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Abstract

Calculation of cleavage entropies allows to quantify, map and compare protease substrate
specificity by an information entropy based approach. The metric intrinsically depends on
the number of experimentally determined substrates (data points). Thus a statistical analy-
sis of its numerical stability is crucial to estimate the systematic error made by estimating
specificity based on a limited number of substrates. In this contribution, we show the mathe-
matical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entro-
pies are calculated using experimental cleavage data and modeled extreme cases. By
analyzing the underlying mathematics and applying statistical tools, a linear dependence of
the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite
number of samples and to estimate the errors. Analyzing the errors, a minimum number of
30 substrates was found to be necessary to characterize substrate specificity, in terms of
amino acid variability, for a protease (S4-S4’) with an uncertainty of 5 percent. Therefore,
we encourage experimental researchers in the protease field to record specificity profiles of
novel proteases aiming to identify at least 30 peptide substrates of maximum sequence
diversity. We expect a full characterization of protease specificity helpful to rationalize bio-
logical functions of proteases and to assist rational drug design.

Introduction

Proteases are enzymes that proteolytically cleave peptide bonds and account for around two
percent of all human gene products [1]. Additionally, they account for one to five percent of
the genome of infectious organisms, rendering them attractive drug targets [2]. Proteases are
involved in a variety of physiological processes including food digestion [3] as well as complex
signaling cascades such as for example the apoptosis pathway [4], the blood coagulation cas-
cade [5] or the complement system [6].
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The broad range of biological functions is reflected in highly specialized substrate specifici-
ties of proteases. While some proteases are highly promiscuous and cleave a variety of sub-
strates, others show high specificity for particular substrate sequences [7]. Substrate specificity
of a protease is determined by molecular interactions at the protein-protein interface of prote-
ase and substrate in the binding cleft of the protease. Amino acid side chains of the substrate
are accommodated within subpockets of the protease. A unique nomenclature for the subpock-
ets of proteases has been developed by Schechter and Berger [8]: The substrate's scissile bond is
assigned between the residues P1 (N-terminal) and P1' (C-terminal), indices are incremented
for further residues in both direction. Protease subpockets are numbered accordingly Sn-Sn/,
ensuring consistent indexing between interacting regions. Binding modes of substrate peptides
are highly similar as the substrate is locked in an extended beta conformation in the binding
cleft [9]. This arrangement typically involves residues P3-P3', in case of elastase even the P5
residue is tightly bound to the protease [10].

Several techniques have been developed to experimentally probe substrate specificity of pro-
teases as reviewed by Poreba and Drag [11] as well as Diamond [12]. They include diverse
experimental approaches based on chromatography [13], phage display [14], combinatorial
substrate libraries [15, 16] as well as usage of fluorogenic substrates [17] and labeling tech-
niques [18, 19]. The MEROPS database [20] hosts an annotated collection of protease cleavage
sites of diverse experimental sources facilitating data mining and comparison of protease speci-
ficity [21]. Similar services with smaller data sets on proteolytic cleavage events are available
via CutDB and PMAP [22, 23].

Recently, we have developed metrics to quantify, map, and compare protease specificity.
Subpocket-wise cleavage entropies allow to quantify specificity of protease subpockets as well
as overall specificity [24]. Cleavage entropies S; are based on experimental substrate sequences
from the MEROPS database. They are calculated as a Shannon entropy [25] over the probabil-
ity of occurrence normalized to the natural occurrence p, ; of amino acids a at each substrate
position i. Cleavage entropies close to the maximum of one resemble unspecific substrate cleav-
age, whereas low values close to zero indicate stringent substrate recognition.

20
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Cleavage entropies were found helpful for direct comparison of substrate specificities of pro-
teases, detection of sub-site cooperativities as well as tracing protease specificity along evolution
[24]. Nevertheless it should be mentioned that the cleavage entropy is only measuring the pro-
miscuity of the protease. To compare how similar the substrates of two protease are other met-
rics, like substrate similarity should be used [26]. We use the term substrate specificity as a
measurement of substrate variability and not of substrate similarity. Furthermore it should be
added that the cleavage entropy is measuring the promiscuity and not the sequence logo of a
protease [27]. Molecular origins of protease specificity can be investigated based on subpocket-
wise cleavage entropies, as they can directly be mapped to protease pockets and compared to
local binding site characteristics [28]. Furthermore, substrate-guided techniques can be used to
intuitively group proteases based on their binding preferences [26].

