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Hepatocellular carcinoma (HCC) tumors exhibit high heterogeneity. However, current un-
derstanding of tumor cell heterogeneity of HCC and the association with prognosis remains
very limited. In the present study, we collected and examined tumor tissue from one HCC
patient by single-cell RNA sequencing (scRNA-seq). We identified 5753 cells and 16 clusters
including hepatocytes/cancer cells, T cells, macrophages, endothelial cells, fibroblasts, NK
cells, neutrophils, and B cells. In six tumor cell subclusters, we identified a cluster of pro-
liferative tumor cells associated with poor prognosis. We downloaded scRNA-seq data of
GSE125449 from the NCBI-GEO as validation dataset, and found that a cluster of hepato-
cytes exhibited high proliferation activity in HCC. Furthermore, we identified a gene signature
related to the proliferation of HCC cells. This gene signature is efficient to classify HCC pa-
tients into two groups with distinct prognosis in both TCGA and ICGC database cohorts.
Our results reveal the intratumoral heterogeneity of HCC at single cell level and identify a
gene signature associated with HCC prognosis.

Introduction
Primary liver cancer (PLC) is the sixth most prevalent cancer and the third leading cause of cancer-related
deaths worldwide. Hepatocellular carcinoma (HCC) is the most common type of liver cancer, accounting
for 75–85% of PLC. Hepatitis B virus (HBV) infection, hepatitis C virus (HCV) infection, aflatoxin B1 and
alcohol abuse are the major risk factors for HCC [1]. Despite significant advances in therapeutic strategies
for HCC, the prognosis of HCC remains poor. It is widely accepted that HCC exhibits high heterogeneity
[2,3]. However, current understanding of tumor cell heterogeneity of HCC remains very limited.

RNA sequencing (RNA-seq) technologies have been used to study the expression profile of HCC, which
detect the gene expression of the sample as a whole [4]. However, the tumor tissues contain not only tumor
cells but also endothelial cells, immune cells, fibroblasts, inflammatory cells, and extracellular matrix [5].
Therefore, it is difficult to investigate the tumor cell heterogeneity of HCC by RNA-seq technologies. To
compensate for the disadvantages of RNA-seq technologies, single-cell RNA sequencing (scRNA-seq) has
been widely used in the tumor [6]. scRNA-seq is a method that focused on the main characteristics of each
cell subpopulation in the tissues [7]. Previous studies have shown that scRNA-seq is able to completely
characterize cellular heterogeneity, identify known or unknown cell types, reveal cell subpopulations, and
putative intercellular communication patterns [2,3,8].
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In the present study, we employed scRNA-seq technology to explore intratumoral heterogeneity of HCC. We iden-
tified 5753 cells and 16 clusters in HCC including six cancer subclusters from one HCC patient. We found a prolifer-
ating tumor cluster which was associated with a worse prognosis. Furthermore, we identified a gene signature related
to the proliferation in this tumor cluster, which was able to classify HCC into two groups with distinct prognosis in
both TCGA and ICGC database cohorts.

Methods
Sample acquisition
Tumor tissue was collected at the time of surgical resection from a patient with HCC. The study was approved by the
Ethics Committee of the First Affiliated Hospital of Zhengzhou University (2018-KY-83). Written informed consent
was obtained from the enrolled patient.

Preparation of single-cell suspensions
The fresh sample was rinsed with PBS and enzymatically dissociated using a tumor dissociation kit, the cell suspen-
sions were filtered using a 70-μm filter and then centrifuged at 500 rpm for 6 min at 4◦C. To prepare single-cell
suspensions, pellets were washed twice and suspended in PBS with 0.5% bovine serum albumin (BSA, Sigma).

