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Abstract

Nicotine is known to affect cell proliferation and differentiation, two processes vital to proper

development of the mandible. The mandible, the lower jaw in mammals and fish, plays a cru-

cial role in craniofacial development. Malformation of the jaw can precipitate a plethora of

complications including disrupting development of the upper jaw, the palate, and or imped-

ing airway function. The purpose of this study was to test the hypothesis that in utero nico-

tine exposure alters the development of the murine mandible in a dose dependent manner.

To test this hypothesis, wild type C57BL6 mice were used to produce in utero nicotine

exposed litters by adding nicotine to the drinking water of pregnant dams at concentrations

of 0 μg/ml (control), 50 μg/ml (low), 100 μg/ml (medium), 200 μg/ml (high) throughout preg-

nancy to birth of litters mimicking clinically relevant nicotine exposures. Resultant pups

revealed no significant differences in body weight however, cephalometric investigation

revealed several dimensions affected by nicotine exposure including mandibular ramus

height, mandibular body height, and molar length. Histological investigation of molars

revealed an increase in proliferation and a decrease in apoptosis with nicotine exposure.

These results demonstrate the direct effects of nicotine on the developing mandible outside

the context of tobacco use, indicating that nicotine use including tobacco alternatives, ces-

sation methods, and electronic nicotine delivering products may disrupt normal growth and

development of the craniofacial complex.

Introduction

As of 2014, more than 3% of adults in the United States (US) (4% men, 3.5% women) used e-

cigarettes every day or some days [1]. This is similar to the 3.4% of the US population that uses

smokeless tobacco, but still pales in comparison to the 26.1% of the US population that uses

smoking tobacco. Altogether, more than 1 in 4 adults in the US are regularly exposed to
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nicotine [2]. Nicotine, a powerful psychoactive stimulant drug and the primary compound

found in tobaccos, most nicotine replacement therapeutics (NRT), as well as electronic nico-

tine delivering products (ENDS) has been linked to alterations of many cellular processes

including cell proliferation, age-related diseases, and birth defects [3–7]. Despite the link

between adverse birth outcomes of pre- and peri-natal nicotine exposure, research suggests

11% of US women continue to smoke or use alternative nicotine products through the third

trimester of pregnancy [8, 9]. Nicotine has been observed to cross the placenta during preg-

nancy allowing for circulation and concentration in developing fetal tissues [10].

The mandible, the lower jaw in mammals and fish, plays a crucial role in craniofacial devel-

opment by housing the teeth and forming an articulation with the cranium (the temporo-man-

dibular joint) [11]. Malformation of the jaw can precipitate a plethora of complications

including disrupting development of the upper jaw and the palate, impediment of the airway,

as well as altering the functional occlusion necessary for proper mastication and abnormal aes-

thetic appearance of the face [12]. Use of tobacco products during pregnancy has been linked

to disorders of the mandible and teeth [13]. However, little work has been done to isolate the

effects of nicotine in this paradigm.

As alternative pathways of nicotine use grow, including replacement therapies and ENDS,

the effects of nicotine exposure may increase. Proper growth and development of the mandible

requires tight control of cell proliferation, differentiation and ossification, processes nicotine

exposure is known to disrupt. Thus, it stands to reason nicotine may directly affect develop-

ment of the mandible. Here we investigated the direct effects of in utero nicotine exposure on

mandibular development, hypothesizing that alterations to mandibular form will occur in a

dose dependent manner.

Methods

Animal model and nicotine exposure

Wild type C57BL6 murine males and females (Jackson Laboratory, Bar Harbor, ME, USA)

were utilized to produce in utero nicotine exposed litters mimicking the effects of recurrent

nicotine exposure to the fetus. Nicotine (Sigma Aldrich, St. Louis, MO, USA, N3876) was

added to the drinking water of pregnant dams at concentrations of 0 μg/ml (control), 50 μg/ml

