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Neutrophils are critical as the first-line defense against fungal pathogens. Yet, previous
studies indicate that neutrophil function is complex during Cryptococcus neoformans (Cn)
infection. To better understand the role of neutrophils in acute pulmonary cryptococcosis,
we analyzed neutrophil heterogeneity by single-cell transcriptional analysis of immune cells
in the lung of Cn-infected mice from a published dataset. We identified neutrophils by
reference-based annotation and identified two distinct neutrophil subsets generated
during acute Cn infection: A subset with an oxidative stress signature (Ox-PMN) and
another with enhanced cytokine gene expression (Cyt-PMN). Based on gene regulatory
network and ligand-receptor analysis, we hypothesize that Ox-PMNs interact with the
fungus and generate ROS, while Cyt-PMNs are longer-lived neutrophils that indirectly
respond to Cn-derived ligands and cytokines to modulate cell-cell communication with
dendritic cells and alveolar macrophages. Based on the data, we hypothesized that,
during in vivo fungal infection, there is a division of labor in which each activated neutrophil
becomes either Ox-PMN or Cyt-PMN.

Keywords: neutrophils, fungal infection, pulmonary, Cryptococcus neoformans, heterogeneity, single-cell RNA
sequencing (scRNA-seq)
INTRODUCTION

Opportunistic fungal infections are a serious complication of immunosuppression in patients
undergoing transplantation, patients with HIV-AIDS, and those with immunosuppression induced
by leukemia or lymphoma (1). Among opportunistic fungal infections, Cryptococcus neoformans
(Cn) is one of the pathogens with the highest disease burden and risk of complications. Inhaled from
the environment, Cn begins as a primary pulmonary infectious agent and can disseminate through
the vasculature to the central nervous system (CNS) resulting in meningoencephalitis (1).

Neutrophils are critical as the first-line of defense against fungal pathogens, effectively engulfing
and killing Cn, arguably more efficacious than monocytes (2, 3). For instance, neutrophils produce
the majority of reactive oxygen species (ROS) during cryptococcosis in attempts to control and clear
the infection (4, 5). Treatment with granulocyte colony-stimulating factor (G-CSF) decreased fungal
org April 2021 | Volume 12 | Article 6705741
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burdens in mice with cryptococcosis (6) and reduced risk of
infection in AIDS patients (7), suggesting that neutrophils
contribute to host immune defenses during cryptococcal
infection. Using in vivo antibody-mediated neutrophil depletion,
studies have demonstrated that neutrophils are crucial for the
clearance of intravascular Cn in the lung and brain (8, 9).
Additionally, myeloperoxidase (MPO), the neutrophil azurophilic
granule factor, is protective in murine Cn infection when
administered via intravenous (i.v.) and intranasal (i.n.) routes (10).

However, the role of neutrophils in Cn infection is not
straightforward. In contrast to intravascular infection, neutrophil
depletion leads to a paradoxical increase in survival in the setting
of intratracheal infection (11–13). One explanation is that acute
neutrophil recruitment to the lung and the associated anti-fungal
response following Cn infection could cause host-detrimental
inflammation, leading to tissue damage. However, neutrophil
depletion also leads to an increase – not a decrease – in
inflammatory cytokine production in the lung (11, 14); and
increased inflammatory cytokine levels may promote anti-fungal
immunity and increase host survival. Thus, neutrophils may be
detrimental both through off-target tissue damage or by reducing
immune responses.

The in vivo functions of neutrophils in pulmonary Cn infection
are not well understood and likely involve a complex balance of
antifungal and regulatory activities. In addition, neutrophils have a
short half-life, and ex vivo analyses are extremely challenging. To
map neutrophil heterogeneity during acute pulmonary infection
with Cn, we analyzed a single-cell RNA sequencing (scRNA-seq)
dataset of lung extra-vascular and intra-vascular immune cells.
Following reference-based annotation of neutrophils, we identified
multiple neutrophil subsets with distinct transcriptional profiles,
including two subsets which were found in Cn-infected mice, not
in naïve mice. Using both gene regulatory network and ligand-
receptor analyses, we discovered predicted pathways which may
contribute to neutrophil subset identity and modulate interactions
between neutrophils and other myeloid cells during acute
pulmonary Cn infection. These preliminary data lead us to
further hypothesize the distinct functions and longevity of
neutrophil subsets. Further characterization of these distinct
neutrophil subsets may provide potential therapeutic targets to
enhance anti-Cn immunity.
METHODS

Dataset Availability
The single-cell RNA sequencing dataset analyzed in this study
(NCBI GEO: GSE146233) was previously published (15) and
focused on analysis of alveolar macrophages (AM) (15). This
dataset has not previously been used to analyze neutrophils or
other immune cell populations.

