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Control of cytoskeletal dynamics during cellular responses to pore forming toxins
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ABSTRACT
Following damage by pore forming toxins (PFTs) host cells engage repair processes and display
profound cytoskeletal remodeling and concomitant plasma membrane (PM) blebbing. We have
recently demonstrated that host cells utilize similar mechanisms to control cytoskeletal dynamics in
response to PFTs and during cell migration. This involves assembly of cortical actomyosin bundles,
reorganisation of the endoplasmic reticulum (ER) network, and the interaction between the ER
chaperone Gp96 and the molecular motor Non-muscle Myosin Heavy Chain IIA (NMHCIIA).
Consequently, Gp96 regulates actomyosin activity, PM blebbing and cell migration, and protects PM
integrity against PFTs. In addition, we observed that PFTs increase association of Gp96 and ER
vacuoles with the cell surface or within PM blebs loosely attached to the cell body. Similarly, gut
epithelial cells damaged by PFTs in vivo were shown to release microvilli structures or directly purge
cytoplasmic content. Cytoplasmic purging involves profound cytoskeletal remodeling and ER
vacuolation, suggesting that our observations recapitulate recovery processes in vivo. Here, we
discuss our findings in light of the current understanding of PM repair mechanisms and in vivo
recovery responses to PFTs.
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Introduction

Evolutionary conserved mechanisms allow eukaryotic
cells to sustain mechanical and chemical stress that
injure the PM.1-3 The changes in the intracellular con-
centration of calcium and potassium caused by PM rup-
ture initiate recovery processes which depend on the size
of the damage, the cell types involved and the nature of
the inflicted stress (e.g. mechanical injuries or insertion
of stable protein pores such as those created by bacterial
PFTs).1-3 In general, cells engage PM repair pathways,
rearrange the cytoskeleton, control their metabolic state
and activate stress-associated signaling.2,3

PM damage promotes calcium influx, which enhances
exocytosis, predominantly of lysosomes. These vesicles
patch large mechanical wounds (> 100 nm),4 and pro-
mote acid-sphingomyelinase (ASM) release, which gen-
erates PM-ceramide domains that engulf PM damage in
caveolae-derived endosomes.2,5 Stable protein pores can-
not be patched and are removed by endocytosis or shed-
ding within small PM vesicles (nm size).6 PM shedding
may actually constitute an intrinsic repair mechanism

that senses PFT oligomerisation and is potentiated upon
damage and calcium influx.7 Shedding depends on endo-
somal sorting complexes required for transport (ESCRT)
and is similar to the budding of viral particles.6-8 In vivo,
recovery from PFT-mediated damage appears to involve
the cooperation between different mechanisms. Host
survival requires regulators of both endocytic and exo-
cytic trafficking and epithelial cells display increased
rates of endocytosis, shedding of PM material9 and/or
direct purging of cytoplasmic content.10 In addition,
epithelia compact its cytoskeletal network and display
alterations of cellular organelles while preserving coher-
ence and functionality.10

The fine control of the cytoskeletal dynamics is there-
fore necessary to promote PM recovery.11 Indeed, fol-
lowing mechanically-induced PM damage, microtubules
allow recruitment of distal vesicles while local actin rear-
rangements and myosin activity relief tension facilitate
vesicle delivery and provide force to re-establish PM
integrity.12-16 The importance of cytoskeletal dynamics
in cells targeted by PFTs remains poorly defined.
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Novel regulators of cytoskeletal dynamics protect
against PFTs

We recently identified the ER chaperone Gp96 and
NMHCIIA as regulators of cytoskeletal dynamics follow-
ing PFT-mediated PM damage.17 Gp96 and NMHCIIA
interact upon PFT intoxication and accumulate into dis-
tinct bundles at sites of PM blebbing (Fig. 1 and Supp
Mov 1).17 These processes require calcium influx gener-
ated by PM damage and occur during Listeria monocyto-
genes (Lm) infection, which depends on the PFT
listeriolysin O (LLO). The reorganisation of the actomy-
osin network is mediated by Gp96, which modulates

myosin II activity and coordinates PM blebbing during
PFT intoxication. Both Gp96 and NMHCIIA promote
cell survival upon LLO intoxication.17

We characterized further the formation of NMHCIIA
bundles during PFT intoxication and found that host
cells utilize similar mechanisms to regulate cytoskeletal
dynamics during recovery of PM integrity and cell
migration.17 (i) PFT-induced actomyosin bundles accu-
mulate proteins found at the trailing edge of migrating
cells;18,19 (ii) upon PFT intoxication, Gp96 interacts with
Filamin-A, an actin cross-linker that regulates cell migra-
tion;20 and (iii) stimulation of cell migration with Wnt5a,
which promotes assembly of rear-end ER-actomyosin
structures, also enhances NMHCIIA-Gp96 interaction.
In line with these observations, we showed that Gp96
regulates general cytoskeletal organization and therefore
modulates cell shape and cell motility.17