(low), 100 μg/ml (medium), or 200 μg/ml (high) throughout pregnancy and ceased at birth of

litters. As the range of nicotine consumption by nicotine users varies widely by individual and

mode of delivery, this range of doses mimics varying degrees of nicotine intake by active smok-

ers, the largest proportion of nicotine users in the US [14–19]. Male and female mice were

paired for 7 days at which point, males were removed to other pairings, or individual cages

and females continued nicotine treatment until birth of the litters at ~E20. As it is unlikely that

an individual would begin smoking during pregnancy, dams were pre-treated with nicotine

for three weeks prior to breeding during which time, collection of blood via retro-orbital

bleeding occurred weekly in the morning. Additionally, this pretreatment allowed for confir-

mation of nicotine consumption via assessment of the main metabolite of nicotine, cotinine.

Blood serum was isolated according to manufacturer protocol (Greiner Bio-one, Kremsunster,

Austria, MiniCollect Z Serum Sep.). Blood collection, and assessment of nicotine metabolism

via cotinine ELISA performed according to manufacturer protocol (Calbiotech, El Cajon, CA,

USA, CO096D-100) preceded breeding [20]. Animal use protocols were approved by the Med-

ical University of South Carolina Institutional Animal Care and Use Committee (AR#3403).

All breeding procedures were carried out in an Association for Assessment and Accreditation

of Laboratory Animal Care International accredited facility where all husbandry and related

services are provided by the Division of Laboratory Animal Resources. Both food and water,
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including nicotine supplemented water were made available ad libitum, and animals were

monitored daily for signs of dehydration and distress. All procedures and the reporting thereof

are in compliance with the Animal Research: Reporting in Vivo Experiments (ARRIVE)

guidelines (S1 Table) [21].

Cephalometric analysis

Pups from 2 or 3 litters resulting from the pre-treated paired breeding (Table 1) were grown

for 15 days, the age at which reliable radiographic images can be procured for cephalometric

analysis, then sacrificed using carbon dioxide asphyxiation with secondary cervical spine dislo-

cation [17, 22, 23]. All collected skulls were fixed with 4% paraformaldehyde, then switched to

70% Ethanol and bisected along the sagittal suture. Hemi-sections were radiographed laterally

using a Faxitron X-Ray imaging instrument (Faxitron X-Ray, Wheeling, IL, USA) and PPL

film (Carestream, NY, USA) following initial calibration. X-Ray images were scaled using a

radio opaque standard included in each image, digitized, and anatomical landmarks were

identified to facilitate cephalometric analysis (Fig 1A) [24]. Standard linear measurements

were captured using NIH ImageJ.

Histology

Since no sex specific differences were identified in the cephalometric analysis (p = 0.737) rep-

resentative (n = 4, 2 male, 2 female from separate litters) from each group (0 μg/ml (control),

50 μg/ml (low), 100 μg/ml (medium), or 200 μg/ml (high)) hemi-sected skulls were collected

and decalcified in 0.25M EDTA at pH7.4 for 14 days. Samples were then wash, dehydrated in

graded ethanol (70% - 100%), cleared in xylene and embedded in paraffin cut side down. His-

tological assessment was performed on at least three 8 μm sections at least 30 μm apart per

sample for analysis of the molars. Sections were stained with hematoxylin and eosin per stan-

dard methodology.

For immunohistochemistry, slides were subjected to epitope retrieval using Tris-EDTA

buffer (Caspase only) or Sodium Citrate buffer (PCNA only) and endogenous peroxidase

activity block with 3% hydrogen peroxide and then washed sections were blocked in 1% goat

serum with 1% bovine serum albumin. Sections were incubated with the following primary

antibodies at 4˚C overnight (Caspase) or 2 hours room temperature (PCNA): Proliferating

Cell Nuclear Antigen (PCNA) (AbCam, Cambridge, MA, USA, ab18197, 1:3000), Active Cas-

pase 3 (Caspase) (AbCam, ab2302, 1:75). Sections were washed and incubated with HRP con-

jugated secondary antibody for one hour (ab6721). Diaminobenzidine (DAB) (Vector

Laboratories, Bulingame, CA) chromagen was used to identify immunoreactive structures.

All stained slides were photographed for analysis (Olympus, Miami, FL, USA, TH4-100).

