
INTRODUCTION

Between one third and three fourths of maintenance hemo-
dialysis patients show signs, symptoms, or laboratory evi-
dence of malnutrition (1-5). There is a strong relationship
between the extent of malnutrition and mortality. Specifi-
cally, low serum albumin levels appear to be independently
associated with an increased risk of death in patients treated
with hemodialysis (6). Several factors have been identified
which may contribute to this problem. Among these are ano-
rexia and decreased nutrient intake (7, 8), hormonal derange-
ments, such as insulin resistance, increased glucagon sensi-
tivity and excess parathyroid hormone levels (9-11), intake
of multiple medications (12), metabolic acidosis (13, 14) and
frequent hospitalization (15). Dialysis-related factors may
also have an important impact on malnutrition (16, 17). There
is a considerable amount of amino acid and/or protein loss
during renal replacement therapy, and the amount of amino
acid loss varies depending on the type of dialysis. The aver-
age loss of free amino acids in the dialysis fluid has been report-
ed to be 5-8 g/dialysis during hemodialysis and 1.2-3.4 g/
24 hr during CAPD (18-20). Losses of amino acid during
hemodialysis may also contribute to malnutrition. An incre-
ased dose of dialysis and the use of biocompatible membranes

have also been used to enhance nutritional status in hemodial-
ysis patients. However, several randomized and nonrandom-
ized clinical trials have shown conflicting results regarding
the impact of the study intervention on nutritional parame-
ters (21-23). The high flux membrane (HF) in the HEMO
study did not prevent deterioration in nutritional status over
time (24). Although amino acid losses during dialysis have
been reported previously, these studies have been performed
using conventional cellulose membranes. One study revealed
that the high flux membrane resulted in significantly more
amino acid loss into the dialysate when compared to the low
flux membrane (LF) (20). However, when adjusted for sur-
face area and blood flow, amino acid losses were not different.
Although both surface area and blood flow influence amino
acid losses to dialysate, the two membranes in this study were
composed of different membrane material. There is no pre-
vious report comparing the difference between HF and LF
composed of the same synthetic membrane material.

In this study, we measured the impact of two different
hemodialysis membranes with the same synthetic mem-
brane material on plasma amino acid concentrations, and
simultaneously measured the amino acid losses into the dia-
lysate.
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The Effect of Dialysis Membrane Flux on Amino Acid Loss in
Hemodialysis Patients

We examined whether high flux membranes (HF) may induce a greater loss of amino
acids compared to low flux membranes (LF). Ten hemodialysis patients participat-
ed in this study. Pre- and post-hemodialysis plasma amino acid profiles were mea-
sured by reverse-phase high pressure liquid chromatography for both HF and LF.
We measured the dialysate amino acid losses during hemodialysis. The reduction
difference for plasma total amino acid (TAA), essential amino acid (EAA), and branch
chained amino acid (BCAA) was not significantly different in comparisons between
the two membranes. (HF vs. LF; TAA 66.85±±30.56 vs. 53.78±±41.28, p=0.12;
EAA 14.79±±17.16 vs. 17.97±±28.69, p=0.12; BCAA 2.21±±6.08 vs. 4.16±±10.98
mg/L, p=0.13). For the HF, the reduction in plasma amino acid levels for TAA and
EAA were statistically significant. Although it was not statistically significant, the
dialysate losses of BCAA were greater than the reduction in plasma (plasma reduc-
tion vs. dialysate loss; HF 2.21±±6.08 vs. 6.58±±4.32, LF 4.16±±10.98 vs. 7.96±±
3.25 mg/L). HF with large pores and a sieving coefficient do not influence dialysate
amino acid losses. Hemodialysis itself may influence the dialysate amino acid loss-
es and may have an effect on protein metabolism. 
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MATERIALS AND METHODS