Recent independent studies have also proposed a role
for Gp96 in cytoskeletal organization, cell polarity and
cell migration. This may occur through the control of
vesicular trafficking and/or interaction with different cyto-
skeletal proteins such as F-actin-capping protein 1, Actin,
Radixin and ROCK2.21,22 Of note, Gp96 is predominantly
expressed at early stages of development and contributes
to the establishment of epithelial gut morphology and api-
cal specification.23 Polarized lysosome secretion and estab-
lishment of cell polarity are regulated by NMHCIIA.14,24

Therefore, it is possible that Gp96 and NMHCIIA interact
to coordinate vesicular trafficking and cytoskeletal
dynamics necessary for the definition of cell polarity and
for efficient PM repair. Whether NMHCIIA and Gp96
directly interact remains unknown. Yet, Gp96 is the ER
paralogue of the cytosolic chaperone HSP90, which binds
myosin head domains and is necessary to coordinate
assembly and folding of myosin thick filaments.25

Few additional molecules were associated with the cyto-
skeletal reorganisation following PFT-mediated PM dam-
age. RhoA and Rac1 GTPases promote actin remodelling26

and Src-family kinases mediate microtubule bundling and
stabilization.27 The importance of such processes for cell
recovery from PFT-mediated wounding is uncertain. Nev-
ertheless, GTPases (RhoA, Rac and Cdc42) coordinate the
assembly and dynamics of actomyosin rings, which pro-
mote closure of laser-induced wounds in Xenopus
oocytes,28 and Src, together with myosin light chain kinase
(MLCK), regulate PM expansion during osmotic stress.29

Besides actomyosin reorganisation and simultaneous
PM blebbing, cells modify the entire ER network following
PFT intoxication,17 as depicted by the alteration of the
characteristic ER reticular pattern and formation of
vacuoles containing mCherry-Sec61b (a subunit of the ER
membrane translocon complex Sec61) (Fig. 1 and Supp
Mov 1). Vacuolation of the ER and other cellular

Figure 1. Redistribution of NMHCIIA and ER network upon LLO
treatment. Sequential frames of time-lapse confocal microscopy
sequence of LLO-treated HeLa cells expressing simultaneously
GFPNMHCIIA and mCherrySec61. LLO was added to culture
medium 10 seconds before t0. DIC – differential interference con-
trast. Highlighted inset depicts ER structures within NMHCIIA
bundles and PM blebs.
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Figure 2. Exposure of ER and Gp96 at blebs from LLO treated cells. (A) Confocal microscopy Z-stack projections of HeLa cells treated
with LLO (0.5 nM, 15 min) and immunolabelled for the C-terminal sequence present in ER resident proteins, ER-KDEL (red), NMHCIIA
(green) and stained with DAPI (blue). Orthogonal views and 3D projections illustrate exposure of ER vacuoles at the cell surface (arrow).
(B-C) Confocal microscopy images of HeLa cells left untreated or treated with LLO and immunolabelled for (B) ER-Gp96 (blue), NMHCIIA
(green) and stained with FITCWGA (Plasma membrane, PM-red) and DAPI (white), or (C) Sec61 (red), NMHCIIA (blue) and stained with
FITCWGA (green) and DAPI (white). Insets and arrows indicate NMHCIIA-positive PM blebs containing Gp96 or Sec61, loosely attached
to the cell body. Arrow-heads show cortical NMHCIIA-Sec61 within the cell body. All scale bars are 10 mm. (D) Longitudinal TEM images
of HeLa cells left untreated or treated with 0.5 nM LLO for 15 min. ER - ER cisternae in untreated cells and ER vacuoles in LLO-treated
cells; N - nucleus. Arrows show vesicles and bleb-like structures at the proximity of the PM containing ER vacuoles and apparently
detached from the cell body.
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organelles has been reported in response to different PFTs
in various cell types and in vivo.1,10 The relevance of such
morphological alteration is not understood and has been
mainly associated with organelle damage and cell death.1

However, following toxin wash-out, cells recover normal
actomyosin and ER distribution with equivalent kinetics.17

Lysosomes and the ER are major intracellular calcium
stores and their dynamics are crucial for functioning. In
particular, the transient distribution of ER and lysosomes
to the trailing edge of migrating cells directs calcium signal-
ing and assembly of cytoskeletal complexes that mediate
tail retraction.18 Of note, stimulation of such process
enhances Gp96-NMHCIIA interaction.17 However, the
role of the ER during recovery from PFT-induced PM
damage remains unclear. ER proteins have been detected
at PM wounds of mechanically injured cells30 and inhibi-
tion of ER stress pathways or calcium sequestration com-
promises survival after PFT intoxication.31,32 Whether
lysosomes or the ER control calcium signaling and actomy-
osin dynamics during PM repair is still speculation.30 Nev-
ertheless, Gp96 regulates calcium homeostasis at the ER.33