As all methods described rely on experimental substrate data, a critical assessment of the
data basis is crucial. In the literature, the convergence behavior of entropy measurements has
been published already decades ago [29, 30] and has been intensively studied since then up to
now [31]. Different methods to correct the error due to finite samples, based on the statistics of
information entropy, were reported [32-35]. These approaches are commonly used in a variety
of fields not only including biologically and chemically relevant information like DNA
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sequences [36, 37] and neural spike trains [38], but also other data like the English language
[39]. A common approach is to estimate the underlying probability function and use the result
to estimate the entropy of the real probability function using rank-ordered histogram-based
approaches [32, 40] or Bayesian statistics like approaches [41]. As estimating the probability
distribution from a given sample can be complicated and computationally demanding, an eas-
ier and faster access to an infinite sample approximation is of general interest. In this work, a
simple approach to correct the bias of the cleavage entropy due to a limited number of peptide
samples is presented. The underlying mathematics are analyzed in order to come up with a
mathematically valid approach, converging to the exact value for an infinite number of sub-
strates. To further validate the model, test cases are analyzed, and the minimum number of
substrates to characterize a protease in terms of subpocket-wise cleavage entropy is calculated.
The performance is further compared with known entropy estimators from literature [33, 42].
To the best of our knowledge this is the first time that correction algorithms for finite samples
are used in the context of protease substrate data.

Methods

If the total cleavage behavior of a protease with eight subpockets (e.g. S4-54'), including all nat-
ural possible octapeptides substrates (20 natural amino acids at each position), should be inves-
tigated, a total number of 208 (= 25,600,000,000) substrates would have to be tested. Since this
is practically not possible, the probabilities p of finding a specific AA at a specific position i in a
substrate have to be estimated by testing a subset of these octapeptides and calculating esti-
mated probabilities q. The empirical probability for an event k, ; in our case the occurrence of
the amino acid a in one of the eight pockets i, can be calculated as the quotient of occurrence of
amino acid a, with the occurrence of any amino acid in this pocket (Eq 2) [43].

plk) ~atk) ==

@
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The entropy measurement introduced above uses real probabilities p, but in practice only
estimated probabilities q can be used. This simplification leads to two possible types of errors
in the entropy measurement: Firstly, the statistical error of the metric, which can be expressed/
measured by the variance [42]. Secondly, also a bias due to the limited number of samples is
possible. So in the general case of any Shannon entropy based metric Eq 3 is true. The expecta-
tion value of the entropy cannot be split in the expectation value of the probability and the log-
arithmic probability.

20 20

(S;) = _Z<qa,i log,, qu,i> # _Z <qa,i> <10g20 qa,i> (3)

a=1 a=1

The unequal sign would only become an equal sign if the values of q, ; and log(q, ;) were
independent from each other. This is not the case as the logarithmic function log(q, ) is strictly
monotonically increasing with q,; (positive correlation) resulting in a general underestimation
of the entropy. The aim of this paper is to develop a method to reduce this systematic underes-
timation and also add a significance value to the estimated and already published values [24].

Binomial distribution to analyze the underlying mathematics

To analyze the substrate variability of proteases, a mathematical description of the process is
necessary. A way to mathematically describe the process of testing sampled substrates out of a
larger set is the binomial distribution. In this ansatz, the experimental bias of the
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experimentalist, who most probably tends to test peptides similar to known substrates, or of
the experiment itself, e.g. the predigesting process in proteomics [44], is neglected. The proba-
bility g, ;(k) of measuring k substrates with an amino acid a on the position i (e.g. P1) is a func-
tion of the total number of known substrates n and the real probability that this substrate is
accepted in this pocket p,; (Eq 4). For all modelled data the natural occurrence of amino acids
is neglected, but for the analysis of real proteases the probabilities are corrected for their abun-
dance in the proteome [45].

qu‘i(k) = (Z)Pl;i(l - pa,i)"_k (4)

Inserting the probability function into the definition of the cleavage entropy (Eq 1) expan-
sion and reordering of the terms leads to Eq 5.

20
<Si.n> = _an.i logQU(qaﬁi)
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(5)

This equation provides a mathematical description for the expectation value of the mea-
sured entropy S; , as a function of the real entropy and an error term. S, , is defined as entropy
calculated with the empirical probabilities without any correction algorithm, including n sam-
ples (the classically reported value). This term is further called the measured or naive entropy.
A detailed explanation how to derive Eq 5 is given in the Supporting Information.