Measurements were conducted using CellSens imaging software (Olympus) measuring from

the most anterior to most posterior aspects of each structure (Fig 1B). Immunohistochemical

staining was quantified within the indicated area of interest surrounding the molars (Fig 1B)

Table 1. Sex demographics and nicotine exposures.

In Utero Nicotine Exposure (μg/ml)

0 50 100 200 Total

Sex Male 6 7 7 7 27

Female 7 5 5 6 23

Total 13 12 12 13 50

https://doi.org/10.1371/journal.pone.0218376.t001
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using Image J Software and the IHC Profiler Open Source Plugin for automated scoring of per-

cent positivity [25].

Statistics

Sex was used as a co-variate for cephalometric analyses by using a standard ANCOVA to

investigate dose interactions. Bonferroni post hoc analyses were use where appropriate. For

histological analyses, sex was pooled as no differences were identified between sexes in the

cephalometric analysis. Standard one way ANOVA were employed to investigate the dose

interactions and main effects were assessed using a standard ANCOVA to investigate dose

interactions. Violations of homogeneity of variance and normality were corrected using

Welch’s correction and transformations or use of non-parametric alternative tests. At least

10% of measures were repeated for each observer and all were significantly correlated. Differ-

ences were considered significant if p�0.05. Data are presented as mean ± standard error or

categorized by litter with the mean for males per exposure indicated with a black bar and the

mean for females per exposure indicated by a white bar.

Results

In utero exposure

Cotinine, the major metabolite of nicotine was measured in dams pretreated for three weeks

with the above nicotine doses in drinking water. All nicotine exposures modeled cotinine lev-

els mimicking active smoking (cotinine in serum>10ng/ml) (Fig 2A) [20]. Representative lat-

eral X-Rays from post-natal day 15 mice exposed in utero to 0 μg/ml (control), 50 μg/ml (low),

100 μg/ml (medium), or 200 μg/ml (high) nicotine are included in Fig 2B. Craniofacial abnor-

malities due to exposure are subtle. Individuals per exposure are balanced between nicotine

doses and sexes (Table 1). Weight at post-natal day 15 did not differ significantly with expo-

sure or sex (Fig 2C).

Fig 1. Mandible landmarks and measurement schematics. A) Cephalometric landmarks on murine mandible used for measurements.

Dark lines between points indicate measures used in this analysis. Schematic modified from Klingenberg et al. 2004. B) Representative

hematoxylin and eosin stained molars with lengths measured indicated with black lines, area of interest surrounding molars indicated in

yellow, and molars 1–3 identified.

https://doi.org/10.1371/journal.pone.0218376.g001

Nicotine affects mandible

PLOS ONE | https://doi.org/10.1371/journal.pone.0218376 June 13, 2019 4 / 11

https://doi.org/10.1371/journal.pone.0218376.g001
https://doi.org/10.1371/journal.pone.0218376


Fig 2. In Utero nicotine exposure model and cephalometric analysis of mandible. A) Nicotine metabolite cotinine is present at levels approximating

active smoking in the blood serum of dams pretreated for 3 weeks with nicotine in drinking water. B) Representative lateral digital X-Rays of 0 μg/ml

(control), 50 μg/ml (low), 100 μg/ml (medium), or 200 μg/ml (high) nicotine exposed post-natal day 15 mouse pups. C) In utero exposure to nicotine did

not reduce weight of post-natal day 15 mouse pups as compared to control. Data categorized by sex with mean per exposure indicated with grey bar. Total

mandibular length (D) did not vary with nicotine exposure, however, in utero exposure to high dose nicotine decreased the height of the ramus (E)
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Cephalometric analysis

Landmarks and measures are identified in Fig 1A. When controlling for sex, total mandibular

length did not vary with exposure (Fig 2D). Height of the ramus was decreased (p = 0.036)

with the highest nicotine exposure (200 μg/ml) as compared to the lowest (50 μg/ml) (Fig 2E).

Angular process height and condylar length did not vary with exposure (Fig 2F and 2G).