Sample Preparation and Single-Cell
RNA Sequencing
Samples were prepared as previously described (15): Mice
heterozygous for the Cxcl2-Egfp reporter were administered Cn
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by orotracheal instillation (104 yeasts cells/mouse, H99 strain)
and cells from the lungs of infected and naïve control mice were
harvested 9 hrs post-instillation. CD45+ cells from lung
homogenates were isolated using MACS beads. Cells from
three mice per group were pooled for subsequent analysis.
Intra-vascular cells were not depleted prior to cell isolation.
Because of this, the dataset contains both extra- and intra-
vascular lung immune cells. scRNA-seq was then performed
on CD45+ cell samples with the 10X Genomics Chromium
platform. Detailed scRNA-seq library preparation methods
were previously described (15).

Reference-Based Annotation of Immune
Cell Subsets
Cell Ranger v3.0.1 (10X Genomics) was used to process raw
sequencing files into fastq format as previously described (15).
Briefly, reads were aligned with a modified mouse mm10
transcriptome containing the Egfp transgene along with all
protein coding and long non-coding RNA genes. CellRanger
was used to generate a matrix file with expression counts for each
sample, with genes as rows and cell Unique Molecular Identifier
(UMI) as columns. We obtained 5,635 median UMI counts per
cell, 1771 median genes per cell, and 82,314 mead reads per cell.

Seurat v3.1.0 (16) was used to calculate the number of expressed
genes, counts per cell, and the percentage of mitochondrial genes as
previously described (15). The following criteria were used to filter
cells: total number of genes between 200 and 20,000; number of
counts between 500 and 75,000; mitochondrial gene frequency
<10%. A total of 4,586 cells from naïve and 5,694 cells from
infected samples were used for downstream analysis. The
SCTransform method (17) was used to perform normalization
and variance stabilization of expression counts using regularized
binomial regression, with regression on percent mitochondrial
genes per cell (15). For cell-type identification, integration
between samples was performed using the anchor-based
canonical correlation analysis (CCA) method. PCA was then
performed, and the top 50 principal components were selected
for UniformManifold Approximation and Projection (UMAP) for
two-dimensional projection. Calculation of k-nearest neighbors
and cluster identification were performed.

SingleR (18) was used to perform automated reference-based
annotation using curated bulk RNA-seq data from ImmGen for
major immune populations as previously described (15). We also
examined expression of canonical cell-type specific marker genes
as well as unbiased cluster-specific markers for each population to
confirm our annotation of major immune cell populations. This
allowed us to confidently identify neutrophils within our dataset
by confirming neutrophil canonical markers (S100a8, Ly6g).
Detailed results of reference-based annotation can be found in
Xu-Vanpala et al. (15).

Cluster Analysis of Neutrophils
Cells annotated as neutrophils in the scRNA-seq dataset were
selected for further analysis using Seurat v3.1.0 (16).
Normalization and variance stabilization with SCTransform
(17) and PCA were performed, and the top 40 principal
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components were selected for UMAP visualization. Calculation
of k-nearest neighbors and cluster identification was performed.
Hierarchical clustering of the neutrophil subsets was used to
annotate major branches (I, II, III) and subclusters (i.e. IIa, IIb).
Numbering of the clusters was based on relative size of each
subpopulation. Cluster-specific expression markers were
identified, specifically focusing on upregulated genes.

Pathway Enrichment Analysis
Pathway enrichment analysis was performed on cluster-specific
markers using ReactomePA (19). Among the resulting enriched
pathways with adjusted p-value<0.05, top hits were selected and
plotted in a heatmap as -log(adjusted p-value) to illustrate shared
enriched pathways between clusters.

Gene Regulatory Network Analysis
SCENIC (single-cell regulatory network inference and clustering)
(20) was used to identify transcription factors predicted to regulate
neutrophil heterogeneity. Default parameters were used for the
SCENIC workflow in R and the normalized single-cell gene
expression matrix from Seurat was used as input. Co-expression
analysis was performed with GENIE3. For visualization, we
calculated the average regulon activity (AUC) scores for each
neutrophil cluster and selected the top regulons to plot as a
heatmap using pheatmap.

