throughput systems and require much larger
quantities of compounds for testing in these systems.

The zebrafish (Danio rerio) provides a complementary integrative biological model for the discovery
of natural drug-like products through in vivo bioassay-guided chromatographic fractions requiring
only microgram quantities of individual components. Zebrafish are vertebrates, and thus are more
evolutionary similar to humans compared to non-vertebrate models. Logistically speaking, zebrafish
are tiny and can be kept in a small space in high numbers. Zebrafish are currently emerging as
an in vivo vertebrate model system for drug discovery and functional genomics [15]. In addition
to their many pharmacological and physiological similarities with mammals, zebrafish have many
added advantages including small size of embryos and larvae (0.5 to 5 mm depending on the stage of
development), optical transparency, rapid ex vivo development, and high fecundity (up to hundreds
of offspring per day). These characteristics makes zebrafish a standalone versatile experimental
in vivo model compatible with HTS and NP discovery micro-fraction techniques [16]. Furthermore,
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zebrafish embryos and larvae provide the convenience of using microtiter plates (96-well and even
384-well plates) to test the activity of micro-fraction isolated natural compounds. Depending on the
performance of these isolated compounds, the need for only microgram quantities to initiate an initial
biological reaction represents another advantage of using zebrafish as a model organism in comparison
to other vertebrates (e.g., rodents, where the energy dose requirements are typically one thousand
times higher) [17]. This latter feature is prime to NP discovery, as many high-resolution HPLC-based
separation techniques, particularly micro-fractionation, bring about very limited pattern quantities
that could otherwise be inadequate for in vivo activity analysis.

The neuroprotective activity of bioactive compounds from herbal drugs has been proven
by using cellular or animal models [18-20]. However, effective delivery of drugs to the brain
remains the main task in the discovery and development of new CNS disease treatments [21,22].
This review focuses on neurological disorders with an emphasis on neurodegenerative diseases, use of
zebrafish for bioassay-guided isolation of neuroactive small molecule from NPs, and new methods
to develop zebrafish neurodegenerative models that have the potential for expansion into NP drug
discovery applications.

2. Neurodegenerative Diseases

Neurodegenerative diseases lead to a rapid loss of brain processes such as cognitive and/or
motor neuron function, and are a major challenge facing aging populations. AD, PD, HD,
and amyotrophic lateral sclerosis (ALS) are common neurodegenerative diseases. Neurodegenerative
diseases share common characteristics and mechanisms despite their different clinical forms. One of
these features is regional cytosolic or nuclear protein aggregation [23]. Specific features include
extra cell deposition of plaques of amyloid-beta (Af), intracellular accumulation of inclusions
of hyperphosphorylated microtubule-binding tau in AD, intracellular storage of «-synuclein in
PD, inclusion of TAR DNA-binding protein (TDP)-43 transactive response in ALS, frontotemporal
dementia, and polyglutamine protein aggregates in HD and other repeat CAG-polyglutamine diseases.
While for some cases genetic causes have been identified, the main driver is a complex interaction of
predisposition factors in genetics and the environment. In every common neurodegenerative disease
condition, there is usually a mixture of hereditary and "sporadic" forms. While the identity of many
mutated genes in family forms of AD, PD, and ALS is known, the function of such genes and how their
mutations induce neuronal degeneration is not fully understood. Processes that cause degeneration
and the death of particular neuron types are probably the most important discovery goals in the field,
shaping the disease’s manifestations and defining the characteristics of all neurodegenerative diseases.

3. Using the Zebrafish Model for Neurological Disorders

The zebrafish is being progressively used to model neurodegenerative diseases and neurological
disorders successfully [24-33], with promises to test potential treatments for diseases and
disorders [31,34]. The zebrafish CNS is similarly arranged to that of other vertebrates, and is
traditionally separated into the hindbrain, midbrain, forebrain, ascending and descending spinal cord,
cranial nerves, motor spinal cord, and sensory nerves. Zebrafish neuroanatomy has been examined
and described in detail elsewhere during development, as well as in adults [35,36]. The genome of the
zebrafish is widely annotated [37]. The evolutionary lineage of zebrafish (teleost-bonyfish) separated
about 450 million years ago from the human lineage (tetrapod) [38]. Zebrafish pairs can produce large
number of embryos that make it possible to achieve relatively high-throughput screening drug studies
and behavioral testing [15] with simple methods for modulating gene expression available [39,40].
Many human-associated neurodegenerative disease proteins in zebrafish are homologous, highlighting
potentially preserved molecular cellular functions that can be easily examined [28] (Table 1).
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Table 1. Zebrafish orthologs of human genes involved in neurodegenerative disease pathogenesis.

