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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that selectively affects
motor neurons (MNs) of the cortex, brainstem, and spinal cord. Several genes have
been linked to both familial (fALS) and sporadic (sALS) cases of ALS. Among all the
ALS-related genes, a group of genes known to directly affect cytoskeletal dynamics
(ALS2, DCTN1, PFN1, KIF5A, NF-L, NF-H, PRPH, SPAST, and TUBA4A) is of high
importance for MN health and survival, considering that MNs are large polarized cells with
axons that can reach up to 1 m in length. In particular, cytoskeletal dynamics facilitate
the transport of organelles and molecules across the long axonal distances within the
cell, playing a key role in synapse maintenance. The majority of ALS-related genes
affecting cytoskeletal dynamics were identified within the past two decades, making
it a new area to explore for ALS. The purpose of this review is to provide insights into
ALS-associated cytoskeletal genes and outline how recent studies have pointed towards
novel pathways that might be impacted in ALS. Further studies making use of extensive
analysis models to look for true hits, the newest technologies such as CRIPSR/Cas9,
human induced pluripotent stem cells (iPSCs) and axon sequencing, as well as the
development of more transgenic animal models could potentially help to: differentiate
the variants that truly act as a primary cause of the disease from the ones that act as
risk factors or disease modifiers, identify potential interactions between two or more
ALS-related genes in disease onset and progression and increase our understanding of
the molecular mechanisms leading to cytoskeletal defects. Altogether, this information
will give us a hint on the real contribution of the cytoskeletal ALS-related genes during
this lethal disease.

Keywords: ALS, ALS2, DCTN1, intermediate filaments, KIF5A, PFN1, SPAST, TUBA4A

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive
loss of motor neurons (MNs) within the brain cortex, brainstem, and spinal cord. As MNs
degenerate, the synaptic connections with their target muscles are lost, leading to muscle
spasticity, weakness, and atrophy. Currently, there is no cure for ALS and available treatments only

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 November 2020 | Volume 14 | Article 594975

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2020.594975
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2020.594975&domain=pdf&date_stamp=2020-11-13
https://creativecommons.org/licenses/by/4.0/
mailto:thomas.durcan@mcgill.ca
https://doi.org/10.3389/fncel.2020.594975
https://www.frontiersin.org/articles/10.3389/fncel.2020.594975/full
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Castellanos-Montiel et al. Cytoskeletal Defects in ALS

help to relieve symptoms. Typically, ALS patients die of
respiratory failure within 2–5 years after diagnosis due to
diaphragm paralysis. About 90–95% of ALS cases are sporadic
(sALS) while the remaining 5–10% are familial (fALS) (Brown
and Al-Chalabi, 2017; Volk et al., 2018). The clinical presentation
of ALS is heterogeneous and sometimes it can be misdiagnosed
with other MN diseases. For instance, the population of MNs
involved and the survival can vary depending on the mutated
gene and the specific mutation present. Additionally, sALS is
more complex than that of fALS because the cause of the
disease is attributed to an additive effect of hundreds of common
variants that increase the risk of developing the disease. Even
more, some sALS cases cannot be attributed to genetic or
biologic factors instead they are ascribed to environmental and
undefined factors (Brown and Al-Chalabi, 2017). Many ALS
patients show cognitive and behavioral changes characteristic
of frontotemporal dementia (FTD), a neurodegenerative disease
that shares neuropathological and genetic features with ALS.
Thus, it has been suggested that both FTD and ALS are a
continuum of the same phenotypic spectrum (Lipton et al., 2004;
Vance et al., 2006; Volk et al., 2018).

Ever since the first causative gene for fALS, Cu/Zn
superoxide dismutase 1 (SOD1), was discovered in 1993 (Rosen
et al., 1993), over 30 genes have been linked to fALS as
well as being identified as the molecular cause in certain
sALS cases. The list of ALS-related genes is continuously
growing, however, SOD1, chromosome open reading frame
72 (C9orf72), TARDBP (transactive response DNA-binding
protein) and FUS (fused in sarcoma) are the most well-
studied, mainly because they account for the majority of both
fALS and sALS cases (Brown and Al-Chalabi, 2017). On the
whole, ALS-related genes can be broadly categorized into four
groups depending on the cellular pathways in which they are
involved: (1) protein homeostasis; (2) RNA homeostasis and
trafficking; (3) cytoskeletal dynamics; and (4) mitochondrial
function (Mathis et al., 2019). The purpose of this review
is to provide insight into several ALS-related genes linked
to the disruption of cytoskeletal dynamics. Specially, we will
focus on how the disruption of such dynamics potentially
triggers axonal degeneration in MNs, impairing their ability to
maintain synapses.