Ligand-Receptor Interaction Analysis
NicheNet (nichnetr) (21) was used to identify predicted ligand-
receptor interactions between neutrophil subsets of interest (Ox-
PMN, Cyt-PMN) and myeloid cell types of interest (AMs, DCs)
using default parameters for the workflow in R. AMs and DCs
were separately selected as the “receiver cell types” for independent
analyses and the condition of interest selected was “post-Cn
instillation” compared to “naïve”. Neutrophils were selected as
the “sender cell type” and the set of potential ligands was defined
as the combined list of Ox-PMN (IIa) and Cyt-PMN (IIb) marker
genes. Top predicted ligand-receptor interactions were visualized
using the circlize R package (22) as a circos plot in which link
transparency and width reflected the regulatory potential of a
given ligand-target interaction.
RESULTS OF SINGLE CELL RNA-SEQ
ANALYSIS

Acute Cryptococcus neoformans
Pulmonary Infection Induces
Neutrophil Subsets With Distinct
Transcriptional Profiles
To characterize the immune response to acute Cn infection, we
performed analysis of a previously published scRNA-seq dataset
consisting of lung immune cells from naïve and Cn-infected mice.
Specifically, CD45+ immune cells were isolated from the lungs of
mice 9-hr post infection (hpi) with Cn (104 yeasts cells/mouse, H99
strain, administered by orotracheal instillation) and compared to
cells from naïve controls, including both extra- and intravascular
Frontiers in Immunology | www.frontiersin.org 3
lung immune cells (15). Because we sought to understand early
host responses, we selected the 9-hpi timepoint, at which the level
of a neutrophil chemoattractant CXCL2 has already increased in
bronchoalveolar lavage fluid and neutrophils start to infiltrate in
the lung (15). Reference-based annotation with SingleR (18) was
used for initial classification of immune cell types in the dataset,
including neutrophils. In the infected mice, we observed a dramatic
increase in the relative frequency of neutrophils among CD45+

immune cells in our dataset (GEO: GSE146233) (15). Among
neutrophils, we identified three major neutrophil subsets, termed
clusters I-III (Figures 1A, B). While clusters I and III were present
in both naïve and infected conditions, cluster II only emerged
following Cn-exposure (Figures 1A, B).

To identify potential functions of neutrophil subsets, we
performed pathway enrichment analysis on cluster-specific
markers (Figures 1C, D). Overall, total cluster I neutrophils did
not exhibit very distinct marker expression, although subclusters
Ic and Id showed enrichment of genes encoding antimicrobial
peptide and NADPH oxidase pathways (S100a8/9, Lyz2, Pglyrp1).
In contrast, cluster III neutrophils showed strong enrichment of
Interferon signaling pathway genes (Oasl1, Isg15, Irf9), similar to
recently described interferon stimulated genes (ISG) expressing
blood neutrophil subset (23). While cluster I and III neutrophils
were present in both naive and post-Cn instillation conditions,
cluster II neutrophils were specific to the Cn-stimulated condition
and thus are of greater interest in this study. Among cluster II
neutrophils, we identified two distinct subsets. Both subclusters IIa
and IIb were enriched in PRR signaling pathway genes, specifically
Toll-like receptor (TLR) cascades and C-type lectin receptors
(CLRs), particularly Dectin-1 signaling (Figure 1D). However,
IIb cells showed the greatest enrichment in interleukin and
cytokine signaling pathway genes (Il1a, Csf1, Tnf), while IIa cells
showed enrichment in iron processing (Hmox1, Hmox2), ROS/
RNS (Atp6v1e1), and glycolysis (Pfkl, Gapdh) pathway genes.
Based on these markers, we named cluster IIa as oxidative-
signature neutrophils (Ox-PMN) and cluster IIb as cytokine-
signature neutrophils (Cyt-PMN). We hypothesize that Ox-
PMN and Cyt-PMN may represent distinct neutrophil
activation states triggered by acute Cn exposure.

