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Sleep smart—optimizing sleep for
declarative learning and memory

Gordon B. Feld † and Susanne Diekelmann* †

Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany

The last decade has witnessed a spurt of new publications documenting sleep’s

essential contribution to the brains ability to form lasting memories. For the declarative

memory domain, slow wave sleep (the deepest sleep stage) has the greatest beneficial

effect on the consolidation of memories acquired during preceding wakefulness. The

finding that newly encoded memories become reactivated during subsequent sleep

fostered the idea that reactivation leads to the strengthening and transformation

of the memory trace. According to the active system consolidation account, trace

reactivation leads to the redistribution of the transient memory representations from

the hippocampus to the long-lasting knowledge networks of the cortex. Apart from

consolidating previously learned information, sleep also facilitates the encoding of new

memories after sleep, which probably relies on the renormalization of synaptic weights

during sleep as suggested by the synaptic homeostasis theory. During wakefulness

overshooting potentiation causes an imbalance in synaptic weights that is countered

by synaptic downscaling during subsequent sleep. This review briefly introduces the

basic concepts and central findings of the research on sleep and memory, and discusses

implications of this lab-based work for everyday applications to make the best possible

use of sleep’s beneficial effect on learning and memory.

Keywords: sleep, memory, learning, consolidation, applied research

Introduction

Our modern society has formed an ill-advised but strong belief that sleep is an annoying habit that
should be kept at a strict minimum to enhance productivity. However, recent research indicates
that sleep’s function goes beyond rest and replenishment (in itself a good reason to sleep) and
constitutes a state of active offline information processing essential to the appropriate functioning
of learning and memory. Memory is established in three stages; new memories are initially
acquired (encoding), become strengthened and reorganized (consolidation), and are finally recalled
(retrieval; Figure 1 upper panel). In 1924, Jenkins and Dallenbach expanded on Ebbinghaus (1885)
studies of forgetting curves and reported that sleep after encoding of nonsense syllables supports
memory consolidation, inasmuch as it reduces forgetting compared to an interval containing only
wakefulness (Jenkins and Dallenbach, 1924). This line of research was revisited several times during
the last century (Ekstrand, 1967; Yaroush et al., 1971; Barrett and Ekstrand, 1972; Fowler et al.,
1973; Benson and Feinberg, 1975; Ekstrand et al., 1977) and progress was aided substantially by the
identification of sleep stages with distinct psychophysiological properties (Figure 2; Aserinsky and
Kleitman, 1953; Dement and Kleitman, 1957). During the last two decades, interest in the topic has
re-emerged and we have witnessed an upsurge of publications dissecting sleep’s role for memory
(for a comprehensive review see Rasch and Born, 2013). One of the most widely studied models
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FIGURE 1 | Schematic of the proposed memory processes. Upper

panel: Memory processes can be divided into three steps (Encoding,

Consolidation, and Retrieval). Encoding is the process of information

uptake during learning (in this case of card pair locations of a

concentration game) and is most effective during wakefulness, while

retrieval is the process of recalling the memorized content at a later time

point. Consolidation takes place after encoding and is necessary to

transform the initially labile traces into enduring representations. During

sleep after learning, sleep-dependent memory consolidation strengthens

the acquired memory traces by reactivating (“replaying”) them. Lower

panel: During wake encoding, information is taken up by the sense

organs and flows to the hippocampus via the association cortices. In the

hippocampus a trace is formed fast but only for temporary storage (thick

lines in the hippocampus represent the hippocampal trace, dashed lines

in the cortex represent the corresponding cortical trace). During slow

wave sleep the traces in the hippocampus are reactivated leading to their

integration into the long-term store of the cortex (active system

consolidation), where they are strengthened through synaptic

consolidation (the consolidated trace is represented by thick lines in the

cortex). Additionally, processes of synaptic downscaling during sleep

(shown as the hippocampal trace vanishing) lead to the preparation of the

brain to encode new information during the next wake phase (again

depicted by thick and dashed lines in hippocampus and cortex,

respectively). While the synaptic downscaling hypothesis has been most

rigorously applied to cortical learning tasks (Tononi and Cirelli, 2014),

recent research has provided evidence for downscaling in the

hippocampus during REM sleep (Grosmark et al., 2012). Processes of

local synaptic strengthening may work in concert with global downscaling

processes to provide reliable and efficient memory traces (Born and Feld,

2012). Bottom panel is adapted from Diekelmann and Born (2010).