ALS-RELATED GENES AFFECTING
CYTOSKELETAL DYNAMICS

MNs are known to be the largest polarized cells in the human
body and axons of spinal MNs can reach a meter in length
in adults. The significant length of such axons makes them
highly dependent on proper cytoskeletal architecture, whose
integrity is essential for the axonal transport necessary to
maintain synapse integrity. Both anterograde (from the cell
body to the periphery) and retrograde (from the periphery to
the cell body) microtubule (MT)-dependent transport are key
mediators for MN survival, maintenance, and functionality
(Chevalier-Larsen and Holzbaur, 2006). Thus, disruption
of cytoskeleton integrity and/or MT-dependent transport
mechanisms could translate into an inability of MNs to

supply their synapses with essential components and/or
to convey information back to the cell body, potentially
triggering degeneration processes. Recently, a few genes
known to play a role in cytoskeletal dynamics have been
linked to ALS (Figure 1): alsin rho guanine nucleotide
exchange factor (ALS2), dynactin subunit 1 (DCTN1), kinesin
family member 5A (KIF5A), neurofilament light (NF-L),
neurofilament heavy (NF-H), peripherin (PRPH), profilin 1
(PFN1), spastin (SPAST) and tubulin alpha 4a (TUBA4A).
Below, we discuss each gene and outline how ALS-associated
mutations (Supplementary Table 1) might affect the normal
function of each protein, and the implications for the axonal
cytoskeletal system.

Alsin Rho Guanine Nucleotide Exchange
Factor (ALS2)
ALS2, which encodes the protein alsin, is one of the few
ALS-related genes that exhibits a recessive pattern of inheritance,
often linked to juvenile onset-ALS (Hadano et al., 2001; Yang
et al., 2001). Nevertheless, mutations in ALS2 have also been
linked to other diseases selectively affecting MNs, namely
infantile ascending hereditary spastic paraplegia (IAHSP) and
juvenile primary lateral sclerosis (PLS), which have different
clinical profiles to ALS. For instance, in IAHSP and PLS
the degeneration is restricted to upper MNs, while both
upper and lower MNs are affected in ALS. This broad
range of phenotypes arising from mutations in ALS2 adds
complexity to its study (Hand et al., 2003; Simone et al.,
2018). Importantly, only two studies report the development
of ALS in two independent families as a result of an ALS2
mutation, making it an extremely rare cause for the development
of ALS (Hadano et al., 2001; Yang et al., 2001).

The identified mutations causing an ALS phenotype are
deletions producing a premature stop codon, suggesting that
alsin loss of function might be triggering disease mechanisms.
However, ALS2 knockout (ALS2−/−) mice lack an overt
pathological phenotype, suggesting that ALS2 might not
contribute to ALS pathology through either a loss of function
or a dominant-negative mechanism (Cai et al., 2008). The
existence of an alsin-related protein (ALS2CL) with homology
to the C-terminal domain of alsin found in mice and humans,
suggests the possibility of a compensatory mechanism to cope
with the loss of function of alsin. However, this hypothesis
remains controversial since a few studies imply that the alsin-
related protein has a distinct function from alsin (Hadano et al.,
2004) and/or it binds to alsin to function as a complex thereby
playing a role in other pathways (Suzuki-Utsunomiya et al.,
2007). While the loss of alsin appears to be insufficient to
trigger MN degeneration (Cai et al., 2005, 2008), its absence
can increase MN susceptibility to oxidative stress induced by
environmental factors (e.g., paraquat) in vivo and in vitro
(Cai et al., 2005).