Library preparation and sequencing
Single-cell transcriptomic amplification and library preparation were performed according to standard protocol of
single-cell 3′ v2 or v3 (10x Genomics). The libraries were then pooled and sequenced on Illumina NovaSeq 6000
system following the manufacturer’s instructions.

scRNA-seq data processing
Raw base call (BCL) files were demultiplexed and converted into FASTQ files, which were subsequently used to gen-
erate raw gene expression matrices using Cell Ranger Pipeline, with GRCh38 as a reference. Seurat R package (version
3.2.3) [9] was used to process raw gene expression matrices. Low quality cells (<200 genes/cell and >50% mitochon-
drial genes) were excluded. Data were log-normalized for subsequent analysis. The Seurat function ‘FindVariable-
Features’ was applied to identify the top 2000 highly variable genes (HVGs). The data were scaled using ‘ScaleData’
function and principal component analysis (PCA) and uniform manifold approximation and projection (UMAP)
were carried out to analyze the scRNA-seq data. The ‘FindAllMarkers’ function was applied to find marker genes for
each cell cluster (Supplementary Table S1). ‘DoubletFinder’ (version 2.0.3) [10] was employed to identify doublets
in the data (Supplementary Figure S4). Clusters were annotated to known cell types according to canonical marker
genes.

Validation dataset
scRNA-seq data of GSE125449 were downloaded from the NCBI-GEO (https://www.ncbi.nlm.nih.gov/geo/). The
validation set was based on 10x Genomics platform, which included 19 liver cancer tissues [11].

Copy number variation analysis
InferCNV was used to perform copy number variation (CNV) analysis base on the normalized scRNA-seq gene
expression matrices as previously described [12]. The endothelial cells and fibroblasts were designated as reference
cells and background for analysis.

Gene set variation analysis
The hallmark gene sets were downloaded from the Molecular Signature Database. The pathway activity for each cell
was scored with gene set variation analysis (GSVA) methods as described previously [13].

TCGA-LIHC and ICGC (LIRI-JP) data analysis
The 368 HCC mRNA expression data and clinical information from TCGA LIHC dataset, were downloaded from
UCSC Xena (http://xena.ucsc.edu/) database. mRNA expression data and clinical information of another 240 HCC
samples were obtained from the ICGC portal (https://dcc.icgc.org/projects/LIRI-JP). To evaluate the correlation be-
tween the expression of hepatocytes subcluster-specific marker genes and patient outcome, the marker genes (Supple-
menntary Table S2) were identified for each cluster of hepatocytes using the ‘FindAllMarkers’ function in the Seurat
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package. HCC patients were further divided into ‘low expression’ and ‘high expression’ groups according to the aver-
age expression of hepatocytes subcluster-specific marker genes. The statistical analysis was performed by the ‘survival’
R package, and the ‘survfit’ function was used to create survival curves. The differences in survival curves were tested
by ‘survdiff ’ function.

Cell–cell communication analysis
To investigate cell–cell interactions in HCC, the ‘CellChat’ R package was applied with default parameters [14].

Weighted gene co-expression network construction
The genes, as selected as noise robust by OGFSC using default parameters [15], were picked for WGCNA. The
WGCNA R package was applied to construct a gene co-expression network [16]. The topological overlap matrix
(TOM) was constructed with softpower and was set to 9. Five gene modules were identified. The genes in the brown
module were defined as proliferation-related gene signature for gene ontology (GO) analysis [17].

Molecular subtype identification
An NMF clustering algorithm [18] was used to cluster the TCGA-LIHC cohort and ICGC cohort according to the
expression of the proliferation-related gene signature. The cophenetic, dispersion and silhouette indicators were used
to determine the optimal clustering number. The number of groups k was chosen as 2.

Statistical analysis
The data were evaluated by statistical analysis with R (version 4.0.2) software.

Results
Cell typing of HCC
To explore the cellular diversity and microenvironment composition in HCC, we generated single-cell RNA-seq from
an HCC tumor tissue. After quality control, we identified total 5753 cells from HCC. As shown in Figure 1A,B, we
identified 16 cell clusters corresponding to eight cell types, including hepatocytes/cancer cells (Cluster 0,1,8; ALB,
ARG1, GPC3, KRT8), macrophages (Clusters 2,3,6,14; CD68, AIF1), T cells (Cluster 4, 5 and 7; CD3D, CD3E, CD3G),
NK cells (Clusters 10; FGFBP2 and KLRF1), fibroblasts (Clusters 11; COL1A2, ACTA2), endothelial cells (Clusters
9; CDH5, PECAM1), neutrophils (clusters 15; FCGR3B, CXCR2) and B cells (Cluster 12 and 13; CD79A) (Supple-
mentary Figure S1). To explore large-scale chromosomal aberrations in hepatocytes, we conducted CNV analyses.
Our results showed that compared with reference cells (endothelial cells, fibroblasts), DNA insertions in hepatocytes
mainly occurred in chromosomes 1, 2, 3, 6, 7, and 20, while deletions were present in chromosomes 1, 4, 5, 12, 14, 15
and 19 (Supplementary Figure S2).