Disease Protein Human Gene Zebrafish Gene Amino Acid Reference
Similarity

(%)

Amyloid precursor
protein

APP

GenelD: 351
Locus: 21g21.2
Protein length: 695

appa 74
GenelD: 58083
Chromosome: 1

Protein length: 738

appb 77
GenelD: 170846
Chromosome: 9

Protein length: 694

[41]

Alzheimer’s Disease

Presenilin-1 PSEN1 psenl 75 [42]
GenelD: 5663 GenelD: 30221
Locus: 14q24.3 Chromosome: 17
Protein length: 467 Protein length: 456
Presenilin-2 PSEN2 psen2 76 [43]
GenelD: 5664 GenelD: 58026
Locus: 1q31-q42 Chromosome: 1
Protein length: 448 Protein length: 441
B-secretase BACE1 bacel 82 [44]
GenelD: 23621 zgc:77409
Locus: 11g23.2-q23.3  GenelD: 403005
Protein length: 501 Chromosome: 15
Protein length: 505
BACE2 bace2 [45]
GenelD: 25825 zgc:103530
Locus: GenelD: 449818
21q22.2-q22.3 chromosome: 15
Protein length: 518 Protein length: 462
PSENEN psenen 91 [46,47]
y-secretase GenelD: 55851 GenelD: 402810
Locus: chromosome: 15
19q13.12 Protein length: 101
Protein length: 101
NCSTN nestn 56 [48]
Gene ID: 23385 GenelD: 494449
Locus: 1q23.2 chromosome: 2
Protein length: 709 Protein length: 707
APHI1b aphlp [46]
Gene ID: 83464 Gene ID: 386808
Locus: chromosome: 7
15q22.2 Protein length: 258
Protein length: 257
. . APOE apoea 27.5 [49]
Apolipoprotein E (ApoB) - o iipaag Gene ID: 553587
Locus: 19q13.32 chromosome: 19
Protein length: 317 Protein length: 269
apoeb [50]
Gene ID: 30314
chromosome: 16
Protein length: 281
Sortilin related receptor 1 ~ SORL1 sorll 64 [51]

(Sorl1)

GenelD: 6653,
Locus:11q24.1
Protein length: 2214

Gene ID: 497306,
chromosome: 15
Protein length: 2213
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Table 1. Cont.

Disease Protein Human Gene Zebrafish Gene Amino Acid Reference
Similarity
(%)
DJ-1 DJ-1 dj-1 83 [52]
Gene ID: 11315 Gene ID: 449674
Locus: PARK7 Chromosome: 11
1p36.23 Protein length: 189
Protein length: 189
Parkin PRKN prkn 62 [53]
Parkinson’s Disease Gene ID: 5071 Gene ID: 550328
Locus: PARK2 Chromosome: 13
6q25.2-q27 Protein length: 458
Protein length: 465
PTEN-induced kinase 1 PINK1 pinkl 54 [54]
(PINK-1) Gene ID: 65018 Gene ID: 494085
Locus: PARK6 1p36 ~ Chromosome: 6
Protein length: 581 Protein length: 574
Leucine-rich repeat LRRK2 Irrk2 38 [55]
kinase2 (LRRK2) GenelD: 120892 GenelD: 559366
Locus: PARK8 12q12  Chromosome: 25
Protein length: 2527 Protein length: 1985
g;g:;gton s Huntingtin HTT hit 70 [56]
GenelD: 3064 GenelD: 30214
Locus: 4q16.3 Chromosome: 1
Protein length: Protein length: 3121
3144
Fused in sarcoma FUS fus 63 [57]
GenelD: 2521 Gene ID: 394058
. Locus: 16p11.2 Chromosome: 3
Amyotrophic Lateral Protein length: 526 Protein length: 541
Sclerosis (ALS)
Tar DNA binding TARDBP tardpb 71 [58]
protein of 43 (TDP-43) GenelD: 23435 GenelD: 325052
Locus: 1p36.22 Chromosome: 6
Protein length: 414 Protein length: 412
Ataxin 1 ATXN1 atxnla 32 [59]
GenelD: 6310 GenelD: 565841
Spinocerebellar Locus: 6p23 Chromosome: 16
Ataxia Type 1 Protein length: 815 Protein length: 827
atxnlb 42
GenelD: 557340
Chromosome: 19
Protein length: 781
Dystrobrevin binding DISC1 discl 53 [60]
protein Gene ID: 27185 GenelD: 407621
Locus: 1q42.2 Chromosome: 13
Schizophrenia Protein length:854 Protein length: 994
Kinesin family KIF17 kif17 83 [61]
member 17 Gene ID: 57576 GenelD:557863