Alsin contains three domains that act as GTPase regulators
(Hadano et al., 2001): (1) a regulator of chromosome
condensation 1 (RCC1) like domain (termed RLD); (2) a
diffuse B cell lymphoma (Dbl) homology/pleckstrin homology
domain (termed DH/PH); and (3) a vacuolar protein sorting
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FIGURE 1 | Proteins are encoded by amyotrophic lateral sclerosis (ALS)-related genes affecting cytoskeletal dynamics. ALS2 is mainly implicated in the regulation
of endosomal dynamics and it is also found at the growth cone of neurons where it promotes neurite outgrowth. Dynactin Subunit 1 (DCTN1) is involved in
microtubules (MTs) anterograde and retrograde transport. Neurofilament light (NF-L), neurofilament heavy (NF-H), and peripherin (PRPH) are the main components of
motor neuron (MN) intermediate filaments (IFs). Kinesin family member 5A (KIF5A) encodes a kinesin protein which mainly mediates anterograde transport along MTs.
Profilin 1 (PFN1) is involved in the polymerization of actin filaments. Spastin (SPAST) is involved in MTs disassembly and therefore plays a key role in regulating MTs
dynamics. Tubulin alpha 4a (TUBA4A) encodes for an α-tubulin subunit which is assembled within the MT filaments.

9 domain (termed VPS9). All three domains of alsin have
been implicated in the regulation of endosomal dynamics
(Chandran et al., 2007). It has been shown that the genetic
ablation of ALS2 in SOD1H46R mice exacerbates the disruption
of endolysosomal trafficking (Hadano et al., 2010), although
more studies are needed to analyze the possible interactions
between SOD1 and alsin in causing an ALS phenotype. ALS2 has
also been linked to glutamate-mediated excitotoxicity, an ALS
synaptic diseasemechanism. The RCC1 domain can interact with
several domains of the glutamate receptor-interacting protein 1
(GRIP1), which mediates GluR2 subunit transport to different
cellular compartments. GluR2 is important for AMPA receptors
as it makes them calcium impermeable. In ALS2−/− neurons,
the subcellular localization of GRIP1 protein is altered, which
translates into a reduction of GluR2 at the synaptic surface,
making MNs more vulnerable to excitotoxicity (Lai et al., 2006).
Alsin has also been located at the growth cone of neurons, where
it promotes neurite outgrowth (Tudor et al., 2005). Furthermore,
when ALS2 was specifically knocked down in rat embryonic
spinal MNs, increased cell death, and reduced neurite outgrowth
was observed (Jacquier et al., 2006).

Remarkably, alsin has been found to also have
neuroprotective effects in MNs within an ALS context. One
study showed that the DH/PH domain of alsin can bind mutated

SOD1 and suppress its neurotoxic effects (Kanekura et al., 2004).
Currently, no animal models are available to study ALS-related
mutations in ALS2 in vivo. Such models would give a broad
perspective into the neuroprotective and neurotoxic effects of
alsin in ALS.

Dynactin Subunit 1 (DCTN1)
The dynactin complex contains more than 20 subunits,
corresponding to 11 different proteins. The largest subunit of
dynactin, dynactin subunit 1 or p150Glued (DCTN1), directly
interacts with cytoplasmic dynein-1 motor (dynein) and MTs
to promote the retrograde transport of vesicles, organelles,
RNAs, and different binding proteins (Laird et al., 2008;
Moughamian and Holzbaur, 2012; Urnavicius et al., 2015).
An initial study identified a missense mutation (G59S) in
DCTN1 as the cause of an autosomal dominant form of
lower MN disease in all the affected members of one family
(Puls et al., 2003). The G59S substitution is localized in the
cytoskeleton-associated protein glycine-rich (CAP-Gly) domain
of DCTN1 which mediates the binding of dynactin to MTs.
Consistently, subsequent studies showed that G59S mutation
decreases the ability of dynactin to bind MTs (Puls et al.,
2003; Levy et al., 2006; Lai et al., 2007). Several other
mutations in DCTN1 have now been identified in fALS

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 November 2020 | Volume 14 | Article 594975

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Castellanos-Montiel et al. Cytoskeletal Defects in ALS

(Münch et al., 2004, 2005; Liu et al., 2014), and some
studies have revealed the presence of DCTN1 variants in
sALS cases. Such variants were able to induce abnormal
morphological changes when overexpressed in an in vitro system
(Stockmann et al., 2013). However, DCTN1-mRNA has been
observed to be reduced in the motor cortex and spinal cord of
sALS patients (Jiang et al., 2007; Ikenaka et al., 2013; Kuźma-
Kozakiewicz et al., 2013), raising the question of whetherDCTN1
variants may contribute to disease onset through either a loss or
gain of function in ALS.