The first term on the right hand side of the second equal sign corresponds to the "real
entropy" or the entropy calculated with an infinite number of samples. In the following this
term is called the real entropy or the infinite sample entropy. The second term on the right side
of the equal sign describes the difference between the real entropy and the measured entropy,
which corresponds to the error introduced due to limited sample size.

This term is further called the error or correction term. Moving the correction term in Eq 5
leads to an equation for the infinite sample entropy as a function of the measured entropy and
the error term (Eq 6).

20
<Si,oo> = _E :paj log‘Z(J(pu.i)
a=1

20 1 1 20 n kl k n L ) ek
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a=1 k=1

(6)

Using a linear regression to calculate the real entropy

The naive entropy S, can be calculated directly from the substrate data, as described by Fuchs
et al. [24]. The still unknown term is the error term, which is investigated closer in the next
paragraph.

It is possible to split the error term into two parts. The first part only contains the scaling
term 1/n and the second part the double-sum, which is further called “Pseudo-constant”. With
a second order Taylor approximation of the logarithmic function it can be shown that the sum
tends to be constant for a high value of samples n (for 100 samples with an equal distribution
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Pseudo-Constant

the error is smaller than four percent) and so the error term is a linear function with respect to
the reciprocal number of samples [46]. To gain a better insight in the behavior of the term
without looking in detail at the mathematics, the sum is plotted as a function of the number of
samples in Fig 1.

The dependence of the Pseudo-constant on the probabilities p,; and on the number of sam-
ples n, and the convergence with an increasing number of samples is presented in Fig 1. The
convergence is slower for pockets with a very low probability to accept individual amino acids
(18 AAs with 1% probability and 2 AAs with 41% probability; Fig 1: Specific pocket with rare
events). Due to the low probability of these events, the influence on the calculated entropy is
low. In the further manuscript we will prove that the most challenging case for the entropy

Unspecific Pocket
, - — - Specific Pocket
[ —-—- Specific Pocket with Rare Events

Number of Samples (n)

Fig 1. Dependence of the Pseudo-constant C with the number of samples n. The black full line indicates the value for an unspecific pocket, the black
dotted lines indicate the region where the value of the Pseudo-constant is less than 15% off compared to the infinite number value. The green dashed dotted
line shows the behavior of the constant for a specific pocket and the blue dashed line of a specific pocket with rare events (p<1%).

doi:10.1371/journal.pone.0142658.g001
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measurement, in terms of convergence is the case of the unspecific pocket, where every amino
acid has the same likelihood to appear in the pocket.

The linear behavior of the pseudo-constant can be used for a linear regression approach to
remove the error term in Eq 5. This can be done by extrapolating the calculated entropy to 1/n
equals 0, or in other words to the infinite sample value representing complete sampling of the
substrate space.

The problem of the model is that the value of the Pseudo-constant is not known. A way
around this problem is using a linear regression (Eq 7). One point of the regression is the naive
entropy S,; calculated with all substrates n;. To create the second necessary point for the linear
regression, bootstrapping is used [47], which means a random subset of substrates of size n, is
chosen and the entropy value S,,, for this subset is calculated. By repeating this process 100
times and using the average value a good approximation for a second data point can be cre-

ated.
n n
S =S ! S 2 7
~ " <”1 - ”2) o (”2 - ”1) @)

The linear regression allows estimation of the real entropy value as the intercept of the mea-
sured entropy (in 1/n space). The dashed lines in Fig 1 are bordering the region where the
value of the constant is less than 15% off compared to the value for an infinite number of sam-
ples in case of an unspecific pocket. This means when the constant is in that region, at least
85% of the systematic error is removed. To achieve this the minimum number of samples is 30.

Error estimation—Variance analysis

The previous chapter shows that a large part of the systematic error can be removed by the
approach presented. Nevertheless, it should be mentioned that only the systematic error is cor-
rected by this approach. To predict a confidence interval of the entropy, the variance has to be
taken into account. In general, a higher number of samples also reduces the uncertainty due to
statistical fluctuations (variance).

The formula for the variance of a binomial distribution is known and by applying "Gauf3's
error propagation rules" the variance for the measured entropy can be calculated (formula 8)
[46].