Single-cell transcriptomics reveal intratumoral heterogeneity in
hepatocytes
To reveal tumor heterogeneity in HCC, we performed the subcluster analysis for hepatocytes. A total of 2334 hepato-
cytes were analyzed, which were clustered into six subclusters (Figure 2A). Because cluster 6 consisted mainly of lower
quality cells, it was discarded for further analyses. Our results found that proliferative genes, such as MKI67, TOP2A,
CENPF, were enriched in hepatocytes C4 (Figure 2C,D). In addition, GSVA showed that proliferation biological path-
ways, such as mitosis, G2/M checkpoint, and E2F targets, were enriched in hepatocytes C4 (Figure 2B). We found that
genes for hepatocytes C5 were related to notch signaling, protein secretion, and TGF-β signaling. Genes for hepato-
cytes C2 were mainly enriched in pancreas β-cells and wnt/β-catenin signaling. Functions of genes specific for hep-
atocytes C0 and C1 were mainly related to kras signaling, complement, angiogenesis, and epithelial–mesenchymal
transition. Specifically, genes for hepatocytes C3 were enriched in peroxisome. In validation dataset, we identified
seven cell types, which included hepatocytes, macrophages, T cells, fibroblasts, endothelial cells, epithelial cells and
B cells. We performed the subcluster analysis for hepatocytes in validation dataset. We also found a cluster of hepato-
cytes exhibited high proliferation activity, consistent with the above results (Supplementary Figure S3). In conclusion,
these data reflected the intratumoral heterogeneity of HCC. We found that hepatocytes C4 exhibited high prolifera-
tion activity, so this cluster cells were considered as malignant proliferating cells.
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Figure 1. Identification of cell types with single-cell transcriptomics analysis in HCC sample

(A) UMAP visualization in all the cells displayed with different colors for clusters. (B) Eight major cell types in HCC. (C) Marker genes

of eight major cell types identified in the present study. (D) A bar plot showing the cell number of identified cell types in HCC.

Prognostic role of hepatocytes subclusters in TCGA LIHC cohort and
ICGC cohort
We investigated the clinical value of the hepatocytes subclusters detected in our present study. In TCGA cohort,
hepatocytes C0, C1, and C5 were not associated with the survival outcome of HCC patients (Figure 3A,B,F). The
hepatocytes C3 and C2 were associated with a favorable survival outcome (Figure 3C,D). In contrast, hepatocytes C4
had a worse prognosis (Figure 3E). We also explore the clinical value of the hepatocytes subclusters in ICGC cohort.
We found that hepatocytes C0, C2, C3, and C5 were not associated with the survival outcome of HCC patients (Figure
4A,C,D,F). The hepatocytes C1 were associated with a worse survival outcome (Figure 4B). Notably, hepatocytes C4
had a worse prognosis (Figure 4E), consistent with the results in TCGA cohort. In both TCGA and ICGC database
cohorts, hepatocytes C4 were associated with a worse prognosis, which may be due to high proliferation activity.

Cell–cell interactions between hepatocytes C4 and other cell types in
HCC
To systematically examine the interactions between hepatocytes C4 and other cell types in HCC, we used ‘CellChat’
to conduct a cell–cell communication network (Figure 5). This tool is able to analyze the intercellular communication
networks from scRNA-seq data. VEGFA–VEGFR2/VEGFR1/VEGFR1R2 interactions were highly expressed between
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Figure 2. Heterogeneity of hepatocytes in HCC

(A) UMAP plot showing seven subclusters of the hepatocytes. Note that cluster 6 consisted mainly of lower quality cells and

was discarded for further analyses. (B) Pathway activities were scored in hepatocytes subclusters using GSVA. (C) Violin plots

showing the expression of representative proliferation marker genes across the hepatocytes subclusters. (D) Expression levels of

representative proliferation marker genes in each subcluster were plotted on to the UMAP map.

hepatocytes C4 and endothelial cells (Figure 5D), which suggested that hepatocytes C4 may play a crucial role in HCC
angiogenesis. In addition, CD74–MIF interaction was highly expressed between hepatocytes C4 and macrophages/B
cells/T cells in HCC (Figure 5D). CD74 has been reported to promote tumor cell growth through interaction with
MIF [19]. These results suggest that CD74–MIF interaction may play an important role in the development of HCC
and might serve as an effective target for HCC treatment.