Transgenic animal models with mutated or ablated DCTN1
have been generated to elucidate the potential role of DCTN1
in the degeneration of MNs. The intracellular trafficking of
autophagosomes (Laird et al., 2008; Ikenaka et al., 2013) and the
bidirectional transport of motor proteins kinesins (Hsu et al.,
2011) are disrupted in vivo. Remarkably, DCTN1 has also shown
to play a key role within the synaptic processes of MNs. For
instance, DCTN1 depletion leads to neuromuscular junction
(NMJ) instability, functional abnormalities, and locomotion
defects in a zebrafish model (Bercier et al., 2019). Similarly, the
ablation ofDCTN1 in the postnatal neurons of agedmice resulted
in the preferential degeneration of spinal MNs, accompanied by
increased gliosis, NMJ disintegration, and muscle atrophy (Yu
et al., 2018). When DCTN1 was mutated in Drosophila in the
DCTN1 homolog Glued, the formation and maturation of MN
synapses were impaired (Allen et al., 1999). Additionally, the
dynactin complex was shown to have a local role within the
MN presynaptic terminal by controlling synapse stabilization by
decreasing the rate of presynaptic retraction (Eaton et al., 2002).
Thus, mutations in DCTN1 can disrupt the local role of dynactin
at the MN presynaptic terminal. Taken together, all these studies
point towards an inability ofMNs to form synapses whenDCTN1
is mutated or ablated. However, the exact mechanisms leading to
such deficits remain unknown.

Intermediate Filament Proteins
MatureMNs express different types of intermediate filament (IF)
genes that code for proteins which contribute to the maintenance
of the cytoskeletal architecture and signaling within the cells:
neurofilament (NF) light (NF-L), medium (NF-M), and heavy
(NF-H) chains, as well as α-internexin (INA) and peripherin
(PRPH). These proteins assemble into complex structures and
undergo several post-translational modifications that include
glycosylation and phosphorylation, particularly NF-H, with
the presence of numerous lysine-serine-proline (KSP) repeats
in the C-terminal tail domain of the protein that is heavily
phosphorylated. Abnormal accumulation of NFs in the spinal
cord of patients with sALS was first reported in the 80s (Hirano
et al., 1984) and since then, growing evidence has demonstrated
that NF abnormalities could be an early pathological feature
of ALS in patients, a phenotype that can also be recapitulated
in animal models. Perikaryal and axonal inclusion bodies (also
termed spheroids) containing IF proteins are a hallmark of
degenerating spinal MNs in ALS patients. NF-L and NF-H
subunits, as well as peripherin, are particularly enriched in such
spheroids, and how they interact has been gaining attention in
the last few years.

In 1994, Bergeron and colleagues discovered that
NF-L-mRNA was decreased by 60% in the spinal MNs of
ALS patients (Bergeron et al., 1994). To further study the
contribution of NF-L in ALS pathogenesis, a transgenic mouse
model expressing a low level of human NF-L with a point
mutation was created [NF-L(Pro)]. These mice exhibited
distinct hallmarks of ALS including selective degeneration
of MNs, perikaryal and axonal swellings with the presence
of IF spheroids, and NMJ denervation presenting as muscle
atrophy (Lee et al., 1994). However, there are no known point
mutations in NF-L associated with ALS, and NF-L subunit
accumulation is thought to be a secondary effect of other
primary disease mechanisms.

In contrast to NF-L, mutations in the region of the
gene NF-H coding for the highly phosphorylated C-terminal
domain of the NF-H protein have been reported in several
patients with sALS (Figlewicz et al., 1994). Similar to patients,
transgenic mice overexpressing human NF-H present with
features of ALS pathology, including swellings of proximal
axons in the spinal cord, progressive axonopathy, and atrophy
of muscle fibers (Côté et al., 1993). In these mice, it is not
only the axonal transport of NF proteins that are altered
but to a lesser extent, also that of actin and tubulin. Also,
in degenerating spinal MNs, mitochondria are found within
the perikaryon, next to NF aggregates, supporting the idea
that disorganization of the NFs architecture can affect the
axonal integrity of MNs by altering the transport of other
essential components (Collard et al., 1995). These hallmarks
of ALS pathology have also been reported in transgenic
mice overexpressing various mutations of human SOD1 and
NF involvement in the pathology observed in these models
has been previously discussed (Julien, 1997). For instance,
transgenic SOD1G93A mice that develop an ALS clinical
phenotype, present pathological hallmarks of the disease, such
as the presence of some NF-rich spheroids containing NF
proteins and phosphorylated NF-H and NF-M subunits, as
well as α-internexin and peripherin. However, in this case,
it seems that only the NF cytoskeleton is altered as no
immunoreactivity against actin or tubulin was observed in
these spheroids (Tu et al., 1996). To reconcile the role of
NF in the SOD1-mediated pathology, a transgenic SOD1G37R
mouse overexpressing human NF-H has been generated.
Surprisingly, the lifespan of these animals was increased
by NF-H overexpression (Couillard-Després et al., 1998). In
these mice, the NF proteins were primarily localized in
the perikaryal area of neurons where NF-H might exert its
neuroprotective effect.