Locus: 1p36.12
Protein length:1029

Chromosome: 11
Protein length: 823

3.1. Zebrafish and Alzheimer’s Disease

The most common form of irreversible neurodegenerative disorder and dementia is Alzheimer’s
disease (AD). Fifty million people were estimated to live with AD in 2018, and this figure is predicted to
increase to 152 million by 2050 [62]. AD’s main clinical feature is progressive memory loss, motor and
speech impairment, deception, depression, and aggressive behavior [63]. There is significant neuronal
damage in AD patients in numerous brain regions [64,65]. This is usually caused by extracellular
deposition of amyloid-beta peptide and tau protein aggregates called neurofibrillary tangles (NFTs).
Several risk factors are identified or under investigation, including both genetic and environmental
factors, as potential triggers of AD. AD may be classified as familial AD (FAD, at < 65 years of age) or
sporadic AD (SAD, at > 65 years of age). Most of the knowledge of AD pathogenesis has been defined
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by studying FAD mutations. Some of the genetic targets are precursor protein amyloid-f (APP) and
presenilins (PSEN1 and PSEN?2) associated with increased FAD risk. The more common form of AD
occurs sporadically (representing >90% of cases) [66]. Multi-faceted pathogenesis of SAD is associated
with several risk factors such as old age and the presence of the apolipoprotein (APOE) gene ¢4 allele
and/or the recently identified genetic risk factor sortilin-related receptor (SORL1). SORL1 is an APOE
receptor with primary expression in neurons of the brain [67].

Zebrafish have human orthologous genes that play key roles in AD. The zebrafish genes psenl [42]
and psen2 [43] are human PSENI and PSEN2 orthologs, respectively, whereas the genes appa and
appb are human APP co-orthologs [41]. The zebrafish genome also contains orthologous genes for
gamma-secretase’s complex components, PSENEN (psenen) [47], NCTN (ncstn) [48], and APH1b (aphl1b).
In addition, (3-secretase orthologs (BACE1 and BACE?2) were also identified (bacel [44] and bace2 [45])
in zebrafish. The zebrafish genome contains co-orthologs of the microtubule-associated tau protein
(MAPT) gene, which encodes tau protein (mapta, and maptb) [68]. The human APOE and SORL1
co-orthologs apoea and apoeb are also present in the zebrafish genome [37,50] and sor!1 [51], respectively.

3.2. Zebrafish and Parkinson’s Disease

Dopaminergic neuron degeneration, as well as the presence of Lewy bodies called intracytoplasmic
inclusions, are neuropathological lesions associated with Parkinson’s disease (PD). Six genes associated
with Parkinsonism have been identified, including Parkin, DJ-1, PINK1, a-Synuclein, UCHL-1,
and LRRK?2 [69]. Although predominantly a motion disorder, PD is a mixed group of neurological
conditions that are not capable of producing or controlling movement and cognitive impairment [70].
The human PARK? ortholog in zebrafish (park2) resides on chromosome 13, and encodes a protein of
458 amino acids (465 in humans) [53]. The PINK1 zebrafish ortholog has 54% similarity, and an initial
study reported a severe developmental phenotype in pink1 k/d zebrafish [54]. The PARK7 zebrafish
ortholog encodes a protein of 189 amino acids with 83% human DJ-1 identity [52].