Chemokines play a critical role in orchestrating the recruitment and positioning of myeloid cells within the tu-
mor microenvironment [20]. We found that CCR1–CCL15/CCL16 interactions were highly expressed between hep-
atocytes C4 and macrophages (Figure 5D). CXCL12–CXCR4 interaction was highly expressed not only between
hepatocytes C4 and macrophages, but also in B cells/neutrophils/T cells (Figure 5D). C3-C3AR1/ITGB2 interac-
tions were highly expressed between hepatocytes C4 and macrophages (Figure 5D). INHBB-related interactions
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Figure 3. Prognostic role of hepatocytes subclusters identified by scRNA-seq in TCGA LIHC cohort

(A) Survival curves for patients with HCC, stratified for the average expression of specific marker genes in hepatocytes C0. (B)

Survival curves for patients with HCC, stratified for the average expression of specific marker genes in hepatocytes C1. (C) Survival

curves for patients with HCC, stratified for the average expression of specific marker genes in hepatocytes C2. (D) Survival curves

for patients with HCC, stratified for the average expression of specific marker genes in hepatocytes C3. (E) Survival curves for

patients with HCC, stratified for the average expression of specific marker genes in hepatocytes C4. (F) Survival curves for patients

with HCC, stratified for the average expression of specific marker genes in hepatocytes C5.

(INHBB-ACVR1B/ACVR1C/ACVR2A/ACVR2B) were highly expressed between hepatocytes C4 and endothelial
cells (Figure 5C).

A proliferating gene signature in hepatocytes C4 identified by WGCNA
Next, we applied WGCNA to identify the modules composed of a group of highly correlated genes. The genes in
modules could represent the biological functions of hepatocyte subclusters. WGCNA identified five gene modules
(Figure 6A). Notably, we found that the brown module was most correlated with hepatocytes C4 (Figure 6B). The
genes in the brown module were defined as proliferation-related gene signature because hepatocytes C4 showed high
proliferation activity. Next, we wanted to know whether the genes in brown module were significantly enriched in key
gene ontologies. We then performed GO analysis for genes in the brown module to explore the biological functions
(Figure 6C). The results showed that genes were enriched for cell cycle-related processes, such as DNA replication,
cell cycle checkpoint, and G1/S transition of mitotic cell cycle. Finally, we exported the genes in brown module to
visualize the gene network (Figure 6D).

The proliferating gene signature discriminated HCC into two distinct
subgroups
Using the proliferation-related gene signature, we identified two distinct subtypes (group 1: n=178 and group
2: n=–190) in TCGA cohort by NMF analysis (Figure 7A,B). The heatmap showed the expression patterns of
proliferation-related gene signature genes between two groups (Figure 7C). We further explored the prognosis of
two groups. The results showed that group 1 had a better prognosis than group 2 (Figure 7D). We also identified two
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Figure 4. Prognostic role of hepatocytes subclusters identified by scRNA-seq in ICGC (LIRI-JP) cohort

(A) Survival curves for patients with HCC, stratified for the average expression of specific marker genes in hepatocytes C0. (B)

Survival curves for patients with HCC, stratified for the average expression of specific marker genes in hepatocytes C1. (C) Survival

curves for patients with HCC, stratified for the average expression of specific marker genes in hepatocytes C2. (D) Survival curves

for patients with HCC, stratified for the average expression of specific marker genes in hepatocytes C3. (E) Survival curves for

patients with HCC, stratified for the average expression of specific marker genes in hepatocytes C4. (F) Survival curves for patients

with HCC, stratified for the average expression of specific marker genes in hepatocytes C5.

distinct subtypes (group 1: n=146 and group 2: n=94) in ICGC cohort by NMF analysis (Figure 8A,B). The heatmap
showed the same expression patterns of proliferation-related gene signature genes between two groups as in TCGA
cohort (Figure 8C). In survival analysis, the results showed that group 1 had a better prognosis than group 2 (Figure
8D), suggesting that classification based on the gene expression profiles of proliferation-related genes could be used
to predict HCC prognosis.