20

Var(8,(n)) = Z M(log% 9ai + Si(”))z (8)
a=1
To calculate the uncertainty of the estimated value, again the "Gauf3's error propagation
rules” are applied to Eq 7. As the uncertainty of the data point created by bootstrapping cannot
be smaller than the error of the data point using all samples, we assume that the standard devia-
tion is the same for both points. The bootstrapping process is repeated 100 times, therefore the
statistical error of this process is not significant compared to the error due to limited sampling.

2 2
AS,. = \/ (Asn n ) + <Asn. o ) 9)
'n, —ny *on,—n

By applying the presented rules for removing the systematic error of the entropy and by

coming up with a definition for the variance it is possible to calculate corrected entropy values
with a confidence interval. In other words, it is possible to predict how many substrates we
need to significantly characterize a protease in terms of substrate specificity.
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Results
Modeled extreme cases

Extreme cases of cleavage entropies were investigated with the program Mathematica [48].
Starting from a given probability function p, we analyzed the possible measured probabilities q
and the values we got from applying the equations derived in the previous sections. Three dif-
ferent extreme cases were investigated, including the totally specific pocket, a specific pocket
with rare events (pockets with p,; = 1%) and the totally unspecific pocket.

Totally specific pocket. In the extreme case of a totally specific pocket, only one amino
acid (AA) is accepted, which means that the correct value is already known after one substrate
is tested since measuring of negative events (substrates which cannot be cleaved) is not possi-
ble. The entropy of the pocket is zero and is not changing with an increasing number of sam-
ples. Also the uncertainty is always zero for this case. The presented method is also valid in this
case (with a Pseudo-constant of zero for the linear fit).

A probably more realistic scenario is a pocket with 70% probability for one AA and a 30%
probability to find a second (different) AA in this pocket. In Fig 2 (upper right) the full line
indicates the expectation values of the measured entropy; the shades are the confidence inter-
vals (including one standard deviation) of the entropy plotted against the number of samples
and the reciprocal value of the number of samples (Fig 3 upper right). The real space plot
shows that the value is in close proximity to the real value already for a small number of sam-
ples. As expected, the reciprocal plot shows an almost linear behavior. This result shows that in
the case of a very specific pockets it is not of major interest to improve the measured entropy
values because the measured value and the real values are very close together. Already with a
very low number of samples, e.g. number of substrates equals 20 the naive entropy gives a rea-
sonable result. Still, it should be noted that for only 253 out of 3999 proteases in MEROPS
(9.12) more than 20 substrates are annotated.

Totally unspecific pocket. The most challenging case is the totally unspecific pocket. The
totally unspecific pocket is a pocket in which every AA is found with the same probability,
resulting in p,; = 0.05 for every AA. In comparison to the values for the specific pocket the
error made for an unspecific pocket is significantly higher. This is the case where an extrapola-
tion of the entropy value appears necessary. The correction algorithm presented in this paper
shows a significant improvement compared to uncorrected values, as the majority of the sys-
tematic error is removed. It should be mentioned that the standard deviation increases; in par-
ticular for substrate numbers lower than 50. However, this is compensated by the
improvement in the estimation of the expectation value. Furthermore, we show in the Support-
ing Information that the simplifications made by calculating the error lead to an overestima-
tion of the mathematical expected standard deviation compared to the measured (statistical)
standard deviation.

The reciprocal plot of the entropy (Fig 3 upper left) shows that a nearly linear dependence,
in the reciprocal space of the substrates count, is given for more than 20 samples for the
entropy of an unspecific pocket. This plot indicates that the value of the slope of the correction
and in a further step the entropy will be underestimated in the region between 10 to 20 samples
and between 20 to 50 samples slightly overestimated.

Rare events. The possibility of rare events results in a general underestimation of the cor-
rection factor. This is due to the slightly non-linear behavior of the estimated entropy (see Fig
1). Nevertheless, the results still improve compared to the uncorrected entropies (Fig 3 lower
right).

The entropy value for an infinite number of substrates will also depend on how many sam-
ples n, are used to create the subset for the second data point of the linear regression by the
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bootstrapping process. Two different factors have to be taken into account: If the number n, is
chosen very close to n; or n (total number of samples), only a small Ax (An) value is used to cal-
culate the slope, which means that also a small error in the value for Ay (AS) has a massive
influence on the results. In contrast, if a value too far away is chosen, resulting in a small n,, the
linear dependence is not given for the whole area. A closer look at this effect is presented in the
Supporting Information. To summarize the results given there: For a small number of sub-
strates a small ratio between n, to n; is favorable and for more samples in the database a higher
ratio improves the result. Reasonable results can be achieved for all numbers of substrates by
using the empirically derived formula 10.