of sleep’s role for memory consolidation, according to the
active system consolidation theory, is that of an active
neuronal replay of memory representations during slow wave
sleep, strengthening memory traces encoded during preceding
wakefulness (Figure 1 upper panel; Diekelmann and Born,
2010; Oudiette and Paller, 2013). This theory has recently
received support by findings showing that sleep following
learning increases synaptic spines specifically associated with
prior learning experience (Euston and Steenland, 2014; Yang
et al., 2014). Apart from the consolidating effect, sleep has an
additional function in the restoration of learning capabilities
(Van Der Werf et al., 2009; Antonenko et al., 2013), which

may also be linked to the downscaling of synapses that were
potentiated during prior wakefulness (Tononi and Cirelli, 2003,
2006, 2014). Of note, this review does not touch on the subject of
learning during sleep, which to the best of our knowledge has not
been shown in the declarative memory domain. Empirical work
suggests that encoding during sleep in humans, if at all, is only
possible for conditioning (Ikeda and Morotomi, 1996; Arzi et al.,
2012, 2014; Cox et al., 2014).

While we are only starting to understand the neuronal
mechanisms that underlie these processes, the following sections
give a brief overview of some of the most persuasive findings
in an attempt to translate them into behavioral guidelines for
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FIGURE 2 | Overview over sleep stages. (A) Sleep, defined as a readily

reversible state of reduced responsiveness to the environment, is a

phenomenon reported in all animals—from humans to flies and

mollusks—that have been systematically examined so far (Borbély and

Achermann, 2000; Huber et al., 2004b; Cirelli and Tononi, 2008; Vorster

et al., 2014). Human sleep is traditionally dichotomized into

rapid-eye-movement (REM) sleep and non-rapid-eye-movement (NonREM)

sleep and prototypically consists of 90min cycles, during which NonREM

sleep and REM sleep alternate. REM sleep (green) is characterized by rapid

eye movements, a mixed frequency EEG and an inhibition of muscle tone.

NonREM sleep can be further subdivided into sleep stages 1–4 (S1–S4),

which resemble the depth of sleep, inasmuch as responsiveness to

external stimuli is minimal in sleep stage 4. S1 is a transitory stage that

only makes up a small amount of a night’s sleep (<10%). S2 is determined

by the occurrence of sleep spindles (waxing and waning activity of

10–15Hz) and K-complexes (a sharp negative high-amplitude deflexion

followed by a slower positive wave). S3 and S4 combine to slow wave

sleep (SWS, blue) that is characterized by large amounts (>20%) of slow

wave activity (0.5–4Hz) in the EEG. (B) In rats, place cells express a

specific firing pattern dependent on the rat’s location within its environment.

When running through a maze (Run) this leads to a sequential firing pattern

that represents the sequence of locations the rat passes in the maze (each

row represent one cell, the upper panel shows spikes across time during

one lap, the lower panel shows averaged activity). During slow wave sleep

(Sleep) after training on an alternation task in the maze the firing sequence

is replayed in a time-compressed manner (adapted from Ji and Wilson,

2007). This and other similar experiments are evidence that representations

encoded during wakefulness are replayed during subsequent sleep. (C)

Recent evidence suggests that the hallmark oscillation of SWS, the sleep

slow oscillation (<1Hz), which is generated in cortical areas, coordinates

replay in the hippocampus (accompanied by sharp wave/ripple activity

generated in the hippocampus) and plasticity-promoting spindle activity

(generated in the thalamus). The coordination of these oscillations enables

the gradual transfer of the transient memory representations from the

hippocampus to their long-term storage sites within the cortex. The upper

trace depicts the unfiltered surface EEG and below, the surface EEG

filtered in the slow oscillation and the spindle band are shown (spindles

typically occur in the down-to-up transition of the slow oscillation). The

inset shows sharp-wave/ripple activity, which is typically nested in the

troughs of spindles.