We observed that certain LLO-intoxicated cells
appear to expose ER compartments containing ER-reten-
tion sequence KDEL, Gp96 and Sec61a at the cell surface
or within large PM blebs loosely attached to the cell body
(Fig. 2A-C).17 Transmission electron microscopy (TEM)
of intoxicated HeLa cells confirmed that such vacuoles
are detected within large bleb-like structures at the prox-
imity of the PM and apparently detached from the cell
body (Fig. 2D). Thus, upon damage, cells can release ER-
derived compartments to the extracellular environment.
Whether the release of ER vacuoles only occurs in dying
cells or upon organelle damage is still unclear. Yet these
processes may constitute a common feature of cellular
responses to PFTs, since targeting of gut epithelial cells
by PFTs in vivo induces release of microvilli structures,
cytosolic purging, ER vacuolation and rearrangement of
the cellular cytoskeleton.9,10

PFT-induced PM blebbing was considered to be pro-
tective and distinct from PM shedding of PFT pores
within small vesicles (nm size). Large transient blebs
(mm size) presumably promote PM repair by buffering
injured sites, preventing excess calcium influx and loss of
cytosolic content.2,3,6,34 Blebs can be shed and, during
apoptosis, permeabilisation of PM blebs enables the
release of cytosolic content.35,36 Thus, it is possible that
cytosolic purging and PM blebbing are complementary
processes. Finally, increasing evidence supports a role for
extruded vesicles during bacterial infections. While some
studies have suggested that microvesicle release or cyto-
solic purging may favor elimination of intracellular bac-
teria,10,37,38 certain bacteria, such as Lm, were proposed
to disseminate within large bleb-like structures.39,40

Conclusion and future perspectives

We have highlighted the importance of NMHCIIA and
uncovered an unexpected role for the ER chaperone
Gp96 in host cell recovery against PFTs. Future studies
are now necessary to understand how cytoskeletal
dynamics interfere with polarized secretion and shedding
of cellular material, which protect host tissues from PFT
attack. Moreover, it will be important to further analyze
the physiologic relevance of recovery mechanisms in the
context of bacterial infections: What are the consequen-
ces of PM blebbing and cytosolic purging in the context
of different infections? Are these processes related to the
shedding of apoptotic bodies and damaged cells from
infected epithelia?

As PM recovery processes display important evolu-
tionary conserved features,2,3,11 the ground-breaking use
of amenable models such as zebrafish (Danio rerio) and
drosophila (Drosophila melanogaster) to the direct visu-
alization of infectious processes in vivo will continue to
be of critical importance.10,17

Materials and methods

Plasmids and antibodies

Plasmid GFPNMHCIIA (#11347) was obtained from
Addgene and mCherry-Sec61-N-18 was a gift from M.
Davidson through Addgene (# 55130). Rabbit anti-
NMHCIIA (Sigma); mouse anti-NMHCIIA (Abcam);
rat anti-Gp96 (Enzo); mouse anti-Sec61a G-2 (Santa
Cruz) were used at 1/200 for immunofluorescence
microscopy (IF). PM was labeled with FITC-conjugated
WGA (Sigma) DNA with 4’,6-Diamidino-2-phenylin-
dole dihydrochloride, DAPI (Sigma) and IF fluores-
cently-conjugated secondary antibodies (Invitrogen)
were used at 1/500.

Cell lines and toxin

HeLa (ATCC CCL-2) cells were cultivated in DMEM
with glucose and L-glutamine, supplemented with 10%
FBS. Cells were maintained at 37�C in a 5% CO2 atmo-
sphere. Cell culture media and supplements were from
Lonza. LLO was purified as previously17 and treatments
and washes were carried in Hank’s Balanced Salt Solu-
tion (HBSS) as indicated.

Immunofluorescence microscopy

Cells were fixed in 4% paraformaldehyde (15 min),
quenched with 20 mM NH4Cl (1 h), permeabilized with
0.1% Triton X-100 (5 min), and blocked with 10% BSA
in PBS (30 min). Antibodies were diluted in PBS
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containing 1% BSA. Coverslips were incubated for 1 h
with primary antibodies, washed 3 times in PBS and
incubated 45 min with secondary antibodies. DNA was
counterstained with DAPI (Sigma). Coverslips were
mounted onto microscope slides with Aqua-Poly/Mount
(Polysciences). Images were collected with a confocal
laser-scanning microscope (Leica SP5II) and processed
using ImageJ64 or Adobe Photoshop software.

Live imaging and quantification of PM blebbing
of LLO-treated cells

Cells seeded into Ibitreat m-dishes (Ibidi), simultaneously
transfected with GFPNMHCIIA and mcherrySEC61,
maintained in HBSS at 37�C with 5% CO2 were imaged
using an Andor Revolution XD Spinning-disk confocal
system with an EMCCD iXonEMC camera, 488 nm lase
lines, and a Yokogawa CSU-22 unit on an inverted micro-
scope (IX81; Olympus), driven by Andor IQ live-cell
imaging software. LLO (0.5 nM) was added 10 min after
initial image acquisition. Differential interference con-
trast (DIC) images and GFP fluorescent data sets with
0.5 mm Z-steps were acquired using a UPLSAPO 100x/
1.40 objective lens every 15 sec. ImajeJ64 was used for
image sequence analysis and video assembly.
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