3.3. Zebrafish and Huntington’s and Other Polyglutamine Diseases

Huntington’s disease (HD) is a monogenic neurodegenerative disease that follows an autosomal
dominant pattern of huntingtin gene mutant form (HTT) inheritance. The mutation encodes for an
abnormal trinucleotide that leads to glutamine (CAG) expansion at the HTT protein amino terminal and
arises in an extended polyglutamine tract of the Huntingtin protein [71]. This causes cell death by gain
of function mechanisms, like protein accumulation, mitochondrial dysfunction, and caspase activation.
A decline in normal Huntingtin can also make a significant contribution to pathogenesis [72]. To try to
elucidate the loss as well as the gain of function mechanisms, zebrafish models are being used. The HD
c¢DNA homology in zebrafish was isolated as the first step towards discovering the possible role of
the HD gene in initial vertebrate development [56]. This cDNA codes a predicted protein product of
3121 amino acids with a human HTT identity of 70%. Loss of developmental expression of 15/hd1
caused noticeable morphological abnormalities, including pericardial edema microcephalus and CNS
necrosis [73]. Zebrafish htt is also necessary for normal pharyngeal arch cartilage development [74].

3.4. Zebrafish and Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS) is characterized by protein inclusions present in the affected
neurons. These protein inclusions are linked to spinal cord motor neuron loss and downward
motor tracts in the brain and spinal cord. Familial ALS is fairly rare, but a gene-encoding mutation of
superoxide dismutase (SOD1) inherited in an autosomal dominant motif causes 20% of such cases [75,76].
The mutations are usually prescribed by gain of function mechanisms [77]. Over 150 mutations have
been discovered in SODI, including the point mutations G93R and G85R. Recent studies also
indicate a role for SOD1 in the sporadic form of ALS and propose a prion-like function of protein
misfolding. Moreover, a few of the recently identified genes involved in ALS, such as FUS and TARDBP,
also demonstrate a high tendency to act similar to prions in misfolding proteins.
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A recent study used zebrafish to assess overexpression of SOD1 by mRNA microinjection to
study ALS etiology. In this study, vascular endothelial growth factor (VEGF) overexpression rescued
the SOD1-expressing zebrafish axonopathy, while VEGF morpholino knockdown exacerbated the
abnormalities [27]. However, one of the limitations in working with ALS in vivo models is the lack of
comprehensive methods to assess the presymptomatic course of the disease. The zebrafish provides
advantages in the study of processes of early disease with rapid development and reach post-embryonic
life about 3 days post fertilization (dpf), which is similar to neonatal mouse development.

3.5. Zebrafish and Schizophrenia

Schizophrenia is a severe neurodegenerative disorder with the etiology of hallucination, delusions,
depression, agitated body movements, confused thoughts and snafu speech, anhedonia, lack of
motivation, and speech problems. The defects of schizophrenia are caused by early development in
the brain [78]. About 1% of the world’s population is affected by schizophrenia and is characterized by
neuronal dysfunction, which results in deficiencies in various cognitive areas including visual and verbal
memory, learning, and attention [79]. Patients with schizophrenia, as well as with HD, have impaired
preimpulse inhibition (PPI) [80,81], a type of sensorimotor gaiting [82]. PPI is a neurological event
where the response following shocking stimulus is defeated by a weak prestimulus or prepulse and is
conserved among vertebrates. The sensorimotor zebrafish gating has been described in 6 dpf larvae
for PPI testing [83]. Twin studies have a projected heritage of around 81% for schizophrenia and
an environmental impact of about 11% (factors such as diet, parenting, and exposure to toxins or
teratogens) [84]. A large number of cases of schizophrenia are sporadic and appear in a family without
a history of the disease [85]. Many genes have been linked to schizophrenia susceptibility. Genes with
a largely robust disease connection include dystrobrevin binding protein 1 (DTNBP1), neuregulinl,
disrupted in schizophrenial (DISC1), kinesin family member 1 (KIF1), kinesin family member 17
(KIF17), SH3, multiple ankyrin repeat domains 3 (SHANK3), and NOTCH4 [86,87]. Candidate genes
for schizophrenia may be vital in determining neuronal migration, neurogenesis, and cell fate [38].