Discussion
Heterogeneity is a typical feature of tumors, which leads to ineffective treatment. It is widely believed that HCC tu-
mors exhibit high heterogeneity, leading to different responses to the same treatment among patients. However, little
is known about tumor cell heterogeneity of HCC. Hence, we should pay more attention to exploring the intratumoral
heterogeneity in HCC. In the present study, we explored intratumoral heterogeneity of HCC via scRNA-seq. Strik-
ingly, we found that hepatocytes C4 exhibited high proliferation activity and this cluster was associated with a poor
prognosis. In addition, we systematically examined the interactions between hepatocytes C4 and other cell types in
HCC, and found that several interactions, such as INHBB related interactions, C3-C3AR1/ITGB2 interactions, may
play an important role in the tumorigenesis of HCC.

We also employed WGCNA and identified five gene modules. We found that the brown module was most correlated
with hepatocytes C4. The genes in the brown module were defined as the proliferation-related gene signature. Finally,
the NMF algorithm was performed to classify HCC into two groups in both TCGA and ICGC cohorts according to
the expression patterns of the proliferation-related gene signature. The survival analysis showed that patients in group
1 had a better prognosis than patients in group 2 in both TCGA and ICGC database cohorts. These results improve
our understanding of intratumoral heterogeneity in HCC and help identify novel targets for HCC therapy.
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Figure 5. Cell–cell interactions in HCC

(A) Circle plot showing the intercellular communication between major cell types in HCC. (B) Circle plot showing

the interaction strength between major cell types in HCC. (C) The ligand–receptor pairs between B cells/endothelial

cells/fibroblasts/macrophages/neutrophils/NK cells/T cells and hepatocytes C4. (D) The ligand–receptor pairs between hepato-

cytes C4 and B cells/endothelial cells/fibroblasts/macrophages/neutrophils/NK cells/T cells.

Previous studies have suggested that some cancers contain a small population of cells with high proliferation capac-
ity, which are considered to be related to tumor recurrence, metastasis, and chemoresistance [21]. Through scRNA-seq
analysis, we identified a cluster of proliferative tumor cells (hepatocytes C4), which had significant levels of KI67,
TOP2A, and CENPF. In validation dataset, we found a cluster of hepatocytes with high proliferation activity in HCC,
consistent with the above results. KI67 is a well-known proliferation marker for the evaluation of cell proliferation
[22]. KI67 expression in HCC is associated with the grade of differentiation and could be used as a prognostic indica-
tor of HCC [23]. TOP2A has been reported to be up-regulated in HCC and could be used as a biological indicator to
predict HCC prognosis [24]. CENPF associates with the centromere–kinetochore complex and influences cell pro-
liferation and metastasis in HCC [25]. In addition, GSVA results showed that proliferation biological pathways, such
as mitosis, G2/M checkpoint, and E2F targets, were enriched in hepatocytes C4. Notably, we found that hepatocytes
C4 was associated with a worse prognosis in both TCGA and ICGC database cohorts. These results provide clues
for targeting and eradicating proliferative tumor cells in HCC. In addition, our data demonstrate the feasibility of
scRNA-seq in detecting rare cell subtypes in HCC.
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Figure 6. Identification of modules associated with hepatocytes C4

(A) Hierarchical cluster tree showing co-expression modules identified by WGCNA. (B) Correlation of gene modules with hepato-

cytes subclusters. Content in each cell represents the correlation value (first row) and the P-value (second row). (C) Top 20 enriched

GO terms based on genes within the brown module. (D) The genes in brown module.

