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Abstract: Conventional methods carrying out C(sp2)@
C(sp2) bond formations are typically mediated by transi-
tion-metal-based catalysts. Herein, we conceptualize a

complementary avenue to access such bonds by exploit-
ing the potential of electrochemistry in combination with

organoboron chemistry. We demonstrate a transition
metal catalyst-free electrocoupling between (hetero)aryls

and alkenes through readily available alkenyl-tri(hetero)ar-

yl borate salts (ATBs) in a stereoconvergent fashion. This
unprecedented transformation was investigated theoreti-

cally and experimentally and led to a library of functional-
ized alkenes. The concept was then carried further and ap-

plied to the synthesis of the natural product pinosylvin
and the derivatization of the steroidal dehydroepiandros-

terone (DHEA) scaffold.

Despite its young history of only a few decades, the Suzuki–
Miyaura reaction is one of the most utilized reactions in
modern organic chemistry.[1, 2] The palladium-catalyzed cou-

pling of boronic acids with organohalides was not only award-
ed with the Nobel prize in 2010, in fact, a recent study ranks

the Suzuki–Miyaura coupling as one of the most frequently
used reactions (5th place) in medicinal chemistry.[1] Besides,

many other transition-metal-mediated cross-couplings, namely
Stille, Heck, Negishi, Sonogashira, Hiyama and Kumada are like-
wise powerful tools to forge new C@C bonds.[3] Such indispen-

sable strategies undoubtedly display many advantages and
have inspired us to challenge the formation of C@C bonds

without the need of the commonly used transition-metal cata-

lysts, thus breaking new grounds in the field of cross-coupling

reactions. We first started our ambitious concept by replacing
the catalyst with an electrochemical setup. Innate advantages,

including the use of inexpensive and reusable electrodes, reac-

tion tuneability and scalability do not only rely on the modern
and cutting-edge work from Baran, but trace back to many

other advances in electrochemical synthesis since the pioneer-
ing works of Volta and Faraday in the 19th century.[4]

We already employed electrochemistry to initiate aryl–aryl
bond formation, inspired by the work of Geske[5] and Waldvo-

gel[6] (Scheme 1 A), introducing new hetero-substituted tetraar-

ylborate salts (TABs). We demonstrated that the formation of
„unsymmetrical“ TAB salts is enabled by a triple ligand ex-

change reaction on commercially available organotriflurobo-
rate species employing aryl-Grignard reagents. Submitting

those TABs to mild electrochemical oxidation led to the selec-
tive formation of heterocoupled biaryls (Scheme 1 B).[7]

As an alternative route to conventional cross coupling reac-

tions, the catalyst free Zweifel olefination cannot be neglect-
ed.[8] This powerful methodology enables the stereospecific

Scheme 1. Electrochemical/ Transition-metal catalyst-free C@C couplings.

[a] A. N. Baumann,+ A. Music,+ J. Dechent, N. Meller, Dr. T. C. Jagau,
Dr. D. Didier
Department of Chemistry and Pharmacy
Ludwig-Maximilians-University Munich
Butenandtstraße 5–13, Haus F, 81377 Munich (Germany)
E-mail : Dorian.Didier@cup.uni-muenchen.de

[++] These authors contributed equally to this work.

Supporting information and the ORCID identification number(s) for the au-
thor(s) of this article can be found under :
https ://doi.org/10.1002/chem.202001394.

T 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
This is an open access article under the terms of the Creative Commons At-
tribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

Chem. Eur. J. 2020, 26, 8382 – 8387 T 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim8382

Chemistry—A European Journal
Communication
doi.org/10.1002/chem.202001394

http://orcid.org/0000-0002-2811-1787
http://orcid.org/0000-0002-2811-1787
http://orcid.org/0000-0002-2811-1787
http://orcid.org/0000-0002-2811-1787
http://orcid.org/0000-0002-4786-1268
http://orcid.org/0000-0002-4786-1268
http://orcid.org/0000-0002-4786-1268
http://orcid.org/0000-0001-5919-424X
http://orcid.org/0000-0001-5919-424X
http://orcid.org/0000-0001-5919-424X
http://orcid.org/0000-0002-6358-1485
http://orcid.org/0000-0002-6358-1485
https://doi.org/10.1002/chem.202001394


formation of alkenes from the corresponding alkenyl-organo-
borinates, as exemplified recently by the groups of Aggarwal

and Morken (Scheme 1 C).[9] In addition, we demonstrated that
the logical combination of different organometallic reagents[10]

with boron alkoxides could lead to the formation of the re-
quired bis-organoborinates in an efficient one-pot process.[11]

Based on these findings, we decided to examine the reactivity
of alkenyl-triaryl borate salts (ATBs) to develop an electro-olefi-
nation reaction (Scheme 1 D).