optimizing memory function by sleep. Importantly, rather than
giving a state of the art overview of all findings and developments
in the rapidly expanding field of sleep and memory (for recent
comprehensive reviews see, Diekelmann and Born, 2010; Lewis
and Durrant, 2011; Saletin and Walker, 2012; Abel et al., 2013;
Inostroza and Born, 2013; Oudiette and Paller, 2013; Prince and
Abel, 2013; Rasch and Born, 2013; Stickgold and Walker, 2013),
this review focuses on the most established findings to aid their
adaptation into education, therapeutic practice and performance
improvement in the elderly. Additionally, we hope to encourage
an increase in applied research of sleep andmemory, which is still
in its beginnings.

Consolidating Memory During Sleep

Active System Consolidation During Sleep
The theory of active system consolidation can explain how
sleep is able to strengthen, transform and redistribute the
information that was encoded during prior wakefulness (Figure 1
lower panel; Diekelmann and Born, 2010; Rasch and Born,
2013). During wakefulness new information is encoded in
parallel into the hippocampus, which serves as a fast-learning
temporary store, and into distributed cortical areas that represent
the slow-learning long-term store. Because the cortex takes
longer to form direct connections between single elements of
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a memory, the hippocampus initially acts as a hub to bind the
cortical representations (Winocur et al., 2010; Battaglia et al.,
2011). During sleep, the new memory representations become
re-activated in the hippocampus as well as in the cortex. The
hippocampus thereby serves as a trainer for the cortical long-
term store by reactivating the cortical representations repeatedly
so that the cortical connections become strengthened and
eventually become independent of the hippocampus.

Reactivation of Memory Traces During Sleep
Such a neuronal “replay” of learning-related activity during sleep
was first observed in rats. After a spatial learning experience
that activated specific place cells in the hippocampus, those
cells that had fired together during learning displayed correlated
firing again during subsequent sleep (Wilson and McNaughton,
1994). Importantly, replay in the hippocampus follows the same
sequence as during wakefulness and is also coordinated with
replay in the cortex (Figure 2B; Skaggs andMcNaughton, 1996; Ji
and Wilson, 2007). Other brain regions show replay of learning-
related neuronal activity during sleep as well, such as motor
cortex, striatum, and thalamus (Ribeiro et al., 2004; Lansink et al.,
2008, 2009; Gulati et al., 2014; Harris, 2014). Signs of reactivation
were also found in humans using brain imaging techniques
such as functional magnetic resonance imaging (fMRI). In
these studies, participants learned tasks that activated specific
brain regions and similar activation patterns were re-expressed
during subsequent sleep (Maquet et al., 2000; Peigneux et al.,
2004). Memory reactivations are accompanied by high-frequency
oscillatory events (ripples, 100–200Hz) in the local field potential
of the hippocampus that together with sharp-waves form sharp-
wave/ripple complexes (Figure 2C, Buzsaki, 1986, 1989; Nadasdy
et al., 1999). The sleep slow oscillations (large amplitude waves
<1Hz in the EEG) that dominate slow wave sleep are generated
in the cortex and synchronize these memory reactivations in
the hippocampus (Sirota et al., 2003; Buzsaki and Draguhn,
2004; Molle and Born, 2011). This synchronization effects that
the reactivated memory information reaches the cortex together
with sleep spindles (10–15Hz oscillations, Mölle et al., 2011;
Bergmann et al., 2012). The plasticity enhancing effect of spindles
in the cortex facilitates the integration of the new memories into
the long term store (Ribeiro et al., 2007) benefiting the recall
of these memories at a later point. These oscillations and the
associated memory reactivations are partly dependent on the
specific constellation of hormones and neurotransmitters during
sleep, such as the low cholinergic tone during slow wave sleep
(Hasselmo, 1999; Gais and Born, 2004), which allows information
to flow from the hippocampus to the neocortex. While there
are also accounts of memory reactivation during wakefulness
and REM sleep, it seems to be the specific combination of
the oscillatory and neuromodulatory environment found during
slow wave sleep that enables consolidation through reactivation
in the hippocampus and cortex (Diekelmann and Born, 2010).