To investigate whether specific neutrophil subsets reflect
different stages of neutrophil maturation, we examined expression
of neutrophil ageing-related markers (24), as well as granule and
secretory vesicle components, which are typically expressed
sequentially during neutrophil development (25). We observed
enrichment of tertiary granule factors (e.g., Mmp8) in subcluster
Id neutrophils (Figure 1E) and markers of ageing (e.g., Icam1) in
subcluster IIb (Figure 1F). Subcluster Id expression of tertiary
granule factors suggests these neutrophils are transitioning from the
metamyelocyte stage to the band stage, and thus may be more
immature neutrophils (25). In contrast, IIb (Cyt-PMN) showed
elevation of genes associated with neutrophil ageing (Cxcr4 and
Icam1). In addition, Cyt-PMNs also showed enrichment in Bcl2
family genes (Bcl2a1a, Bcl2a1d, Bcl2a1b) encoding anti-apoptotic
proteins and thus may facilitate or respond to neutrophil ageing.

In summary, based on single-cell transcriptional profiling, we
hypothesize that acute Cn exposure induces two distinct
neutrophil activation states: Ox-PMN (subcluster IIa) and Cyt-
April 2021 | Volume 12 | Article 670574
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PMN (subcluster IIb) with distinct gene expression profiles and
functions. In addition, we found the Cyt-PMN are also enriched
in markers of neutrophil ageing, suggesting that Cyt-PMN may
be longer-lived than other neutrophil subsets profiled.

Distinct Transcription Factors Are
Predicted to Regulate Ox-PMN and
Cyt-PMN Subsets
To identify transcription factors (TFs) that may regulate
neutrophil heterogeneity, we used single-cell regulatory network
inference and clustering (SCENIC) (20). The method evaluates
Frontiers in Immunology | www.frontiersin.org 4
TFs and cis-regulatory sequences to predict biological states of
cells. This approach involved three steps: (A) identifying groups of
genes that are co-expressed with TFs (“modules”), (B) identifying
predicted TF binding sites near co-expressed genes (“regulons”)
using motif analysis of the mouse reference genome, and (C)
calculating predicted activity of candidate TF regulons across cell
subsets (“regulon activity”). The majority of significant TF
regulons, which were identified by SCENIC, showed increased
activity particularly in cluster II neutrophils. However, IIa and IIb
neutrophils (Ox-PMN and Cyt-PMN, respectively) exhibited
distinct patterns in predicted activity (Figure 2A).
A

C D

E

F

B

FIGURE 1 | Single-cell RNA-seq analysis of neutrophil heterogeneity following acute pulmonary C neoformans infection. (A) UMAP projection of neutrophils (611
neutrophils in naïve condition, 2,139 neutrophils at 9-hpi), colored by clusters and separated by condition. Samples were pooled from three mice per group for
analysis from a single experiment. (B) Frequency of each neutrophil subset, comparing naïve and infected samples. (C) Heatmaps showing expression of subset-
enriched markers. (D) Heatmap of -log (Adjusted p-value) for Reactome pathway enrichment in different neutrophil subsets. (E, F) Heatmaps showing expression of
select neutrophil granule genes (E), markers of aged neutrophils (F).
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Cyt-PMN-active regulons included NFkB family TFs (encoded
by Nfkb1, Nfkb2, Rel, Relb, Rela), which mediate neutrophil
response to cytokines and PRR signaling. In contrast, Ox-PMN
active regulons included small Maf (sMaf) transcription factors
(encoded by Mafk, Mafg), as well as other TFs in the CNC and
Bach families (encoded by Bach1, Nrf1), which form heterodimers
with sMaf TFs (26). sMaf heterodimerizes with CNC or Bach and
mediates cellular responses to oxidative stress (26, 27), although the
function of the sMaf heterodimers remains largely uncharacterized
in neutrophil biology. Based on this analysis, we hypothesize that
Cyt-PMN (IIb) may be regulated by NFkB TFs, while Ox-PMN
(IIa) appears to be under control of sMaf, CNC, and Bach TFs.

Ligand-Receptor Analysis Identifies
Potential Neutrophil Interactions With DCs
and AMs
To identify potential cell-cell communication between neutrophil
subsets (Ox-PMN andCyt-PMN) and other immune cells duringCn
Frontiers in Immunology | www.frontiersin.org 5
infection, we used “NicheNet” to predict ligand-receptor interactions
(21). Specifically, this approach leverages prior knowledge of ligand-
receptor interactions and intracellular signaling pathways to predict
which ligand-receptor pairs may regulate gene expression in target
cells. Our interest was in neutrophil interactions with alveolar
macrophages (AMs) or dendritic cells (DCs), because these cell
types are involved in modulating the immune response during the
early stages of infection.