Patients

Ten patients participated in this study, which was conduct-
ed at the Soonchunhyang University Cheonan Hospital, Cheo-
nan, Korea. All of the patients who participated provided
informed consent. The study protocol was approved by the
Ethics Committee of Soonchunhyang University Cheonan
Hospital, Korea. All study patients were clinically stable on
chronic hemodialysis treatment for a minimum of 24 months.
We excluded patients who had cancer, active infection, pre-
vious cardiovascular disease, or unstable vital signs during
maintenance hemodialysis. The data were collected in August
2005. The mean age of the patients was 57.2±14.6 yr and
the mean time on hemodialysis was 75.3±42.9 months.
Three of the patients were non insulin-dependent diabetics.
The mean height of the ten patients was 164.9±7.6 cm,
and the body weight was 58.6±11.7 kg. The mean body
mass index was 21.5±3.3. Urea Kinetic modeling and pro-
tein catabolic rates (PCR) of the patients were calculated
every three months. The Kt/V and nPCR results of the ten
patients participating in the study were 1.52±0.22 and
0.92±0.24 g/kg/day, respectively. They had a mean serum
albumin level of 3.74±0.56 g/dL. The ten patients had
undergone LF dialysis and a sample was obtained, then they
underwent HF dialysis and a sample was obtained. All pa-
tients had a small meal approximately one hour prior to each
dialysis treatment, which was similar in composition. Pati-
ents were instructed to have a diet composed of a half bowl
of rice with cooked vegetables.

Membranes 

The characteristics of the membranes used in the study are
shown in Table 1. LF (Polyflux 6L, Gambro dialysatoren;
from Hechingen, Germany) and HF (Polyflux 14S, Gam-
bro dialysatoren; Hechingen, Germany) membranes were

composed of the same materials (PA polyamide; PAES pol-
yarylethersulfon; PVP polyvinylpyrrolidone). The two mem-
branes had the same surface area. However, the pore size dis-
tribution of the nanoporous polymeric membranes was dif-
ferent; these differences influence sieving capacity (25). 

Plasma amino acid

Plasma amino acid concentrations were measured before
and after dialysis performed using new dialyzers. The venous
needle was inserted pointing toward the heart more than 5
cm proximal to the arterial needle to prevent the recircula-
tion effect on plasma amino acid measure. Measured param-
eters included pre- and post-dialysis (15 min following ter-
mination of dialysis), blood samples from arterial blood lines
for amino acid (AA) profiles, and blood chemistries at each
dialysis session. Plasma samples were separated from blood
within 15 min of collection, and all specimens were stored
at temperatures -20℃ immediately, until specific assays were
performed. 

Dialysate amino acid

Dialysate amino acid losses were initially measured during
the first use of the two dialyzers. 

Blood flow and ultrafiltration volume were similar with
the two dialyzers in each patient (LF: blood flow 250 mL/
min, UF volume 2,700±220 mL, dialysate flow 500 mL/
min, HF: blood flow 300 mL/min, UF 2,770±180 mL, dia-
lysate flow 500 mL/min). Gambro AK 95S Hemodialysis
machines (Gambro dialysatoren; Hechingen, Germany) were
used. Dialysate fluid was collected 4 times per hour, at 100
mL each time, during hemodialysis. Dialysate amino acid
was calculated by the mean of four aliquots. The aliquots of
dialysate were stored at -20℃, until specific assays were per-
formed. 

Amino acid analysis

Blood chemistry (BUN, creatinine, glucose, sodium, potas-
sium, and HCO3

-) was performed using standard techniques
(76600-020, Hitachi, Japan). HCO3

- was performed using
blood gas analysis (Rapidlab 248, Bayer Health Care, U.S.A.).
Plasma and dialysate amino acid profiles were measured by
reverse-phase high pressure liquid chromatography (HPLC)
using a modified version of the methods of Bidlingmeyer et
al. (25), and Heinrikson and Meredith (26), in which amino
acids were derived from phenylisothiocyanate. The phenylth-
iocarbamoyl amino acids were then separated over a 65 min
gradient and detected at 254 nm. 

Statistics 

Repeated measure analysis of variance was used to assess
PA, polyamide; PAES, polyarylethersulfon; PVP, polyvinylpyrrolidone;
Qb, blood flow; Qd, dialysate flow.