Burgess and Granato [89] developed an endophenotype of schizophrenia in zebrafish PPI. Exposure
to apomorphine and ketamine influences zebrafish PPI, and therefore appears to be facilitated by
similar neurotransmitters as in other animals. The same study also identified five novel mutant lines
with abnormal PPI responses. One of the most intensively studied genes associated with schizophrenia
is DISC1, and was first identified with a high incidence of depression, schizophrenia, and bipolar
disorder in a Scottish pedigree [90]. Furthermore, disc1 studies in zebrafish have provided new
information on this gene’s function.

3.6. Zebrafish and Epilepsy

Epilepsy is a common neurological disease caused by unexpected seizures that can vary from
a short attention interval to severe and prolonged seizures and muscle cramps [91]. Epilepsy has
a pathological mechanism that is poorly understood and is a complex brain disorder with many
fundamental causes [92]. Zebrafish have a multifaceted nervous system with elegant behaviors, and are
prone to seizure. Adult zebrafish have a wide array of established behaviors that can be studied,
making them especially suitable for model development. The pentylenetetrazole (PTZ)-induced
zebrafish epileptic seizure has been used to study the mechanism of epilepsy. The affordability of both
larval and adult zebrafish, which allows the ontogenesis to investigate a wider range of epilepsy-related
phenomena, is also useful.

Several genetically altered zebrafish are now being used to study the behavior and brain function
associated with epilepsy. Zebrafish (~5-7 dpf) are commonly placed in multiple wells and tracked
using video tracking software, continuously recorded by a camera. Mutations in two family members,
Potassium Voltage-Gated Channel Subfamily Q Member 2 (KCNQ?2) and Potassium Voltage-Gated
Channel Subfamily Q Member 3 (KCNQ3), have been correlated with inherited neonatal epilepsy,
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e.g., benign family neonatal convulsions. These genes are highly expressed in zebrafish, providing
support for studies of epilepsy using this vertebrate model [93].

4. Zebrafish Bioassay-Guided Isolation of Natural Product Drug Discovery

Zebrafish was first suggested by Jones and Huffmann of the Oklahoma Research Foundation
as a model for in vivo drug development in 1957, and soon thereafter zebrafish were first used to
examine NP bioactivities. Zebrafish bioassay-guided identification of NPs in a number of neurological
disorders can be an attractive approach for generating novel lead compounds (Figure 1). Over the past
decade, zebrafish as a primary model for HTS in the scope of drug discovery for NPs for neurological
disease has grown [16,94-96]. Zebrafish model profits combined with robust chromatographic and
spectroscopic methods are creating a path to discover and further develop HIT compounds from
various plant extracts [97,98].
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Figure 1. Schematic representation of zebrafish bioassay-guided isolation of natural products.
(A) Different sources of natural products. (B) Crude extraction of natural products. (C) Purification of
biologically active compounds from various chromatographic methods. (D) Various zebrafish biological
assays and structural characterization of HIT compounds using different spectroscopic techniques.
(HPLC: high performance liquid chromatography; MS: mass spectrometry; NMR: nuclear magnetic
resonance spectrometry; NPs: natural products; and TLC: thin-layer chromatography).

Zebrafish has recently emerged as a strong model in a wide range of applications for rapid
analysis of gene function and small molecular bioactivity [15]. Zebrafish are well-suited to identify
therapeutically potential bioactive NPs (Table 2). Zebrafish were first proposed over fifty years ago as
an in vivo model for the discovery of small molecules of drugs [99]. This preliminary study examined
the utility of zebrafish embryos and larvae to screen both NPs and synthetic compounds. Zebrafish
offers the opportunity of in vivo swift microgram-scale bioactivity evaluation of small molecules,
an attractive feature combined with high-resolution fractionation technologies and analytical methods
like UHPLC-TOF-MS and NMR microflow. A recent example is the bioassay-guided isolation of
zebrafish with six spirostane glycosylated triterpene important for decoction and methanol extract
anti-sizing activity from Solanum torvum aerial parts, which was discovered by Soura Challal [95]
and his colleagues. In addition, the recently identified flavonoid-trans-tephrostachin inhibitory of
acetylcholinesterase has also been isolated from the leaves of Indian herb Tephrosia purpurea by a
zebrafish bioassay [96].
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Table 2. Zebrafish bioassay-guided isolation and structurally characterized natural products.