Molar length was significantly shorter in individuals exposed to the medium (100 μg/ml) dose

nicotine as compared to low (50 μg/ml) (p = 0.015) (Fig 2H). Neither mid nor posterior man-

dibular body height varied with nicotine exposure (Fig 2I), however anterior mandibular body

height was reduced in low dose (50 μg/ml) nicotine exposed individuals as compared to con-

trol (p = 0.05) (Fig 2I). No significant asymmetry was observed as a result of nicotine exposure

when right and left hemi-mandibles were compared for each individual by each exposure

group (p = 0.174). No significant differences in any measure were identified between sexes

(p = 0.737).

Histological analysis

In order to more specifically investigate the identified abnormalities with mandibular molar

development, representative specimen were sectioned, stained, imaged, and measured. Assess-

ment of individual molars did not indicate a change in size due to nicotine exposure (Fig 3A

and 3B). However, the combined length of molars 1 and 2 was reduced in high (200 μg/ml)

dose exposed individuals as compared to low dose (50 μg/ml) (p = 0.034) (Fig 3C). The total

length of molars 1, 2, and 3 together was not different between control and any of the nicotine

doses (Fig 3D).

As nicotine is known to affect cell cycle regulation [3–7], an additional assessment of cell

proliferation and death in the area surrounding the molars was conducted. High dose (200 μg/

ml) nicotine exposure increased proliferation (PCNA) in the area surrounding the molars as

compared to control (p = 0.003) and low dose (50 μg/ml) nicotine exposure (p = 0.03) (Fig 4A

and 4C). Apoptosis (Caspase) was reduced in individuals exposed to high dose (200 μg/ml)

nicotine as compared to control (p = 0.004), medium dose (100 μg/ml) nicotine (p = 0.009)

and low dose (50 μg/ml) nicotine (p = 0.002) (Fig 4B and 4D).

Discussion

Our data indicate that in utero nicotine exposure negatively effects mandibular development,

however, there was not a clear dose dependent response. Our confirmation of the exposure

model by measuring the cotinine levels of the pre-treated dams highlights the vast range of

cotinine levels that indicate active nicotine exposure [18, 19, 26]. The observed reduction in

cotinine in the highest dose of nicotine (200 μg/ml) may indicate less consumption of water in

those individuals, however animals were monitored for dehydration daily throughout the pre-

treatment, breeding, and pregnancy and no indication of dehydration was observed. This

reduction in cotinine may also be related to variable metabolism of nicotine[17–19, 27]. Unlike

in the human population, we did not observe a reduction in weight of the nicotine exposed

animals 15 days post-natal, indicating that if there was a reduction in birth weight associated

with in utero nicotine, it was regained quickly after birth in this murine model [3, 28].

significantly compared to low dose nicotine, perhaps indicating a dose dependent effect. Neither angular process height (F) nor condylar length (G) varied

significantly with exposure. Molar length was significantly reduced between low and medium dose nicotine (H).The height of the body of the mandible did

not vary in the mid or posterior measures but was reduced with low dose nicotine (50 μg/ml compared control) anteriorly (I). Data categorized by litter

with mean for males per exposure indicated with black bar and mean for females per exposure indicated with white bar. �p<0.05 for differences between

doses. No significant differences were identified between sexes.

https://doi.org/10.1371/journal.pone.0218376.g002
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The cephalometric analysis of the mandible indicated only subtle (not statistically signifi-

cant) changes to the shape at this young stage of development. It has been established that

effects of nicotine begin pre-natally and extend post-natally, even in the craniofacial skeleton

[17, 29]. Thus, it is possible that a more dramatic effect would be observed in more aged ani-

mals due to compounding of small changes over time. Subtle changes early in development

may be biologically significant though they may not be statistically significant at this timepoint.

The shorter ramus, shorter anterior mandibular body, and abnormal molar length observed

may be the first signs of changes in growth trajectory that can contribute to growth distur-

bances that compound throughout growth [30, 31]. We did not observe the predicted additive

effects of increasing dosages of nicotine. The differences we have identified between nicotine

doses may indicate that each dose of nicotine has specific effects, and each individual may

have a different level of tolerance for this insult. Further, as we have only investigated one age

of exposed individual it is possible that redundancies in the pattern of mandibular growth and

development allow for compensation for this teratogenic insult.