Reorganization of Memory and Extraction of
Invariant Features
Beyond the strengthening of memories, sleep also reorganizes
and transforms memories. This reorganization of memory can

facilitate generalization and the abstraction of the gist, i.e.,
invariant features or rules, from encoded information (Gomez
et al., 2006; Durrant et al., 2011; Lewis and Durrant, 2011;
Inostroza and Born, 2013). Sleep can even help to gain insight
and find new solutions to problems. Wagner et al. (2004)
used a number reduction task that afforded participants to
perform a series of numerical transformations. Unbeknown to
the participants there was a hidden rule in the task. As soon as
they discovered this rule they could use a short cut to solve the
task. Almost three times more participants in the sleep condition
gained insight into this hidden rule compared to the wake
condition. Further, evidence for a reorganization of memory
during sleep comes from studies in which false memories were
provoked by asking participants to learn lists of words that all
pertained to an associated word (the gist word) that was not on
the list. More gist words were falsely assigned as true memories
by those participants that slept during the retention interval
compared to those who remained awake (Payne et al., 2009;
Diekelmann et al., 2010), suggesting that sleep helped extracting
the general meaning of the word lists.

Restoration of Learning Capacity During
Sleep

Restoring Synaptic Homeostasis During Sleep
Next to the idea of active system consolidation, the most
influential theory of sleep’s function for memory is the
synaptic homeostasis hypothesis (Tononi and Cirelli, 2003,
2006, 2014). According to this hypothesis, the widespread
synaptic potentiation occurring at encoding of information
during wakefulness leads to increased demands of space and
energy in the brain. If this development remained unchecked
the brain would shortly reach the limits of its encoding and/or
upkeep capabilities. Sleep is essential to renormalize synaptic
weights (termed “synaptic downscaling”) and has therefore been
suggested to be “the price we pay for plasticity” (Cirelli and
Tononi, 2008; Tononi and Cirelli, 2014). Indeed, overall synaptic
spines as well as markers for synaptic potentiation increase
across periods of wakefulness and decrease during periods of
sleep (Vyazovskiy et al., 2008; Maret et al., 2011). Computer
simulations have established the theoretical effectiveness of slow
wave activity (0.5–4Hz) to renormalize synapses (Hill and
Tononi, 2005; Esser et al., 2007; Sullivan and de Sa, 2008), and
potentiating synapses by extended learning (Huber et al., 2004a;
Schmidt et al., 2006) or by transcranial magnetic stimulation
(Huber et al., 2007, 2008) induces local increases of slow wave
activity. Conversely, immobilizing a human’s arm reduces slow
wave activity (Huber et al., 2006) and slow wave sleep deprivation
impairs visuo-motor learning (Hill et al., 2008; Aeschbach, 2009;
Landsness et al., 2009). In correspondence with the general
finding that slow wave activity is homeostatically regulated
(Borbély and Achermann, 2000) this line of research indicates
that slow wave activity may play a major role for synaptic
homeostasis (Massimini et al., 2009; Vassalli and Dijk, 2009).
However, it has also been shown that learning increases sleep
spindles (Gais et al., 2002), and since the synaptic homeostasis
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theory makes no explicit claims as to the specific mechanisms
involved (Tononi and Cirelli, 2012), their exact nature as
well as their association with specific sleep stages remain to
be determined (Born and Feld, 2012; Chauvette et al., 2012;
Grosmark et al., 2012).

Improved Learning After Sleep
A direct consequence of synaptic downscaling during sleep can
be seen in the improvement of learning after a period containing
sleep compared to a period containing only wakefulness
(McDermott et al., 2003). In a nap study, Mander and colleagues
tested their participants’ ability to learn new information twice in
1 day, once at noon and a second time in the evening. One group
of subjects was allowed to take a nap in between the two sessions
and another group stayed awake. As expected, encoding ability
deteriorated across the day in the wake subjects, while subjects
who took a nap even slightly improved encoding performance
at the second session (Mander et al., 2011). Impairments in
encoding ability were also observed in participants who were
sleep-deprived for one night, with these impairments being
associated with reduced hippocampal activation (Yoo et al.,
2007). In line with the suggestion of the synaptic homeostasis
hypothesis that slow waves might be responsible for synaptic
downscaling, it was shown that suppressing slow wave sleep
in elderly participants reduced their ability to encode new
information the next morning (Van Der Werf et al., 2009).