Source Disease/Targets Molecules References
Pharbitis nil (Seeds) anti-seizure Pharbitin [100]
Rehmannia glutinosa (Root) angiogenesis effect Norviburtinal [101]
Riynchosia viscosa (Whole angiogenesis effect Rhynchoviscin [98]
Plant)
Dysosma versipellis anti-angiogenesis Kaempferol [102]
Ligusticum sinense (Rhizoma) anti-melanogenesis 1. Lignan [103]

2. cis-4-pentylcyclohex-3-ene-1,2-diol

Tephrosia purpurea

. . g . 9
(Leaves) anti-acetylcholinesterase trans-Tephrostachin [96]

Solanum torvum (leaves) anti-convulsant Pam.culon%n A [95]
Paniculonin B

Skeletonema marinoi anti-seizure Inosine [104]

5. Development of Zebrafish Models for Neurological Disorders

In order to study the genes associated with various neurodegenerative disorders, the zebrafish
has proven to be a perfect system where the genetic material is directly injected into the fertilized
embryo. For instant study of gene function, effective techniques for the manipulation of gene expression
are available [105]. By inserting genes into specific tissue promoters using vectors such as the Tol2
transposase system, transgenic zebrafish can be efficiently produced [106]. The Cre/loxP [107] and
GAL4-UAS [108] gene function analysis systems can also be used at specific time points to generate
conditionally expressed transgenics. The major disadvantage to induce specific mutations in the
zebrafish genome was the unavailability of effective previous technologies. However, transcription
activator-like effector nuclease (TALENS), zinc finger nucleases (ZFNs), and type II prokaryotic
CRISPR (clustered regularly short palindromic repeats)/Cas systems for targeted gene sequences
have been developed in recent times and are now being applied to create zebrafish transgenic
models [109,110]. Furthermore, new technologies have expanded development of adult zebrafish and
cell culture-based models.

5.1. Transgenic Zebrafish Models

Due to the effortless screening of genes and small molecules in zebrafish, innovative genetic
pathways that enable the development stages for isolating chemical modifiers can be obtained
easily. [111-114]. More recently, it was suggested that many of these benefits could be applied to the
study of human disease: high-content small molecular screens, genetic suppressor screens, in vivo
disease progression observations, use of fluorescent reporters to identify interesting cell populations,
and rapid hypothesis testing experiments in statistically robust larvae samples could provide valuable
insight into disease pathogenesis or new therapeutic approaches [115,116]. In 2008, ZFNs were used
to describe the first targeted gene knockout in zebrafish, and morpholinos were used to show gene
knockdowns in neurodegenerative diseases (Table 3). For example, an appb knockdown study showed
that the dramatic developmental defects in embryos and function of appb were needed for axonal
outgrowth of motor neurons in zebrafish [117]. In addition, the bacel knockout zebrafish was generated
by zinc finger nucleases. bacel mutants in the PNS are hypomyelinated, whereas the CNS is not
affected [45]. Furthermore, study of the leucine-rich repeat kinase 2 (LRRK2) gene associated with PD is
being studied in the zebrafish. Along with neuronal loss, the morpholino-mediated gene knockdown
of Irrk2 zebrafish also caused developmental disturbances in the eyes, lens, and otic vesicles, including
axis curvature defects, eye abnormalities, and edema [118]. Since then, reverse genetic tools have seen
unprecedented growth rates with the introduction of TALEN and CRISPR-Cas9 systems, including an
apoea knockout for AD [119] and a tardbp knockin and fus knockin for ALS [40,120] (Table 3). Further
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development of transgenic models using the recently developed CRISPR technique is set to unravel a
greater potential for zebrafish in gene knockdown and knockin studies.

Table 3. Transgenic zebrafish models for neurodegenerative diseases.

Disease Gene Technique References
appb Morpholino injection - knockdown [117]
psenl Morpholino injections - knockdown [121]
Alzheimer’s Disease bace2 ch—fmger n.u.clea.ses (ZFNs)—knockout [45]
psenen morpholino injection—knockdown [47]
apoea CRISPR-Cas—knockout [119]
apoe morpholino injection (live cell imaging) [122]
djJ-1 morpholino injection—knockdown [123]
. Y~ prkn gripNAsTM-mediated knockdown [124]
Parkinson’s Disease o . .
ikl transcription activator-like effector nucleases [125]
P (TALENs)—knockdown
lrrk2 morpholino injection—knockdown [118]
Amyotrophic tardbp (bpt1) CRISPR-Cas—knockin [40]
Lateral Sclerosis fus CRISPR-Cas—knockin [120]
Hl'.mtmgton s htt morpholino injection—knockdown [71]
Disease