Low flux membrane High flux membrane

Manufacturer Gambro polyflux 6 L Gambro polyflux 14 L
Membrane Polyamix Polyamix

(PAES, PVP, PA) (PAES, PVP, PA)
Surface area 1.4 m2 1.4 m2

Membrane thickness ( m) 50 50
Membrane inner diameter ( m) 215 215
Pore radius (nm) 3.1 5.7
Ultrafiltration coefficient 8.6 62

(mL/hr/mmHg)
Qb (mL/min) 250 300
Qd (mL/min) 500 500

Table 1. Characteristics of the hemodialyzer
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overall differences between the two types of membranes stud-
ied. Data were presented as mean±SD values. A probabili-
ty value of p<0.05 was considered statistically significant.
All statistical analyses were performed using SPSS for Win-
dows (version 12.0, Chicago, IL, U.S.A.). We used paired t-
tests to assess differences between membranes. 

RESULTS

Patients’ characteristics

The study included 6 male patients and 4 female patients.
All patients took ferrous sulfates, calcium acetate, vitamin
B12, and folic acid. Nine patients took antihypertensive drugs
(angiotensin receptor blocker 9; beta-blocker 6; calcium
channel blocker 5). Three diabetic patients took an oral hypo-
glycemic agent. All patients had native arteriovenous fistula.
All patients had less than 100 mL residual urine volume.

Pre-dialysis serum concentrations of BUN (45.98±9.08
mg/dL), creatinine (10.4±2.78 mg/dL), sodium (139.33±
3.57 mEq/L), potassium (4.91±0.67 mEq/L), and HCO3

-

(23.39±2.69 mEq/L) were not different in patients, regard-
less of the dialyzers used. High sensitive C-reactive protein
was 2.61±0.94 mg/L. 

Plasma amino acid profile

The concentration of individual amino acids as well as the
concentration of groups of amino acids (total, essential, and
branched chain) in plasma before and after dialysis for each
of the membranes is shown in Table 2. Pre-hemodialysis
plasma amino acid levels were not significantly different in
comparisons between the two dialysis membrane groups for
any individual amino acid except glutamate (9.69±5.27 vs.
15.52±6.52 mg/L).

For HF, the reduction in plasma amino acid levels for total
amino acids and essential amino acids were statistically sig-
nificant, although the reduction of branch chained amino
acids was not statistically significant. For LF, the reduction
in total plasma amino acid levels was statistically significant.
The difference in reduced levels of total amino acids (TAA),
essential amino acids (EAA), and branched chain amino acids
(BCAA) was not significant in comparisons between the two
membranes (Fig. 1). 

Dialysate amino acid losses

Amino acid losses in the dialysate for the two membranes
are shown in Table 3. TAA, EAA, and BCAA were not sig-
nificantly different in comparisons between the two mem-
branes. Alanine loss in the dialysate was greater in the low