We found that Ox-PMN (IIa) express only a few unique
ligands that are predicted to be detected by AMs and DCs
(Figure 2B). Among these, the strongest potential interaction
was between Alcam (Activated leukocyte adhesion molecule) on
the Ox-PMN side and CD6 on the DC side. This predicted
mechanism for neutrophil-DC communication has not been
previously studied to our knowledge. In contrast, Cyt-PMN
(IIb) expressed multiple genes encoding ligands with strong
predicted interactions with both DCs and AMs. These
suggested cell-cell communications via IL-1a and IL-1R1/IL1-
A B

C

FIGURE 2 | Gene regulatory network analysis of neutrophil subsets and predicted cell-cell communication – (A) Heatmap of regulon activity across neutrophil subsets with
hierarchical clustering of regulons displayed in dendrogram on left-hand side. Selected TFs of interest are highlighted by boxes with dotted lines. The number of predicted
genes targeted by the TFs are indicated with parentheses. (B) Circos plot showing arrows between IIa-specific (yellow), IIb-specific (blue) or IIa/b (green) ligands and their
target receptors on DCs (left panel) or AMs (right panel). Significance of potential interaction is indicated by the opacity and thickness of the connecting
arrow. (C) Hypothesized model of neutrophil subset regulation during acute pulmonary Cn infection and predicted ligand/receptor interactions with other immune cells.
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R2, TNFa and TNFR2, and VEGFa and NRP1/NRP2. While the
role of VEGFa in Cn infection is less understood, both IL-1a and
TNFa are important drivers of anti-fungal response to Cn (12).
Among ligands expressed by both Cyt-PMN and Ox-PMN
neutrophils, CCL3 and CCL4 are notable chemo-attractants for
immune cells expressing CCR5, which is important for host
immune response to Cn (28). Other ligand-receptor pairs
identified include PD-L1 (Cd274) and PD-1 (Pdcd1), as well as
CSF1 (Csf1) and CSF1R (Csf1r). The role of these ligand-receptor
pairs between neutrophils and DCs (or AMs) merits
further investigation.

In summary, our analysis suggests that both Cyt-PMN and
Ox-PMN neutrophils express common ligands (CCL3, CCL4),
which are detected by DCs and AMs through CCR5 and CCR1,
respectively. However, inflammatory cytokine expression,
including IL-1a and TNFa, may be specific to Cyt-PMN
subset. Furthermore, Cyt-PMNs also appear to specifically
express complement C3, critical for complement-mediated
phagocytosis of Cn by DCs and other phagocytes. Thus, the
Cyt-PMN subset may promote phagocytosis and anti-fungal
immune responses via ligand-receptor interactions with other
immune cells.
DISCUSSION AND HYPOTHESIS

In this study, we performed in-depth scRNA-seq analysis of a
published dataset and identified multiple neutrophil subsets.
Among the subsets, we focused on Ox-PMN (IIa) and Cyt-
PMN (IIb), which appear after Cn infection and possess distinct
gene expression profiles. As summarized in Figure 2C, our
analysis suggests that Ox-PMN are regulated by sMaf, CNC,
and Bach TFs, and these signaling pathways may mediate
oxidative stress response and regulate oxidative burst in
response to Cn. In contrast, the gene expression profile of Cyt-
PMN is highly enriched with genes encoding NFkB signaling
molecules and pro-inflammatory cytokines, IL-1a and TNFa.
Based on ligand-receptor analysis, these cytokines are predicted
to mediate cross-talk of Cyt-PMN with DCs and AMs. In
contrast, fewer unique interactions were found between Ox-
PMN-specific ligands and receptor on DCs and AMs. With our
data, we hypothesize that, during acute pulmonary Cn infection,
there is a division of labor, in which activated neutrophils
become either ROS-producing Ox-PMN or cytokine-producing
Cyt-PMN.