Cross-talk between tumor and stromal/immune cells plays a key role in the modulation of tumor microenviron-
ment, and immunotherapy is a promising approach for malignant tumors [26–28]. Therefore, we used the R package
‘CellChat’ to explore the cell–cell interactions between hepatocytes C4 and other cell types in HCC. CXCL12–CXCR4
axis plays a critical role in tumor cell survival, metastasis, and immune cell migration. Binding of CXCL12 to CXCR4
on tumor cells can inhibit the apoptosis of tumor cells and promote the epithelial-to-mesenchymal transition [29].
CXCL12 secreted by hepatocytes C4 interacts with CXCR4, which is expressed in B cells/macrophages/neutrophils/T
cells. These results suggest that CXCL12 can influence the recruitment of immune cells. INHBB-related interactions
(INHBB-ACVR1B/ACVR1C/ACVR2A/ACVR2B) were highly expressed between hepatocytes C4 and endothelial
cells, and may play a crucial role in the angiogenesis of HCC. Indeed, INHBB has been reported to be associated with
HCC metastasis [30]. However, the function and mechanism of INHBB-related interactions between hepatocytes
and endothelial cells in HCC need further studies. C3 produced by hepatocytes C4 interacts with C3AR1/ITGB2,
which is expressed in macrophages. In a clear-cell renal cell carcinoma murine model, C3 has been proven to be as-
sociated with tumor-associated macrophages (TAMs) infiltration and tumor growth [31]. Our results suggest that
C3-C3AR1/ITGB2 interactions could serve as a promising therapeutic target to improve the efficacy of therapies,
including immunotherapies for HCC by favorably modulating TAM function.

To further explore the potential roles of hepatocytes C4 in HCC, WGCNA was used to identify a
proliferation-related gene signature and five modules were generated. we found that the brown module was most
correlated with hepatocytes C4. The genes in the brown module were defined as the proliferation-related gene sig-
nature. Molecular phenotype identification can be used to optimize diagnosis and treatment strategies and promote
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Figure 7. TCGA LIHC data analyses based on the proliferation-related gene signature

(A) The relationship among cophenetic, dispersion, evar, residuals, rss, silhouette and sparseness coefficients with respect to

number of clusters. (B) Consensus map of NMF clustering. (C) Heatmap showing the proliferation-related gene signature genes

between the two groups. (D) Kaplan–Meier survival analysis of tumor samples grouped in (C).

the development of precision medicine. Therefore, the proliferation-related gene signature identified by WGCNA
may be explored as new molecular targets for HCC. Zhang et al. classified HCC into four independent subtypes
according to hypoxia-related genes [32]. In addition, Chen et al. classified HCC into three subclasses according to
metabolism-related genes [33]. These subtypes encompass HCC heterogeneity and provide useful clinical informa-
tion. In the present study, we profiled the expression of proliferation-related gene signature in HCC patients and
identified two groups associated with differences in survival in both TCGA and ICGC database cohorts, suggesting
that classification based on the gene expression profiles of proliferation-related genes could be used to predict the
survival of HCC patients.

We acknowledge a limitation of the present study that our results are based on bioinformatics analysis, which
should be validated by functional studies. In conclusion, our results help elucidate the intratumoral heterogeneity in
HCC and develop novel treatment strategies for HCC.
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Figure 8. ICGC (LIRI-JP) data analyses based on the proliferation-related gene signature

(A) The relationship among cophenetic, dispersion, evar, residuals, rss, silhouette and sparseness coefficients with respect to

number of clusters. (B) Consensus map of NMF clustering. (C) Heatmap showing the proliferation-related gene signature genes

between the two groups. (D) Kaplan–Meier survival analysis of tumor samples grouped in (C).

Data Availability
All data are available from the corresponding authors upon reasonable request.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
This work was supported by the National Natural Science Foundation of China [grant number 81902336]; the Medical Science and
Technology Project of Henan Province [grant number SBGJ2018021]; and The Key Project of Medical Science and Technology of
Henan Province [grant number SB201902019].

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

11



Bioscience Reports (2022) 42 BSR20212560
https://doi.org/10.1042/BSR20212560

CRediT Author Contribution
Jialu Liang: Data curation, Visualization, Writing—original draft. Wenhui Chen: Visualization, Writing—original draft. Jianwen
Ye: Visualization. Chen Ni: Funding acquisition, Writing—review & editing. Wenlong Zhai: Funding acquisition, Visualization,
Writing—review & editing.

Ethics Approval
The present study was approved by Ethics Committee of the First Affiliated Hospital of Zhengzhou University (2018-KY-83).