Optimizing Sleep’s Beneficial Influence on
Memory

Application of Sleep’s Natural Effects on Memory
Although a considerable number of findings suggest that sleep
plays a pivotal role for the normal functioning of human
memory, research on the application of these effects of sleep
on memory is still at its beginning. The translation of the basic
science findings into real world contexts can not only help
improve our learning and memory capacities in everyday life
but is also a promising avenue for possible applications in aging,
clinical settings, and education. Based on the available evidence,
the following sections offer potential strategies of optimizing
sleep’s beneficial influence on memory in applied contexts.

Timing and Amount of Sleep
The timing of sleep has been shown to influence sleep’s effect
on memory, inasmuch as a shorter interval between sleep
and learning of declarative tasks enhances the effect of sleep
on memory (Gais et al., 2006; Talamini et al., 2008; Payne
et al., 2012b). Comparing retention intervals that differed with
respect to the timing of sleep, Gais et al. (2006) found that
sleep that follows within 3 h after encoding is more beneficial
to the consolidation of English-German vocabulary than sleep
following after 10 h. Thus, to make the best use of sleep’s memory
improving effect, sleep should follow encoding within a few
hours or, alternatively, the contents that were learned during the
day could be rehearsed shortly before bedtime. With regard to
the amount of sleep that is necessary to boost memory, several
studies have shown that declarative memory even benefits from

rather short periods of sleep. 3-h episodes of sleep during the
first half of the night are sufficient to prompt the beneficial
effect of sleep on declarative memory (Yaroush et al., 1971;
Barrett and Ekstrand, 1972; Fowler et al., 1973; Plihal and
Born, 1997; Tucker and Fishbein, 2009) and even naps can be
used to improve memory, albeit, in a more dose-dependent
manner (Lahl et al., 2008). Although some studies foundmemory
improvements of very short naps of only a few minutes (Lahl
et al., 2008), longer periods of 60–90min of sleep provide better
outcomes (Diekelmann et al., 2012). This offers the opportunity
to time short naps after intensive periods of learning to benefit
consolidation and subsequent learning. However, even though
short amounts of sleep can help the initial consolidation of new
memories, naps cannot replace a good night’s sleep but may
rather be introduced in addition to nocturnal sleep. Some types
of memories even require a whole night of sleep, including the
cyclic occurrence of different sleep stages, to become optimally
consolidated (Diekelmann and Born, 2010).

The Role of Relevance and Reward
Memory consolidation during sleep is selective in preferentially
facilitating those memories that are in some way relevant for the
future. Wilhelm et al. (2011) showed that merely the information
that memory contents will have to be recalled on the next day
can decide its access to sleep-dependent consolidation. In this
study participants learned a declarative word pair association
task in the evening. After encoding, only one of two groups
was informed that they would have to retrieve the word pairs
the next morning. While the informed group showed the
expected improvement in retention performance after sleep, the
uninformed group did not and was on par with an informed
group that did not sleep during the retention interval. This effect
is confirmed by sleep’s enhancement of prospective memories
of tasks to be performed in the future (Scullin and McDaniel,
2010; Diekelmann et al., 2013a,b). Similar findings were observed
when subjects anticipated a monetary reward for performing well
in a procedural finger sequence tapping task (Fischer and Born,
2009). Emotionality of the learning content is a further feature
that signals relevance for the individual and leads to stronger
effects of sleep-dependent memory consolidation (Wagner et al.,
2001; Sterpenich et al., 2007, 2009; Payne et al., 2008, 2012a;
Groch et al., 2013, 2014). However, there seem to be conflicting
mechanisms of REM sleep for consolidating emotional content
and SWS for declarative content in some tasks (Payne et al.,
2008; Groch et al., 2014). To optimize the beneficial effect of
sleep onmemory, the relevance of the learningmaterial should be
very evident to the learner and might be increased by additional
incentives.