Vo n x>20

n, = nl (10)
— x <20
2
it Unspecific Pocket Bty Specific Pocket
10424 II — 0.30
LSS
D 0.9 s“\::‘\ D 0.25-
2 &L 2
o} && o
£ e s”&“ £ -
§ [ 5
el -
o
Q&
0.7-
04610 Py e 0.1010 ————r ———n
Number of Samples (n) Number of Samples (n)
051 Specific Pocket
with Rare Events
0.4
TR L o N
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é&:&&-”

0'110 100 1000
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Fig 2. Trend of the measured entropy and estimated entropy with the number of known substrates. The cases of a totally unspecific pocket (upper
left), an unspecific pocket (upper right) and an unspecific pocket with rare events (lower left) are shown. The filled areas correspond to the possible measured
values including the standard deviation.

doi:10.1371/journal.pone.0142658.9002
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Fig 3. Trend of the measured and estimated entropy with the reciprocal number of known substrates. The cases of a totally unspecific pocket (upper
left), an unspecific pocket (upper right) and an unspecific pocket with rare events (lower left) are shown. The filled areas correspond to the possible measured

values including the standard deviation.

doi:10.1371/journal.pone.0142658.g003

Test case trypsin

The protease with the most entries in the MEROPS database is Trypsin-1. More than 10,000

known substrates are included in this database for the pockets S4 to S4’. It can be assumed that
the values of the cleavage entropy for 10,000 substrates are very close to the values for an infi-
nite number of substrates. The present approach is tested by taking a random subset of trypsin
substrates and predicting the values based on these subsets. This procedure is repeated 1,000
times, allowing us to calculate a standard deviation and an average value. Subsets of 10, 20, 30,
50, 100, 200, 300, 500, 1000, 2000, 5000 and 10000 are taken from the data set. Comparison
between the cleavage entropy with all known substrates and the expectation values from the
subsets is shown in Fig 4. The statistically measured variance (plotted in Fig 4) is compared in
the Supporting Information with the mathematically calculated variance.

Fig 4 demonstrates a slightly higher variance for the extrapolated values, but their mean
value is significantly closer to the real value, especially for the case of a small substrate set for
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Fig 4. Trend of the naive and estimated entropy for trypsin pocket S4, S1 and the sum of S4-S4’pockets. The behavior of the corrected entropy (black
line) with the number of known substrates. The red line is the real/infinite sample entropy and the blue line corresponds to the naive estimated entropy value.
Trend is plotted for S4 (upper left), S1 (upper right), and the sum of S4 to S4’ (lower left).

doi:10.1371/journal.pone.0142658.9004

the description of the S1 (upper left). Almost the entire systematic error is gone compared to
the measured value. To achieve a result which is only 10% off (confidence interval of 10%), 30
substrates (for the worst case of an unspecific pocket) are needed.

This again supports the finding that 30 substrates are necessary and sufficient to character-
ize the cleavage entropy of a protease, in a way that the specificity of a protease with an error
less than ten percent can be predicted. For the total cleavage entropy of the protease trypsin we
came even closer to the real value and are only off by 5% or less for 30 experimentally found
substrates.

Comparison of Trypsin—Thrombin—Factor Xa

By applying the formulas on different proteases we hope to get a broader insight into the speci-
ficity of these proteases. For that case we are looking at the digestive enzyme trypsin and two
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Table 1. Naive and extrapolated cleavage entropies for Trypsin, Thrombin and Factor Xa: The cleavage entropies for these three proteases are given
for the 8 subpockets S4-S4’ and the total (sum) cleavage entropy. Data from MEROPS (9.12).