ATBs (2) are underexplored salts, the only representative
compound being triphenylvinyl borate which can be synthe-

sized by treatment of tetravinyltin with triphenylborane.[12] To
investigate the electro-olefination and expand the structural

variety of ATBs, we aimed to simplify their access. Therefore,
we built on our previously described strategy for the synthesis

of hetero-substituted tetraarylborate salts (TABs), and decided

to make ATBs accessible by a triple ligand exchange reaction
onto the corresponding potassium alkenyl-trifluoro borates 1
(Molander salts),[13] employing ex situ generated Grignard or
organozinc reagents.[14]

We anticipated that the removal of an electron through an
oxidation process should occur preferentially on the alkenyl

moiety, avoiding the energetically disfavored dearomatization

of one of the aryl groups. As a proof of concept, we first syn-
thesized the model systems 2 a[15] and 2 b, possessing, respec-

tively para-fluorophenyl and phenyl moieties in addition to the
b-styryl substituent (Figure 1). To describe the change in the

electronic structure upon oxidation of 2 a and 2 b, spin and

charge densities were computed based on Mulliken population
analysis of the DFT results. Charge densities were additionally

computed using the CHarges from ELectrostatic Potentials
using a Grid-based (ChElPG) method.[14] Blue areas (Figure 1 A)

represent positive spin densities after oxidation. Only the al-
kenyl substituent is selectively oxidized in both cases whereas

the charge and spin densities of the other aromatic substitu-
ents only change insignificantly, confirming our assumptions.

The oxidation potentials of ATB salts 2 a and 2 b were deter-

mined by cyclic voltammetry and compared to the value mea-
sured for commercial sodium tetraphenyl borate (Figure 1 B).

With a fluoride atom present on each of the aryl groups, an Eox

value of + 0.81 V vs. SCE was measured for 2 a, similar to the

one of 2 c (+ 0.82 V vs. SCE). However, in the absence of elec-
tron-withdrawing substituents, the oxidation potential of 2 b
was decreased to + 0.67 V vs. SCE. As expected, it can be con-

cluded that alkenyl groups are easier to oxidize and that the
oxidation potential varies with the electronic nature of sub-

stituents on the moieties surrounding the boron atom. From a
chemoselectivity perspective, the favorable oxidation of the

olefin leaves no other path for the reaction but to transfer one
of the remaining aryl moieties, thereby avoiding the undesira-

ble formation of biaryl homocoupling compounds.

2 a was chosen to test and optimize the reaction condi-
tions.[14] Inexpensive and reusable glassy carbon electrodes

(GCE) proved to deliver the desired stilbene derivative 3 a with
optimal conversions in acetonitrile at 25 8C. Following the

transformation by 1H NMR (Scheme 2) showed that the borate
salt 2 a is selectively oxidized into product 3 a. Full conversion

can be observed after 2.2 F in 1H NMR studies and conversion-

rate experiments of the electro-olefination using GC revealed
that an optimal yield was obtained after 2 F. Remarkably, fur-

ther oxidation resulted in consumption of the reaction prod-
uct. Although no biaryl byproduct was detected in 1H NMR,

traces were found in GC. Interestingly, a third minor
compound 3 ab can be observed, which was identified as the

epoxy-stilbene derivative of 3 a. This side reaction will be dis-

cussed later with the mechanistic considerations (Scheme 7).
The synthesis of alkenyl-borate salts can be followed by

11B NMR and proved quantitative when employing either
Grignard reagents or—in cases of sensitive functional
groups—organozinc species.[14]

Therefore, we started investigating the scope of the transfor-

mation using borate salts without prior purification. The reac-
tion was first evaluated engaging (E)-alkenyltrifluoroborates
1 a–g as starting materials in this two-pot sequence. Upon
generation of the desired borate intermediates, those were
treated with an aqueous solution to remove remaining inor-

ganic salts and were subjected to electrochemical oxidation
conditions after switching the solvent to acetonitrile. The re-

sults are depicted in Scheme 3. With electron-withdrawing sub-
stituents present on the aryl moieties, (E)-alkenes 3 a–b were
obtained in up to 69 % yield over two steps. In the case of p-

CN-substituted phenyl groups, the corresponding organozinc
species had to be employed, lowering the overall yield of the

2-pot procedure (3 c, 29 %). This consequent decrease in yield
can be attributed to the lower reactivity of organozinc deriva-