Sleep and Memory in Children and Students
Sleep also benefits the learning of declarative tasks such as word
pair associations and object locations in children (Wilhelm et al.,
2008). A recent study in preschoolers shows that learning new
words from storybooks that are read to them is increased in
children that are allowed to nap after hearing the story (Williams
and Horst, 2014). Even infants of 6–16 months learn new word
meanings or novel actions better if they nap during the retention
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interval (Friedrich et al., 2015; Seehagen et al., 2015). For the
extraction of explicit knowledge, sleep might even be more
beneficial in children than in adults. Wilhelm and colleagues
trained adults and 8–11-year-old children to press a specific
sequence of buttons on a button-box (Wilhelm et al., 2013). None
of the participants were aware of the underlying sequence of
button presses during training before sleep. While both children
and adults gained more explicit awareness of the sequence after
sleep compared to a wake interval, children clearly outperformed
the adults after sleep with almost all children being able to
explicitly generate the entire 8-element sequence. Interestingly,
this beneficial effect of sleep on knowledge may even extend into
highly demanding education such as medical school (Ahrberg
et al., 2012; Genzel et al., 2013). In a questionnaire study,
sleep behavior (especially during the pre-exam period), together
with the results in the pre-clinical board exam, turned out
as the strongest predictor for the final grade in the medical
exam (Genzel et al., 2013). Improving sleep in children and
students might therefore be a promising target to improve school
performance (Ribeiro and Stickgold, 2014).

Sleep and Memory in the Elderly
Older adults typically show a dramatic reduction in the amount
of slow wave sleep, with this reduction being associated
with reduced sleep-dependent memory consolidation (Backhaus
et al., 2007). The importance of slow wave sleep for memory
consolidation in the elderly was shown in a cross-sectional
study (Mander et al., 2013b). In this study young and elderly
adults learned a declarative word pair task before going to sleep.
Overnight retention was predicted by slow wave activity, which
in turn was associated with prefrontal gray matter volume. The
authors argue that the age-related reduction in gray matter
volume causes the decline of slow wave generation in the
brain, which in turn compromises sleep’s ability to consolidate
memories. In another study from the same group, it was shown
that the reduction in sleep spindles observed in the elderly is
predictive of impairments of new learning (of an episodic task)
and hippocampal activation after sleep (Mander et al., 2013a).
Importantly, in these studies it remains unclear if sleep is causal
to the observed impairments. Clarifying this question will be
essential to identify therapeutic targets for improving sleep and
memory in the elderly.

Improving Psychotherapy Outcome with Sleep
Many memory-related psychiatric disorders, such as post-
traumatic stress disorder (PTSD), are associated with altered
sleep profiles (Germain, 2013; Steiger et al., 2013), suggesting
that sleep might play a role in the etiology of these disorders.
Considering that behavioral therapy is effective in many anxiety
disorders and relies on learning mechanisms, its success may
be further improved by using sleep treatments. Particularly in
phobias diminished extinction of conditioned fear responses
is often a problem. Sleep benefits the generalization of the
extinction of conditioned fear (Pace-Schott et al., 2009) and
this finding has been applied to simulated exposure therapy
showing that sleep can be used to consolidate and generalize
extinction of spider fear responses (Pace-Schott et al., 2012).

Recently, Kleim et al. (2013) were able to show that napping
for 90min after an exposure therapy session can reduce self-
reported fear and negative cognition at a 1-week follow-up
assessment in patients suffering from spider phobia. Hence,
applying sleep as a non-invasive method might prove to be a
highly useful and inexpensive tool to boost the efficiency of
psychotherapy.

Enhancing Sleep’s Beneficial Influence on
Memory
Apart from the knowledge about how to make best use of
natural sleep for memory functions, recent research approaches
have also produced a number of insights of how to enhance
memory processing during sleep beyond its natural boundaries.
Although there are still certain methodological and ethical
restraints (for a topic specific review see, Diekelmann, 2014),
memory enhancement during sleep might prove worthwhile in
daily contexts as well as in clinical applications.