Protein Known Substates (n) Entropy S4 S3 S2 S1 S1' S2' S3' S4' Total
Trypsin 14083 not corrected 0.986 0.991 0.99 0.231 0.975 0.993 0.991 0.99 7.146
+0.001  +0.001 +0.001 +0.001  +0.001 £0.001 +0.001  +0.001  +0.002
corrected 0.986 0.991 0.99 0.231 0.975 0.993 0.991 0.99 7.149
+0.001  +0.001 +0.001 +0.001 +0.001 +0.001 +0.001 +0.001  +0.003

Thrombin 185 not corrected 0.892 0.971 0.635 0.176 0.754 0.937 0.901 0.945 6.211
+0.014  +0.01 $0.025 +0.022 +0.019 +0.009 +0.013 +0.011  +0.046
corrected 0.917 0.998 0.650 0.178 0.783 0.957 0.930 0.974 6.387
£0.018  #0.012 +0.030 +0.026 +0.025 +0.013 #0.016  +0.014  +0.057

fXa 59 not corrected 0.787 0.788 0.57 0.132 0.72 0.731 0.859 0.779 5.368
+0.034  +0.031 +0.034 +0.025 +0.082 +0.039 +0.025 +0.028  +0.089

corrected 0.851 0.835 0.607 0.137 0.791 0.789 0.935 0.848 5.793

+0.049 +0.045 +0.048 #0.085 #0.056 +0.068 +0.044 +0.050 +0.142
doi:10.1371/journal.pone.0142658.t001

enzymes involved in the blood coagulation cascade, factor Xa (fXa) and thrombin, 3 proteases
with similar substrate preferences [49]. Without applying correction algorithms it is easy to see
that trypsin has only one selective pocket S1. The sub-pocket-wise cleavage entropies for all
other pockets are higher than 0.98, which means they are very close to be completely unspe-
cific. To decide if the pockets for different proteases are significantly different, the corrected
values are compared. For thrombin we also have a specific S1 pocket but also the pockets S2
and the S1' site show specificity, whereas all other pockets show nearly no specificity. Compar-
ing the two blood coagulation proteins and their subpocket-wise variabilities (see Table 1), a
significant difference in variability is found for the pockets S3 and S2’, whereas the other 5
pockets show no statistically significant difference. These two pockets are more selective in fXa
compared to thrombin.

Comparison to other estimators

In this paragraph the estimator presented in this work is compared to known entropy estima-
tors [31, 33, 35, 50, 51]. A detailed description of Bayesian entropy estimation approach, which
seems to be not suitable for this problem is given in the Supporting Information. Therefore
substrate subsets of trypsin are taken from the MEROPS database and the entropy is calculated
with those different estimators. Fig 5 shows the result as a function of the substrate number
(number of samples: logarithmic axis). Top left shows the behavior for the unspecific pocket
S4. The worst assumption for this pocket is the uncorrected entropy just by applying the for-
mula for substrate entropy without any correction estimator. A significant improvement is the
addition of the square root of samples to correct the term. A slightly better result can be
achieved by using the digamma function. A further modification of the estimator published by
Grassberger and co-workers [33] gives again only a slightly better value. Our estimator is sig-
nificantly outperforming the other estimators in a range between 30 to 100 samples. This is the
most interesting range for estimating substrate entropies. If we have less than 30 samples, it is
not possible to describe the behavior of the protease correctly and for more than 100 substrates
the cleavage entropy is already well estimated and the difference between estimators is negligi-
ble. So the presented approach can reduce the amount of substrates needed for estimating the
correct values. Once more we want to highlight the fact that unselective pockets are the hardest
to describe accurately in terms of cleavage entropy.
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Fig 5. Comparison of the different entropy estimators. The estimation process presented in this work is outperforming the compared published estimators.
doi:10.1371/journal.pone.0142658.9g005

In contrast to the S4, the pocket S1 is a specific pocket only allowing the accommodation of
two different substrate amino acids. For this pocket all estimators are performing equally well.
Our estimator shows the biggest deviation for a sample number of 10. As a substrate number
of 10 substrates is too low to characterize substrate specificity, this value can be neglected. The
overall cleavage entropy, over all eight pockets, is well estimated by our estimator. The rank
order and the values are very similar to the case of the S4 pocket. As seven out of the eight
pockets are similar to S4 this result is the logic consequence. Analysis of degradation enzymes
like trypsin are the hardest cases, as these enzymes are the most unspecific. Enzymes involved
in signal processes with a higher specificity can be described with the same number of sub-

strates at least equally well.

Discussion

Initially, proteases were simply seen as protein-degrading enzymes, showing only limited sub-
strate selectivity. More recently, their importance for cellular signaling processes has been
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Naive Specificity (S)

A

reported [52]. It is important to understand proteases in terms of specificity and variability
more accurately in order to understand the possible interactions in the signaling pathways.
Furthermore, a protease cannot be seen independently, instead proteolytic enzymes have to be
seen in a more global context as they influence each other in cascades, also determined by spec-
ificity [53].