Abbreviations
BCL , raw base call; CNV, copy number variation; GO , gene ontology; GSVA , gene set variation analysis; HBV, hepatitis
B virus; HCC , hepatocellular carcinoma; HCV , hepatitis C virus; HVGs, highly variable genes; ICGC , International Cancer
Genome Consortium; MIF , macrophage migration inhibitory factor; NK cells , natural killer cells; OGFSC , optimal gene filter-
ing for single-cell data; PCA, principal component analysis; PLC , primary liver cancer; RNA-seq , RNA sequencing; scRNA-seq,
single-cell RNA sequencing; TAM, tumor-associated macrophage; TCGA , The Cancer Genome Atlas; TOM , topological over-
lap matrix; UMAP , uniform manifold approximation and projection; WGCNA, weighted correlation network analysis.

References
1 Sung, H., Ferlay, J., Siegel, R.L. et al. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers

in 185 countries. CA Cancer J. Clin. 71, 209–249, https://doi.org/10.3322/caac.21660
2 Zheng, C., Zheng, L., Yoo, J.K. et al. (2017) Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356,

e16., https://doi.org/10.1016/j.cell.2017.05.035
3 Wang, Z., He, Y.X., Song, Y.W., Wang, Y. and Chen, F. (2021) MicroRNA in HCC: biomarkers and therapeutic targets. Oncologie 23, 177–184,

https://doi.org/10.32604/Oncologie.2021.014773
4 Oshlack, A., Robinson, M.D. and Young, M.D. (2010) From RNA-seq reads to differential expression results. Genome Biol. 11, 220,

https://doi.org/10.1186/gb-2010-11-12-220
5 Hinshaw, D.C. and Shevde, L.A. (2019) The tumor microenvironment innately modulates cancer progression. Cancer Res. 79, 4557–4566,

https://doi.org/10.1158/0008-5472.CAN-18-3962
6 Zhang, Y., Wang, D., Peng, M. et al. (2021) Single-cell RNA sequencing in cancer research. J. Exp. Clin. Cancer Res. 40, 81,

https://doi.org/10.1186/s13046-021-01874-1
7 Li, L., Xiong, F., Wang, Y. et al. (2021) What are the applications of single-cell RNA sequencing in cancer research: a systematic review. J. Exp. Clin.

Cancer Res. 40, 163, https://doi.org/10.1186/s13046-021-01955-1
8 Hou, X., Tang, D., Zheng, F., Ou, M., Xu, Y., Xu, H. et al. (2020) Expression profiling of immune cells in systemic lupus erythematosus by single-cell RNA

sequencing. Biocell 44, 559–582, https://doi.org/10.32604/biocell.2020.011022
9 Butler, A., Hoffman, P., Smibert, P. et al. (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat.

Biotechnol. 36, 411–420, https://doi.org/10.1038/nbt.4096
10 McGinnis, C.S., Murrow, L.M. and Gartner, Z.J. (2019) DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest

neighbors. Cell Syst. 8, 329.e4–37.e4, https://doi.org/10.1016/j.cels.2019.03.003
11 Ma, L., Hernandez, M.O., Zhao, Y. et al. (2019) Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer. Cancer Cell 36,

418.e6–30.e6, https://doi.org/10.1016/j.ccell.2019.08.007
12 Patel, A.P., Tirosh, I., Trombetta, J.J. et al. (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344,

1396–1401, https://doi.org/10.1126/science.1254257
13 Lambrechts, D., Wauters, E., Boeckx, B. et al. (2018) Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24,

1277–1289, https://doi.org/10.1038/s41591-018-0096-5
14 Jin, S., Guerrero-Juarez, C.F., Zhang, L. et al. (2021) Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088,

https://doi.org/10.1038/s41467-021-21246-9
15 Hao, J., Cao, W., Huang, J. et al. (2019) Optimal gene filtering for single-cell data (OGFSC)-a gene filtering algorithm for single-cell RNA-seq data.

Bioinformatics 35, 2602–2609, https://doi.org/10.1093/bioinformatics/bty1016
16 Langfelder, P. and Horvath, S. (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559,

https://doi.org/10.1186/1471-2105-9-559
17 Shen, H., Ren, S., Wang, W., Zhang, C., Hao, H., Shen, Q. et al. (2020) Profiles of immune status and related pathways in sepsis: evidence based on

GEO and bioinformatics. Biocell 44, 583–589, https://doi.org/10.32604/biocell.2020.011345
18 Gaujoux, R. and Seoighe, C. (2010) A flexible R package for nonnegative matrix factorization. BMC Bioinformatics 11, 367,

https://doi.org/10.1186/1471-2105-11-367
19 Tanese, K., Hashimoto, Y., Berkova, Z. et al. (2015) Cell surface CD74-MIF interactions drive melanoma survival in response to interferon-γ. J. Invest.