Cueing Memory Reactivation During Sleep
Recent research suggests that memory replay can be biased by
external cues presented during sleep that had been present during
prior encoding (Bendor and Wilson, 2012). In their seminal
paper, Rasch et al. (2007) used odor cues to trigger memory
reactivation processes during sleep in humans. Participants were
asked to encode locations of picture pairs shown on a computer
screen (similar to the game concentration, Figure 1 upper panel)
while they smelled the scent of roses. During subsequent slow
wave sleep participants were re-exposed to this odor or an
odorless vehicle. Those participants who had smelled the odor
during learning and during slow wave sleep showed increased
recall of the card locations at retrieval compared to the vehicle
condition. Memory was not improved if participants received
the odor only during sleep but not during prior encoding, and
odor re-exposure was also not effective during wakefulness and
post-learning REM sleep. Since this report, the paradigm has
been extended to show that specific auditory cues associated
with picture-locations (e.g. the sound “meow” associated with the
picture of a cat at a specific location), likewise foster memory
reactivation if presented during slow wave sleep, increasing
subsequent recall performance (Rudoy et al., 2009; van Dongen
et al., 2012). Additionally, it was shown that auditory cues during
sleep can enhance the retention of non-declarative tasks by using
a melody for cueing a sequence of button presses in a motor
skill task (Antony et al., 2012). Interestingly, this effect is highly
specific, inasmuch as participants only perform better on that
part of the sequence that has been cued during sleep, while
performance on the un-cued part is unchanged (Schonauer et al.,
2014). Finally, it was demonstrated that the strengthening effect
of reactivation cues for memory is specific for the sleep state and
that presentation of the same cues during wakefulness can even
labilize and disturb the memory trace (Diekelmann et al., 2011).
Both odor cues and tones are stimuli that are easy to apply in
the home environment to improve individual memory capacities.
For example, students might consider using fragrance lights or
aromatic lamps during learning and subsequent sleep, or re-play
previously learned spoken vocabulary during sleep. Care should

Frontiers in Psychology | www.frontiersin.org 6 May 2015 | Volume 6 | Article 622

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Feld and Diekelmann Sleep smart

be taken, however, to make sure that these stimuli do not disturb
sleep per se.

It has now been attempted to translate the memory cueing
paradigm to fear conditioning tasks, which opens the possibility
of enhancing efficiency of exposure therapy. In one of these
studies participants who had undergone olfactory contextual
fear conditioning were re-exposed to the olfactory context
cue during subsequent slow wave sleep. Compared to the
control condition without odor during sleep, these participants
showed greater extinction of contextual fear in the next
morning (Hauner et al., 2013). Likewise, subjects who were
fear conditioned on a neutral tone and were re-presented this
tone during slow wave sleep, showed reduced fear responses
to the tone after sleep (He et al., 2014). Two similar studies
in rodents, however, showed a greater fear response after
re-exposure of the conditioned stimulus during sleep (Rolls
et al., 2013; Barnes and Wilson, 2014). Although much more
research is needed to clarify these controversial findings and to
identify possible boundary conditions and adverse effects (for
an opinion on the contradictory nature of these results see,
Diekelmann and Born, 2015), this method bears great potential
for applications in clinical contexts, e.g., for the treatment of
anxiety disorders.

Stimulation of Brain Oscillations
Slow oscillations are the brain oscillations that have been
most closely linked to sleep-dependent memory processing.
Intensifying these slow oscillations with electrical or auditory
stimulation has been shown to enhance learning and memory
consolidation (Marshall et al., 2006; Ngo et al., 2013b).
In the ground-breaking study by Marshall and colleagues,
participants learned a word pair association task in the
evening. During subsequent sleep they were subjected to trans-
cranial electric stimulation (TES) at the same frequency as
natural slow oscillations (∼0.75Hz). This stimulation did not
only intensify slow oscillations as well as spindle activity,
but also increased the efficacy of sleep to consolidate the
previously learned word pairs (Marshall et al., 2006). Using
the same stimulation at the same frequency (∼0.75Hz) during
wakefulness increases theta activity and improves encoding of
new learning material, while consolidation remains unchanged
(Kirov et al., 2009). Finally, applying this slow oscillation
stimulation during a daytime nap improves the encoding of
new information afterward (Antonenko et al., 2013), suggesting
that slow wave activity during prior sleep frees space for new
learning after sleep. Even though some consumer devices for
TES have become available (e.g., http://www.foc.us/, http://
thebrainstimulator.net), the possibility to affect sleep’s slow
oscillations by auditory stimulation may offer a more elegant
and less invasive approach for the bedroom (Ngo et al., 2013a).
Ngo et al. timed short (50ms) bursts of white noise on
the slow oscillation up-states, which increased the amount of
consecutive slow oscillations as well as spindle activity coupled
to the slow oscillations. When compared to a sham condition,
the stimulation improved sleep-dependent consolidation of
declarative word pair memory (Ngo et al., 2013b). Such an
auditory stimulation of slow oscillations could be applied in the