5.2. Generation of a Neurodegenerative Model Using Amyloid-B42 (AB42) in the Adult Zebrafish Brain

The zebrafish bear extensive regenerative ability [126], and clinically important studies are
aimed at understanding the mechanisms of zebrafish regeneration. Zebrafish are excellent tools
because of their CNS regenerative capacity [127,128]. Models of neurodegeneration in the adult
zebrafish brain will be helpful to investigate the activation state of the neural stem/progenitor cells
(NSPCs) and to identify the molecular differences between zebrafish and mammalian NSPCs to utilize
them for regenerative therapies [129]. Multifaceted inflammatory conditions in neurodegenerative
diseases affect microglia, neurons, and NSPCs pleiotropically [130,131]. Kizil et al. first developed
a gene knockdown method based on cerebroventricular microinjection (CVMI) in vivo morpholino
oligonucleotide [132] in the adult zebrafish brain (Figure 2). CVMI injection in a skull incision is capable
of uniformly targeting cells near the injection site, in this case the forebrain ventricular region containing
neurogenic progenitor cells. The amyloid-342 (AB42) induced neurotoxicity in adult zebrafish brain
using CVMI of A(342 derivatives [133]. One of the earliest findings in understanding the etiology of
AD was the discovery of a 40-length peptide in AD brains now called A3, which constitute the primary
component of AD-related amyloid deposits [134,135]. A is produced from the amyloid precursor
protein (APP) with the continuous breakdown of 3- and y-secretases [136]. Importantly, the creation of
Ap through APP’s proteolytic processing is heterogeneous, leading to variable Af lengths, especially
at the peptide’s carboxy terminus. 40 and 42 long residues are the two main forms of Ap produced
under normal APP processing conditions (A340 and AB42, respectively). The shorter variety of A340
is the majority of the Af3 produced in a normal individual [136]. Approximately 5%-15% of the total
Ap poolis AB42, and it is possible to observe smaller amounts of other Afs, both longer and shorter.
Generally, the brain’s A pool has 5%-15% of A{342, which causes reminiscent phenotypes of amyloid
pathophysiology: apoptosis, microglial activation, synaptic degeneration deficiencies, and learning.
A[342 also results in NSPC proliferation and increased neurogenesis [37]. This understanding can help
to design regenerative therapy-based drug discovery for neurological disorders.
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Figure 2. Outline of the pattern and its target regions of cerebroventricular microinjection (CVMI).
(A) CVMLI s achieved at the dorsal surface of the head (1) and targets, in this example, the forebrain that
is rostral to the optic tectum (2). For injection, an incision is made into the skull over the optic tectum
using a barbed-end canula (3). Through this slit, liquid is injected using a glass capillary (4). Injected
liquid disperses rostrally (5). (B) The canula used for incision. (C) The incision on an adult fish (dorsal
view). (D) The incision site marked by dashed lines. (E) Injection with the glass capillary (*) (dotted
lines mark the outline). (F) Injection apparatus. Images (A-E) are adapted from [132]. (c: cerebellum;
med: medulla; ob: olfactory bulb; ot: optic tectum; and tel: telencephalon)

5.3. Zebrafish Cell Culture-Based Neurodegenerative Disease Models

The developing zebrafish embryo is an excellent source for culturing cells, including neural
cells [137-143]. The technique to culture primary motor neuron (MN) in zebrafish has been developed
for studying neurological disorders. The motor neuronal zebrafish cell culture was initiated at 24 hpf
when the axonal development and outgrowth of MN started, allowing the development of MN axons
in vivo in the context of the normal endogenous signs of the model organism, while also providing
availability for an in vitro system. The zebrafish’s primary culture techniques offer another approach to
examine the neuronal population. There have been reports of primary neuron culture protocols ranging
from blastula stage to 19 hpf [144-146], but these cultures are derived from MN axon pathfinding
and neuromuscular development prior to normal course. Primary MN axons in zebrafish are present
at 18 hpf out of the spinal cord, while the appearance of secondary MN axonal path findings range
from 26 to 34 hpf [147,148]. The brain explant cultures [149] and primary cell culture of muscle
fibers [150-152] are possible to develop from the later development stages of zebrafish embryogenesis.
The advantages of primary zebrafish cell culture provide a new foundation to develop potential
therapies for neurological disorders.