As reflected in distinct gene expression patterns, we also
hypothesize that neutrophils subsets have distinct spatial
localization in the lung. For example, cluster II neutrophils
including Ox-PMN and Cyt-PMN are infection-specific subsets;
thus, we expect that they are located in the lung parenchyma,
where the subsets are exposed to Cn and exert subsequent
immune responses. In contrast, the cluster Ib neutrophil subset
showed a quiescent gene expression phenotype and were mainly
identified in naïve mice. Thus, we expect the Ib subset to be
mainly found in the lung vasculature. It is possible that cluster III
neutrophils also localized in the lung vasculature because their
Frontiers in Immunology | www.frontiersin.org 6
IFN-signature gene expression profile is similar to a subset of
steady-state neutrophils in circulation (23).

We predict that Cyt-PMN may consist of aged neutrophils
based on their expression of markers of neutrophil ageing. It is
also possible that Cyt-PMN further facilitate enhanced cytokine
production over an extended period of time. In contrast, Ox-
PMNs may reflect neutrophils which are in direct contact with or
have phagocytosed Cn based on the pattern of highly expressed
genes related to oxidative stress responses. Ox-PMNs may also
be poised to undergo NETosis, triggered by ROS. To test these
hypotheses, subset-specific markers and ROS indicators can be
used to identify Cyt-PMN and Ox-PMN for analysis of location,
maturity, interaction with Cn, and NETosis.

A previous study, using a Staphylococcus aureus infectionmodel,
identified two distinct neutrophil subsets, described as PMN-I and
PMN-II with their dichotomous gene expression patterns
characterized by highly expressed IL-12 and IL-10, respectively
(29). However, we did not find a similar dichotomous pattern
between Cyt-PMN and Ox-PMN. Instead, Ox-PMN gene
expression reflects an activation state likely triggered by ROS
production or exposure to ROS, while that of Cyt-PMN reflect
PRR and cytokine receptor signaling to mediate NFkB-driven Il1a
and Tnf production.

Although neutrophils are known to have anti-fungal functions,
neutrophil depletion leads to a paradoxical increase in survival of
animals in pulmonary cryptococcosis (11–13). These paradoxical
results may reflect the delicate balance of heterogeneous subsets in
neutrophils: Some subsets may be host-protective, and others may be
host-detrimental. Thus, specific targeting of Ox-PMN and Cyt-PMN
subsets may help clarify neutrophil functions during pulmonary Cn
infection. This could be accomplished by either (A) targeting
upstream transcription factors and signaling pathways predicted to
regulate Ox-PMN and Cyt-PMN identity, (B) using subset-specific
markers for targeted depletion studies, or (C) targeting predicted
functions such as ROS-production or cytokine production in a
neutrophil-specific manner. Furthermore, understanding and
testing the role of cell-cell interactions between Cyt-PMNs and
other myeloid cells could also clarify neutrophil function in
pulmonary Cn infection. Beyond known pro-inflammatory
cytokines such as IL-1a (Il1a) and TNFa (Tnf), we also found
that both Ox-PMN and Cyt-PMN are predicted to interact with
other myeloid cells through expression of PD-L1 (Cd274), VEGFa
(Vegfa), and CSF1 (Csf1). These factors are relatively uncharacterized
in neutrophils, and elucidating their roles is a novel area for
investigation in neutrophil biology more broadly.

In this study, we developed a hypothesis that acute pulmonary
Cn infection leads to distinct neutrophil activation states, which
is exampled by a division of labor between ROS-producing Ox-
PMN and cytokine-producing Cyt-PMN. In addition to
proposing specific testable questions for investigation of
neutrophils in Cn infection, it will also be important to
understand whether this form of neutrophil heterogeneity is
broadly relevant in fungal infections. In summary, our in-depth
analysis of single-cell RNA sequencing of lung neutrophils
provides both a detailed reference and theoretical model to
guide new studies of neutrophil function in Cn infection.
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LIMITATIONS OF STUDY

In this Hypothesis and Theory article, we analyzed single-cell
transcriptional heterogeneity of neutrophils in acute Cn pulmonary
infection and developed a theoretical framework for future
investigation of neutrophil function during Cn infection. We
acknowledge that we used three pooled mice per group for analysis
without distinguishing intra-vascular from extra-vascular neutrophils
in the lung. Our findings are limited to the 9-hpi timepoint. Future
studies using multiple timepoints during infection, as well as
validation of neutrophil phenotypes and functions, would be
valuable to characterize the full dynamics of immune cell
transcriptional heterogeneity in pulmonary Cn infection.
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