Figure 1. A) Spin density after oxidation of 2 a and 2 b. B) ATB salts 2 a, 2 b
and tetraphenyl borate with experimental oxidation potentials and cyclic
voltammetry calibrated to the reversible ferrocene oxidation (Fc/Fc+).
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tives in ligand exchange reactions. Electron-donating and neu-
tral aryl substituents furnished the desired (E)-alkenes 3 d–e in

moderate to good yields (42 and 74 %). Varying the substitu-
tion pattern on the alkenyl moiety did not influence the
course of the reaction, and 3 f–g were isolated in 55 to 71 %.
Heteroaryl groups were also tolerated in the electro-olefination

process, furnishing structures 3 h–j in up to 68 % yield. Interest-
ingly, trisubstituted double bonds also led to the correspond-

ing olefinated aryl derivative 3 k in good yield (70 %). The for-
mation of the borate salt proved however difficult when an ac-
rylate derivative was used. The introduction of 3-pyridylzinc

onto a trifluoroboryl acrylate and subsequent electro-olefina-
tion only gave 25 % of product 3 l. Notably, all derivatives were

obtained with excellent (E/Z) ratios, up to 99:1
Z-alkenyl trifluoroborates were employed next. Following

the same two-pot protocol, the freshly generated Z-alkenyl-tri-

aryl borates were engaged crude in the electro-olefination
under oxidative conditions. Diversely substituted aryl moieties

were able to perform the coupling reaction, furnishing com-
pounds 3 m–s in reasonable yields (43 to 64 %). It is however

interesting to notice that all derivatives were isolated as trans-
isomers. Given that either of the starting material (E or Z) gives

the same thermodynamic E isomers after electro-coupling, the
strategy is stereoconvergent (Scheme 3). As it will be discussed

in the mechanistic part, we assume that the oxidation of the
double bond into a radical cationic species allows for the re-

sulting bonding system to freely rotate and adopt the thermo-

Scheme 2. 1H NMR studies of the transformation of 2 a into 3 a and 3 ab
under electrochemical oxidation and conversion-rate (galvanostatic) experi-
ment with n-undecane as internal standard.

Scheme 3. Two-pot borate salt formation/ electro-olefination sequence—
Synthesis of acyclic alkenes. [a] Yields are stated as isolated yields over two-
steps. [b] GC-ratios determined from crude mixtures. [c] Electrochemical oxi-
dation in EtOH as solvent instead of MeCN at 25 8C and open to air.

Chem. Eur. J. 2020, 26, 8382 – 8387 www.chemeurj.org T 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim8384

Chemistry—A European Journal
Communication
doi.org/10.1002/chem.202001394

http://www.chemeurj.org


dynamically more stable configuration before abstraction of
the boron-containing moiety (Scheme 7).

Our study of the electro-olefination was pursued with the
use of a-substituted alkenyl borates (Scheme 4). The simple

acyclic isopropenyl borate salt delivered product 4 a in 41 %
yield. Cyclic alkenyl groups were then investigated in the pres-

ence of electron-rich, -neutral and -poor aromatic systems, and
gave compounds 4 b–f with up to 75 % yield. Borate salts con-

taining heteroatoms in the cycloalkenyl scaffolds such as 3,6-

dihydro-2H-pyranyl, -thiopyranyl and 1,2,3,6-tetrahydropyridi-
nylunderwent successful electro-olefinations, delivering trisub-

stituted olefins 4 g–o in moderate to good yields. We lastly
demonstrated the reaction to be compatible in the presence

of ketal functionalities (4 p–r, up to 86 %).
Next, we applied the method to the derivatization of more

challenging structures to demonstrate the synthetic potential

of our ATB salts. Dehydroepiandrosterone (DHEA) was derivat-
ized into a TBS-protected ether and the carbonyl function

transformed into the corresponding alkenyltrifluoroborate 1 o.

The addition of arylmagnesium bromide reagents to 1 o, fol-
lowed by electro-olefination under the optimized oxidative

conditions described above furnished functionalized
molecules 5 a and 5 b in up to 70 % yield (Scheme 5 A). In addi-

tion, b-styryltrifluoroborate 1 a was employed as substrate for
the synthesis of the natural product pinosylvin (Scheme 5 B).

3,5-Dimethoxyphenylmagnesium bromide was introduced to
perform the triple ligand exchange reaction and gave the in-

termediate alkenyltriaryl borate species. Subsequent electro-

olefination and demethylation with BBr3 furnished 5 c in 35 %
yield over three steps with perfect control of the diastereose-
lectivity (E/Z = 99:1). Furthermore, the chemoselectivity was in-
vestigated on our benchmark salt 2 a under distinct oxidative
conditions (Scheme 5 C). As already mentioned before, the
electro-olefination occurs in a stereoconvergent manner. We

selectively obtain the stilbene derivative 3 a using (E)-2 a or (Z)-
2 a in moderate to good yields. In contrast, typical Zweifel con-
ditions led to a stereospecific inversion of the double bond

configuration, as the reaction proceeds through two consecu-
tive stereospecific steps (1,2-metallate rearrangement and anti-

periplanar b-elimination). The (Z)-isomer can therefore be syn-
thesized using Zweifel conditions (Scheme 5 C) and (Z)-3 a was

isolated in 86 % yield (E/Z ratio<1:99). Noteworthy, stereodi-

vergent Zweifel protocols have been developed. Even though

Scheme 4. Two-pot borate salt formation/ electro-olefination sequence—
Synthesis of cyclic alkenes. [a] Yields are stated as isolated yields over two-
steps.