The histological assessment of murine molars corroborated to some degree; the changes

observed in the cephalometric analysis indicating that erupted molar length is reduced with

nicotine exposure. This is also in agreement with research in the human population that indi-

cates that maternal nicotine use leads to a marginal reduction in tooth size [13]. In general, we

observed that the molars of individuals exposed to the highest dose of nicotine (200 μg/ml)

had reduced length. It is possible that the reduction in length of the erupted molars (M1, M2)

in particular is the result of a delay in molar eruption. Further, nicotine may also delay the nor-

mal cytodifferentiation required to form dentin and enamel and the rest of the complex struc-

ture of molars [29].

Fig 3. Histological analysis of mandibular molars. A) Representative hematoxylin and eosin stained sections of mandibular molars from

individuals exposed to 0 μg/ml (control), 50 μg/ml (low), 100 μg/ml (medium), or 200 μg/ml (high) nicotine in utero. Molars 1–3 are marked M1,

M2, M3 with tongue above for orientation. B) Histomorphometric analysis of molar length for M1, M2, M3 indicate no change with exposure. C)

Length of erupted molars 1 and 2 together is reduced with the highest nicotine dose compared to the low dose however, the total molar length

does not vary (D). n = 4 per exposure Scale Bar = 500 μm. �p<0.05.

https://doi.org/10.1371/journal.pone.0218376.g003
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Differences between the cephalometric and histological assessments may be due to artifacts

of processing including the necessary decalcification used to prepare samples for histological

assessment. Thus, the more directed assessment of cell proliferation and apoptosis in the area

of the molars provides insight into the effects of in utero nicotine exposure on tooth develop-

ment. The significant increase in proliferation and decrease in apoptosis noted with the high

dose (200 μg/ml) nicotine exposure in our study parallels other studies which indicate that nic-

otine potentially effects the overall shape of teeth [32]. Further, nicotine is known to negatively

affect odontogenesis by delaying dentin and enamel formation and interfering with cellular

processes necessary for tooth development [33]. The increase in proliferation surrounding the

molars observed with nicotine exposure may be evidence of delayed tooth formation as prolif-

erating cells may not be also differentiating appropriately. This delay may precipitate addi-

tional clinical dental issues including an increased need for orthodontics and an increased risk

for caries [13, 34]. Proper tooth development relies on coordinated cell proliferations, differen-

tiation, and apoptosis. Our data indicate that in utero exposure to nicotine may negatively

Fig 4. Cell proliferation and death in mandibular molars. A-B) Representative histological images of mandibular molars stained

for Proliferating Cell Nuclear Antigen (PCNA, A) and Active Caspase 3 (Caspase, B) from individuals exposed to 0 μg/ml (control),

50 μg/ml (low), 100 μg/ml (medium), or 200 μg/ml (high) nicotine in utero. Black horizontal arrows indicate positive staining and

white vertical arrows indicate negative cells for each target. C) Quantification of percent of positive staining within the area of

interest surrounding the molars (Fig 2B) indicates increasing proliferation with nicotine exposure. D) Apoptosis as indicated by

positive caspase staining was reduced in the area of interest surrounding the molars in individuals exposed to high dose nicotine as

compared to control and all other nicotine doses. n = 4 per exposure Scale Bar = 500 μm. �p<0.05 ��p<0.01.

https://doi.org/10.1371/journal.pone.0218376.g004
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affect this coordination leading to aberrant and potentially persistent mandibular

development.

Conclusions

These results demonstrate the direct effects of nicotine on the developing mandible, outside

the context of tobacco use. The significant alteration to the growth of the ramus, body, and

mandibular molars could have additional consequences as individuals continue to grow post-

natally. Importantly, these data indicate that tobacco alternatives, including cessation methods

and ENDS that incorporate nicotine, which may be marketed as safer than cigarette use, also

disrupt normal growth and development of the craniofacial complex.
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