home environment to boost memory performance with relatively
little effort. Very recently it has been shown that slow wave
sleep can even be enhanced by hypnosis (Cordi et al., 2014,
2015). This method may offer the possibility of enhancing sleep
without recurring to invasive and potentially sleep-disturbing
techniques.

Using Drugs to Enhance Memory During Sleep
Many neurotransmitters and hormones that are known to be
implicated in learning and memory show characteristic changes
across the sleep-wake cycle. It therefore stands to reason to
apply certain drugs targeting specific neurotransmitter systems
during sleep to enhance memory. GABA A modulators, for
example, have long been known to induce sleep and have thus
been used extensively to treat sleep disorders. Yet, these drugs
may not induce natural sleep but rather light sleep with low
amounts of slow wave sleep and REM sleep (Lancel, 1999).
The GABA re-uptake inhibitor tiagabine, on the other hand,
increases the occurrence of slow wave sleep, but unfortunately
decreases sleep spindles and even deteriorates consolidation of
a procedural motor skill task (Feld et al., 2013b). The GABA A
positive modulator zolpidem has been shown to have a more
beneficial profile, as it increases the amount of sleep spindles
and improves memory consolidation of word pairs (Kaestner
et al., 2013; Mednick et al., 2013). However, other authors do
not find this effect or even observed a detrimental effect of
zolpidem on declarative memory consolidation during sleep
(Melendez et al., 2005; Hall-Porter et al., 2014). Recently it was
shown that the NMDA receptor co-agonist d-cycloserine can
enhance the consolidation of word pair associations if given
before a retention interval containing sleep (Feld et al., 2013a).
D-cycloserine has also been discussed as a cognitive enhancer
to improve efficacy of cognitive behavior therapy to attenuate
anxiety disorders (Otto et al., 2007; Hofmann et al., 2012),
hence the application of d-cycloserine during retention sleep
after successful exposure sessions may increase the therapeutic
value of this drug. Other pharmacological treatments have
likewise been shown to affect memory formation during sleep
more or less beneficially, such as the noradrenaline reuptake
inhibitor reboxetine (Rasch et al., 2009; Gais et al., 2011),
the cytokine interleukin-6 (Benedict et al., 2009), and the
dopamine D2-like receptor agonist pramipexole (Feld et al.,
2014). Generally, drugs that increase sleep and memory are
potentially interesting for clinical applications, but should
presently not be considered for non-therapeutic sleep and
memory enhancement, as the potential adverse effects remain
completely unclear.

Concluding Remarks

Sleep is not idle time. Sleep is an active state during which the
brain processes information acquired during the previous day
and prepares itself for the demands of the next day. Long-term
memory is formed during sleep by a process that strengthens
memory traces, reorganizes them, and integrates them into
established knowledge networks. These processes do not only
store previously acquired memories but also renew the capacity
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for new learning after sleep. Considering this backdrop, it is
alarming how society still views sleep as a luxury. Sleep is not only
a necessity. Rather we should start recognizing sleep as a worthy
and skillful operator that helps our brain to work at its best. This
review has discussed several ways of how to make optimal use of
sleep’s helpful hand in learning and memory. It is quite clear that
improved sleeping conditions will have a higher impact on overall
productivity than increasing the mere presence at work or at the
study table. The ideal strategy to acquire new information should
consider that sleep is important for memory. For students it is

probably not effective to skip sleep in order to have more hours
to learn for a specific subject. And for finding elegant solutions
to complex problems the popular proverb may offer good advice:
sleep on it.
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