A new protocol [153] outlines how the subcellular spreading and protein aggregation status of
neurodegenerative disease-causing neurons from transgenic zebrafish embryos can be investigated
(Figure 3). ALS and spinocerebellar ataxia type-3 (SCA3) can be studied from this protocol, as the
disease-causing sarcoma-fused (FUS) and ataxin-3 proteins of the human variant gene can be expressed
in the zebrafish cell culture. A combination of neuronal subtypes, including motor neurons, exhibited
cultural differentiation as well as an outgrowth of neurites. The human mutant FUS mislocated
from nuclei to cytosol, imitating observed in human ALS and the zebrafish FUS model. In contrast,
zebrafish-grown neurons expressing human ataxin-3 with disease-associated improved polyQ repeats
did not build up in nuclei as frequently reported in SCA3. Another simple and efficient protocol
was recently proposed to obtain the primary cells of embryonic zebrafish [134]. By exploiting the
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cell-type rich resource specific fluorescent zebrafish reporter lines, different types of differentiated
cells were cultivated and monitored, proving that they continued their original morphology in
culture for many days and demonstrated that before cultivation, particular types of cells could be
enriched with flow cytometry. This group also successfully tested several fluorescent vital colors to
facilitate subcellular imaging. This technique delivers a new tool to enhance our understanding of
neurodegenerative disorders pathogenesis and help the development of mechanism-based drugs for
neurological disorders.

Poly-D-lysine coated

Trypsin Centrifuge Resuspend coverslips, cultured
o 3X wash (30 min) 1000 rpm pellet in neurobasal media
+ Tricaine at 4°C at 37°C (3 min) in HBSS at 37°C, 5% CO2
=> = = = = Hemacytometer | => e
- - FBS to e
fe ! =1 cn stop s ~500,000 cells
< <0 (o ] o per well
= = = o o9

24 hpf dechorionated

whole embryos intact
Figure 3. Summary of workflow for culturing zebrafish neurons. Embryos (24 hpf or 48 hpf) are
collected, dechorionated, and placed in E3 medium and 16 uM tricaine microtubes. Embryos are then
washed three times with an ice-cold E3 medium before being placed in 1 trypsin (in PBS) and pipeted
for 30 minutes intermittently in a 37 °C water bath. To stop separation, fetal bovine serum (FBS) is then
added and the tubes are centrifuged at 1000 rpm for 3 minutes. The supernatant is removed, and cell
pellet resuspended in Hanks’ balanced salt solution (HBSS). Cells are counted using a hematocytometer,
and ~500,000 cells are placed per well for culturing. It is recommended to change half of the media
daily. (hpf: hours post fertilization)

6. Conclusions

In summary, several observational studies have shown a connection between zebrafish
and human neurological disorders. Zebrafish are proving to be an ideal model for screening
pharmaceutical agents prior to testing in rodents. The long-term aims of this work are to clarify the
mechanisms of neurodegeneration and develop new neuroprotective compounds for the treatment of
neurodegenerative diseases. In adult zebrafish, the approach of neurodegeneration using Ap peptides
can also help to design regenerative therapies in the neurodegenerative situation. The described
culture of neuronal cells adds a new tool to investigate neurodegenerative diseases regarding molecular
and cellular mechanisms, high-quality live cell imaging, and the discovery of new therapeutic drugs
for neurological disorders. The primary embryo of zebrafish and larvae culture has the potential to
provide tremendous knowledge regarding various mechanisms and treatments for human disease.
Zebrafish-based assays are capable of promoting the bioassay-guided fractionation of great numbers
of bioactive extracts identified in these in vivo screens, thus allowing the isolation of different
novel, bioactive natural products—most of which are likely to be desirable lead compounds for the
development of new, potent drugs. These initial studies support zebrafish in helping to resolve a
crucial bottleneck in the discovery of NPs by allowing rapid in vivo, microgram-scale, bioassay-guided
fractionation analysis, and diverse natural extract dereplication studies.
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