High flux

Pre Post Pre-Post

Low flux

Pre Post Pre-Post

Cysteine 12.5±11.9* 4.7±2.7 8.0±1.2 12.2±7.7* 6.4±5.4 5.8±5.4
Aspartate 7.0±3.0* 3.0±1.8 4.1±2 8.4±4.5* 4.5±5.5 3.9±3.0
Glutamate 9.7±5.3* 7.2±3.8 2.5±3.0 15.5±6.5 12.8±4.0 2.8±5.8
Asparagine 7.4±0.9* 5.4±1.9 2.0±1.8 7.6±2.5* 5.6±1.2 2.0±2.3
Serine 11.9±4.9* 9.3±3.8 2.6±2.8 14.9±3.6* 12.2±2.4 2.7±3.6
Glutamine 44.0±18.1* 35.7±15.5 8.2±7.6 39.0±12.5* 30.0±5.3 8.9±12.2
Glycine 14.1±5.8* 10.7±4.5 3.4±2.4 16.0±6.1 13.5±3.5 2.6±4.6
Histidine 10.6±3.4* 6.9±1.8 3.7±2.8 13.1±4.9* 8.6±2.8 4.5±4.3
Arginine 14.0±9.8* 7.6±4.5 6.4±7 20.8±9.3* 12.2±7.0 7.6±8.1
Threonine *9.7±2.0* 7.1±1.9 2.6±1.4 11.5±4.5* 8.1±2.6 3.4±2.7
Alanine 18.8±5.3* 13.6±4.1 5.3±5.1� 23.4±7.5* 17.6±4.1 5.9±6.9
Proline 20.1±7.6 17.7±5.8 2.4±6.7 23.1±8.8* 18.6±6.5 4.5±4.7
Tyrosine 10.3±3.8 8.4±3.2 1.9±2.7 11.7±5.0 13.9±17.8 -2.3±19.3
Valine 9.5±3 8.1±3.0 1.5±3.3 13.1±4.0 10.4±3.1 2.6±4.4
Methionine 3.4±2.1 2.7±0.6 0.7±1.7 4.0±1.0* 3.00±0.5 1.0±1.1
Cystine 5.1±3.2* 1.7±1.3 3.5±3.2 4.2±2.6* 1.7±0.8 2.5±2.4
Isoleucine 7.0±3.2 5.6±2.3 1.4±1.9 8.8±4.3 6.5±2.9 2.3±3.6
Leucine 5.8±2.7* 6.2±1.8 -0.4±1.8 7.5±2.8 7.8±2.4 -0.4±3.1
Phenylalanine 6.3±1.9* 5.3±1.0 1.1±1.6 7.7±4.0 6.9±1.6 0.8±3.6
Tryptophan 1.9±1.7 1.6±1.5 0.3±0.7 1.3±0.5 1.1±0.3 0.2±0.5
Lysine 6.7±3.8 6.2±2.0 0.6±2.8 9.4±4.5 8.8±3.1 0.7±5.1
TAA 235±31.3* 174.3±31.4 66.9±30.6 273.0±56.3* 211.2±32.7 53.8±41.3
EAA 64.2±20.2* 49.9±10.7 14.8±17.2 83.9±27.8 65.8±15.7 18.0±28.7
BAA 22.3±8.3 19.9±6.5 2.2±6.1 29.3±10.0 24.7±7.9 4.2±11.0

Table 2. Comparison of amino acid concentrations in plasma for high flux and low flux membranes (Mean±SD, mg/L)

*p<0.05 compared with post plasma amino acid concentration; �p<0.05 compared with the reduction of amino acid in low flux membrane.
TAA, total amino acid; EAA, essential amino acid; BAA, branch chained amino acid.
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flux membrane than in the high flux membrane.
The reduction in some plasma amino acids (aspartate, cys-

tine) was greater than dialysate losses in the high flux mem-
brane, but the reduction of proline and leucine was less. The
reduction in some plasma amino acids (cysteine, aspartate,
cystine) was greater than dialysate losses for the LF, but the

reduction of leucine was less. Although it was not statisti-
cally significant, the dialysate losses of BCAA were greater
than the reduced amount of BCAA in plasma (Fig. 1).

DISCUSSION

Multiple factors may contribute to the abnormal amino
acid profile seen in chronic renal failure. Many patients expe-
rience anorexia, nausea, and vomiting caused by illness, ina-
dequate dialysis or medication, and a moderate amount of
amino acids are lost during each hemodialysis (18-20). In
addition, altered lipid metabolism, metabolic acidosis, dec-
reased muscle mass, and insulin resistance may also be closely
related to the mechanism causing plasma amino acid abnor-
malities in end stage renal disease (27-30).

Hemodialysis, with certain types of membranes, has been
shown to increase protein catabolism. It has been observed
that the breakdown of skeletal muscle protein occurs during
sham dialysis with bioincompatible cellulosic membranes in
healthy subjects (31). However, in our study, biocompatible
membranes were used. These membranes have a minimal
effect on complement activation, which induces the break-
down of skeletal muscle protein. 

HF had a larger pore size and a middle molecule sieving
coefficient (32). Although the dose and flux intervention may
subtly influence certain nutritional parameters, neither inter-
vention prevented deterioration of nutritional status over time
(24). HF does not improve nutritional parameters. We sug-
gest that one of the causes of greater nutritional losses to dia-
lysate in HF is due to the large pore and bigger sieving coeffi-
cient. A previous report showed that HF resulted in a signifi-
cant loss of amino acids into the dialysate when compared
to LF (20). However, when adjusted for surface area and blood
flow, amino acid losses were not different. Our study findings,

*p<0.05 compared with low flux. 
TAA, total amino acid; EAA, essential amino acid; BAA, branched chain
amino acid.