Scheme 5. [a] Yields are stated as isolated yields over two-steps. [b] Yield
over three steps. [c] GC-ratios determined from crude mixtures. [d] Starting
from 2 a. [e] Starting from (Z)-2 a.
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the presented method might be less versatile than these con-
tributions, our strategy avoids the use of highly toxic chemicals

such as BrCN and PhSeCl.[16]

Lastly, we set out to ascertain the mechanism of this intrigu-

ing reaction, building on conversion experiments, cyclovoltam-
metry and theoretical considerations (Figure 1 and Scheme 2).

Crossover experiments were conducted by mixing different
borate salts under electrochemical conditions, confirming the

absence of products resulting from intermolecular reactions

and ruling out the possibility of intermolecular processes.[14]

After selective oxidation of the alkenyl moiety, a rearrange-
ment takes place. To study the nature of this rearrangement,
we synthesized borate salts containing more than a single

styryl group (6 a–b, Scheme 6), employing styryl-Grignard re-
agents as (E/Z)-mixtures, and submitted them to our electro-

coupling conditions. As a reference, the desired compound 3 a
was obtained as the sole compound from 2 a. With a salt bear-
ing two styryl groups (6 a), a product ratio of 73:27 of 3 a and

the diene 7 was obtained (E/Z = 85:15). This result points out
that the transfer of a vinyl group is not preferred over the

transfer of an aryl group, and therefore indicates that the rear-
rangement is more likely to go through a s-bond breaking

process rather than a p-addition, as for the latter an unfavora-

ble dearomatization has to occur. Example 6 b (possessing
three styryl moieties) further supports this hypothesis, as 7 was

obtained in 54 % and 3 a in 46 % GC-ratio. The non-statistical
distribution of products 3 a and 7 in both experiments also in-

dicates that the aryl moiety is—in such cases—a better trans-
ferable ligand than the styryl group.

In summary, the alkenyl moiety is more prone to oxidation

than the aryl groups (as concluded from quantum-chemical
calculations and selectivity experiments, see Figure 1 and

Scheme 6) and leads to an intermediate alkyl radical cationic
species [A] (Scheme 7). We then propose that further intramo-

lecular s-addition of one of the aryl moieties undergoes a rear-
rangement[17] towards intermediate [B] in which the C@C alkyl

radical bond can freely rotate and lead to the thermodynami-
cally favored trans product (E)-3 a. Oxygen probably interacts

with the reaction intermediates under formation of structure
[C] , as 3 ab was observed in traces under air and isolated in

37 % yield when the reaction was carried out under oxygen at-

mosphere. It is however important to note that product 3 ab
does not come from the oxidation of product 3 a under elec-

trochemical conditions, as confirmed by control experiments,

indicating a radical pathway.[14] Based on cyclovoltametry
(Figure 1), galvanostatic experiments (Scheme 2) and our find-

ings in the previous work on biaryl electro-coupling,[7] we
assume that no second oxidation has to occur during the for-
mation of the desired product 3 a.

In conclusion, we have developed a new conceptual ap-

proach to alkene derivatives through electro-olefination. A
simple strategy was assembled for the synthesis of alkenylbo-
rate salts (ATBs) through ligand exchanges on potassium tri-
fluoroborates. No purification of these salts was required for
the sequence to be pursued and deliver the expected coupling

compounds in moderate to good yields under electrochemical
oxidation. Such method represents an original and stereocon-

vergent alternative to the formation of functionalized olefins,
opening new ways of thinking about C@C bond disconnec-
tions.

Scheme 6. Electrocoupling of different mixed potassium tetraorganoborate
salts. [a] In situ generated following general procedure D[14] as follows for
6 a : 0.5 mmol 1 p and 1.0 mmol styrylmagnesium bromide. For 6 b :
0.5 mmol potassium trifluoro(4-fluorophenyl)borate and 1.5 mmol styrylmag-
nesium bromide. [b] Product distribution ratios are determined by GC analy-
sis on crude mixtures without isolation. Homocoupled biaryls are omitted
and not included in the GC-ratios for more clarity.

Scheme 7. Proposed mechanism for the electro-olefination of ATB 2 a.
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