These properties render proteases attractive targets for drug discovery. One of the main
problems with protease drug targets is to selectively hit one single protease [54]. In order to
achieve this, a better understanding of substrate specificity is crucial. In this paper the conver-
gence behavior of the cleavage entropy as a metric for protease specificity is investigated and
based on the results a new estimation process for a limited number of samples is tested. The
substrate independent estimator of this work makes it possible to compare proteases in terms
of specificity with different amounts of experimentally found substrates. This easier

Substrate Data:

AMCR-|-DMGP
ANGR-|-DGYA
UILK-|-DGGP

" ..
Infinite ~% .
L S
Sample &, [ &
Specificity "1
Extrapolation

~ A
\
‘\

Bootstrapping

Linear
i ~
Regression ~

Reciprocal of Substrates (*/,)

Fig 6. Systematic sketch of the estimation process for the corrected cleavage entropy. Based on experimental substrate data the specificity A is
calculated. Through bootstrapping a subset is created and the specificity of this subset is calculated to generate B. By performing a linear fit and extrapolating
the specificity to 0 in 1/n space we estimate the specificity for infinite substrates.

doi:10.1371/journal.pone.0142658.9g006
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comparison can facilitate drug design processes as specificity and selectivity are key aspects in
drug design, reducing side effects.

Fig 6 schematically shows the process of entropy correction presented in this contribution.
Using the set of substrate sequences as input, the data point A is calculated by applying the
equation for the naive substrate entropy (formula 1). Using bootstrapping, a second data set
was created and by applying the same formula on this subset the point B was created. Due to
the linear convergence behavior of the entropy with the reciprocal substrate number (%), a lin-
ear regression based on these two points may be performed. By extrapolating the regression
towards (1 = ()) it is possible to extract the estimated infinite sample substrate entropy as the
intercept of the vertical axis. A Microsoft Excel Macro is provided, allowing the reader to enter
substrate data and obtain the corrected entropies based on the algorithm presented in this
work.

The new estimator outperforms the tested estimators from the literature. Based on the anal-
ysis and the convergence behavior of the estimator and the corresponding variance we found
that a minimum of 30 substrates is required to reliable calculate the exact cleavage entropy
value with a maximum error of 10%. Therefore, we encourage experimental researchers in the
protease field to record specificity profiles of novel proteases aiming to identify at least 30 pep-
tide substrates of maximum sequence diversity.

Similar problems of entropy estimation from finite sample size occur not only in the field of
protease research. The problem of finite substrate samples occurs in all disciplines of the
‘omics field, including systems like single nucleotide polymorphism [55], endonucleases [56],
ribonucleases [57] and transcription factors [58]. The presented extrapolation technique can
be expanded to most of these cases and the critical review of the convergence behavior should
be able to support statistical analysis in these fields.

Supporting Information

S1 Fig. Comparison of the statistical calculated standard deviation and the mathematical
derived standard deviation. Mathematical standard deviation was calculated according to Eq
1 using the average value of 100 subsamples. The entropy variances for the naive estimation
(left) and for entropies employing our correction algorithm (right) are presented.

(TIF)

$2 Fig. Comparison of the different bootstrapping subsets for the trypsin test case. Differ-
ent subsets sizes for bootstrapping were tested. For low substrate numbers a smaller ratio
between total substrate number and subset substrates lead to better results. However, for higher
total substrate values the opposite is the case. The corrected entropy values using different sub-
set sizes are shown for the substrate position S4 (upper-left), S1 (upper right), and the sum of
$4-S4° (bottom left).

(TIF)

S3 Fig. Comparison of the different priors for the Bayesian statistics approach. Different
values of B (prior weight) were tested. A high value of B is hindering the metric to get correct
values for specific pockets, but a too low value of B is not improving the results significantly.
The obtained entropy values calculated with different B values are shown for the substrate posi-
tion S4 (upper-left), S1 (upper right), and the sum of S4-S4° (bottom left).

(TIF)

S1 File. ProteaseSpecificityCalculator. Excel sheet including macros to calculate naive and
corrected cleavage entropies.
(XLSM)
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S1 Text. Error comparison, derivation of Eq 5, influence of bootstrapping subset size, and
Bayesian entropy estimation.
(PDF)
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