High flux Low flux

Cysteine 1.7±1.1 2.3±1.9
Aspartate 1.3±1.0 1.1±0.7
Glutamate 2.6±1.5 2.4±1.2
Asparagine 1.5±0.8 1.5±0.8
Serine 2.1±0.8 3.0±1.1
Glutamine 10.4±8.7 7.2±2.7
Glycine 2.2±0.8 3.0±1.4
Histidine 2.0±0.7 2.5±1.5
Arginine 2.5±1.5 3.4±1.4
Threonine 2.1±1.3 2.3±1.1
Alanine* 3.0±1.7 4.4±1.6
Proline 5.1±3.2 4.6±1.7
Tyrosine 4.9±2.1 5.4±2
Valine 2.7±1.6 3.4±1.2
Methionine 0.8±0.4 0.9±0.3
Cystine 0.4±0.3 0.5±0.5
Isoleucine 2.1±1.5 2.5±1.3
Leucine 1.7±1.1 2.1±0.9
Phenylalanine 1.4±0.8 1.6±0.4
Tryptophan 1.4±1.9 0.3±0.1
Lysine 1.2±0.9 1.6±0.8
TAA 52.9±28.4 56.0±17.7
EAA 15.9±10.3 18.1±6.7
BAA 6.6±4.32 8.0±3.3

Table 3. Comparison of amino acid losses into dialysate in high
flux and low flux membranes (mean±SD, mg/L)

TAA EAA BCAA TAA EAA BCAA

Fig. 1. Comparison of high flux membranes with low flux membranes about amino acid dialysate losses and the reduction of plasma amino
acids. TAA, total amino acid; EAA, essential amino acid; BCAA, branched chain amino acid.
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with synthetic membranes, are consistent with the above
result. We fixed the membrane surface, blood flow, and dialy-
sis flow. Total dialysate amino acid losses were not different,
and the reduction of plasma EAA was equal to dialysis loss-
es for both membranes studied. HF, with a large pore size
and sieving coefficient, did not influence the dialysate amino
acid losses.

Increased attention has focused on the plasma levels of leu-
cine, isoleucine, and valine, the so-called BCAA, because
leucine has been shown to enhance protein synthesis in vitro.
Dialysate losses of BCAA were greater than the reduction of
plasma BCAA, although this was not statistically significant.
This discrepancy suggests an enhanced appearance of new
amino acids during dialysis, most likely from other tissue
stores such as skeletal muscle. Our patients had no metabol-
ic acidosis. Ikizler et al. (33) showed that hemodialysis is an
overall catabolic event, decreasing the circulating amino acids,
accelerating rates of whole body and muscle proteolysis, stim-
ulating muscle release of amino acids, and elevating net whole
body and muscle protein loss.

Our findings suggest that the hemodialysis membrane itself
has a major impact by either increasing catabolism and/or
from losses to the dialysate.

Our study of amino acid loss in hemodialysis patients has
several limitations, although we believe that these do not inva-
lidate its conclusions. First, the number of our study sample
was very small. Second, the nutritional marker was varied,
but in our study only nPCR, albumin, and cholesterol were
measured. The nutritional status could affect the level of
plasma amino acid. The patients were clinically stable, but
if subjective global assessment, prealbumin, and transferrin
were measured, which could explain the nutritional status
of the patients. Third, recirculation has an effect on the level
of plasma amino acid, but we did not measure recirculation.
To prevent recirculation, there was more than 5 cm distance
between artery puncture and venous puncture. Fourth, we
measured only the concentration of plasma amino acid before
and after hemodialysis and the concentration of dialysis amino
acid. We did not consider that hemodialysis itself could have
caused a catabolic event. The muscle and whole body prote-
olysis could happen, and plasma amino acid concentration
might be affected. Fifth, HF was done only once. We did
not consider that repeated usage could have an effect on the
concentration of plasma amino acid. 

In conclusion, amino acid losses to dialysate were not dif-
ferent in comparisons between HF and LF when dialysis dose
and blood flow were adjusted. HF with its large pore size
and sieving coefficient does not influence dialysate amino
acid losses. However, hemodialysis itself may influence dia-
lysate amino acid losses and may have an effect on muscle
breakdown. Improved protein metabolism should be pur-
sued in patients undergoing hemodialysis. 
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