Dermatol. 135, 2775–2784, https://doi.org/10.1038/jid.2015.204
20 Liu, L.Z., Zhang, Z., Zheng, B.H. et al. (2019) CCL15 recruits suppressive monocytes to facilitate immune escape and disease progression in

hepatocellular carcinoma. Hepatology 69, 143–159, https://doi.org/10.1002/hep.30134

12 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.cell.2017.05.035
https://doi.org/10.32604/Oncologie.2021.014773
https://doi.org/10.1186/gb-2010-11-12-220
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://doi.org/10.1186/s13046-021-01874-1
https://doi.org/10.1186/s13046-021-01955-1
https://doi.org/10.32604/biocell.2020.011022
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.1016/j.ccell.2019.08.007
https://doi.org/10.1126/science.1254257
https://doi.org/10.1038/s41591-018-0096-5
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1093/bioinformatics/bty1016
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.32604/biocell.2020.011345
https://doi.org/10.1186/1471-2105-11-367
https://doi.org/10.1038/jid.2015.204
https://doi.org/10.1002/hep.30134


Bioscience Reports (2022) 42 BSR20212560
https://doi.org/10.1042/BSR20212560

21 Clarke, M.F. (2019) Clinical and therapeutic implications of cancer stem cells. N. Engl. J. Med. 380, 2237–2245,
https://doi.org/10.1056/NEJMra1804280

22 Menon, S.S., Guruvayoorappan, C., Sakthivel, K.M. et al. (2019) Ki-67 protein as a tumour proliferation marker. Clin. Chim. Acta 491, 39–45,
https://doi.org/10.1016/j.cca.2019.01.011

23 Zhang, X., Wu, Z., Peng, Y. et al. (2021) Correlationship between Ki67, VEGF, and p53 and hepatocellular carcinoma recurrence in liver transplant
patients. Biomed Res. Int. 2021, 6651397, https://doi.org/10.1155/2021/6651397

24 Panvichian, R., Tantiwetrueangdet, A., Angkathunyakul, N. et al. (2015) TOP2A amplification and overexpression in hepatocellular carcinoma tissues.
Biomed Res. Int. 2015, 381602, https://doi.org/10.1155/2015/381602

25 Huang, Y., Chen, X., Wang, L. et al. (2021) Centromere Protein F (CENPF) serves as a potential prognostic biomarker and target for human
hepatocellular carcinoma. J. Cancer 12, 2933–2951, https://doi.org/10.7150/jca.52187

26 Lu, P., Hill, H.A., Navsaria, L.J. and Wang, M.L. (2021) CAR-T and other adoptive cell therapies for B cell malignancies. J. Natl. Cancer Center 1, 88–96,
https://doi.org/10.1016/j.jncc.2021.07.001

27 Poureau, P. and Metges, J. (2021) Fundamentals of digestive cancers immunology, especially gastric and hepatocellular carcinomas. Oncologie 23,
47–59, https://doi.org/10.32604/Oncologie.2021.15525

28 Bai, X., Ni, J., Beretov, J., Graham, P. and Li, Y. (2021) Immunotherapy for triple-negative breast cancer: A molecular insight into the microenvironment,
treatment, and resistance. J. Natl. Cancer Center 1, 75–87, https://doi.org/10.1016/j.jncc.2021.06.001

29 Shi, Y., Riese, II, D.J. and Shen, J. (2020) The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Front. Pharmacol. 11, 574667,
https://doi.org/10.3389/fphar.2020.574667

30 Chen, Y., Qian, B., Sun, X. et al. (2021) Sox9/INHBB axis-mediated crosstalk between the hepatoma and hepatic stellate cells promotes the metastasis
of hepatocellular carcinoma. Cancer Lett. 499, 243–254, https://doi.org/10.1016/j.canlet.2020.11.025
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