While understanding the regulation of IFs can help elucidate
the underlying causes of ALS, examining the levels of NF-L
and the phosphorylated form of NF-H in cerebrospinal fluid
(CSF), plasma, and blood of patients can be used as a
diagnostic tool for and as a predictor of disease progression.
Indeed, several recent studies with a cohort of ALS patients
have reported an increase in these levels in both patients
with fALS and sALS. Given their potential as biomarkers
for ALS, considerable efforts have recently been made in the
development of precise and reliable detection techniques for both
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NF-L and the phosphorylated form of NF-H (for review, see
Poesen and Van Damme, 2018).

Peripherin, encoded by the gene PRPH, is a component
of MN spheroids in both transgenic mouse models (Beaulieu
et al., 2000; Robertson et al., 2003) and ALS patients (Corbo
and Hays, 1992; Migheli et al., 1993; Keller et al., 2012).
Since ALS patients typically show decreased levels of NF-L-
mRNA, a transgenic mouse model overexpressing peripherin
but with NF-L knocked out (TPer;L−/−) was created. The
TPer;L−/− mouse model exhibited a 46% loss in MNs with
spheroids mainly found in the axons and, in the absence
of NF-L, there was an increase in the formation of NF-H
heterodimers with peripherin and α-internexin (Beaulieu et al.,
1999, 2000). Such spheroids can trigger MN degeneration
by disrupting the axonal transport of the other IF proteins
as observed in a less complex transgenic mouse model only
overexpressing peripherin (Per mouse; Beaulieu et al., 1999;
Millecamps et al., 2006). Importantly, the overexpression of NF-
H within the TPer;L−/− genetic background (hH:TPer;L−/−)
can protect against the neurotoxicity exerted by peripherin.
In these mice, the intracellular inclusion bodies were
re-localized to the perikaryal of the spinal MNs, suggesting
that excess NF-H sequesters peripherin and by doing so,
prevents its accumulation within the axon. This supports
the hypothesis that the composition of the IF protein
inclusions determines their localization within the cell as
well as their role as neuroprotective or neurotoxic structures
(Beaulieu and Julien, 2003).

In mice, PRPH gives rise to three splice variants (Per
56, 58, 61). The SOD1G37R mouse model, in which MNs
carry IF spheroids containing peripherin similar to ALS
patients, was used to demonstrate that Per61 was the
splice variant enriched within the spheroids. However, the
existence of the Per61 splice variant in humans remains
controversial since it is argued that the splicing event that
happens in mice cannot occur in humans (Xiao et al., 2008).
Additionally, only one study has been able to find Per61 within
lumbar degenerating MNs of two ALS patients (Robertson
et al., 2003). Instead, a different splice variant, Per28, is
thought to be the equivalent of Per61 in humans and it is
upregulated at the mRNA and protein level, in patients with
sALS. The analysis of spinal cord sections of these patients
showed Per28 aggregates within MNs, and its subsequent
overexpression in an in vitro system showed Per28 had
neurotoxic effects (Xiao et al., 2008). However, the exact role
of Per28 in ALS onset remains controversial as it has also been
found to have cytoprotective effects against oxidative stress
(McLean et al., 2014).

Until 2011, it was thought that peripherin neurotoxicity was
a secondary disease mechanism associated with other events
like a SOD1 mutation. However, the identification of several
ALS-associated point mutations (Gros-Louis et al., 2004; Leung
et al., 2004; Corrado et al., 2011) and a frameshift deletion (Gros-
Louis et al., 2004) in PRPH raised the question as to whether
these mutations are drivers of the ALS phenotype. However, the
absence of mouse models or human iPSCs with mutations in
PRPH has prevented further testing of this hypothesis.

Kinesin Family Member 5A (KIF5A)
Recently, the kinesin family member 5A (KIF5A) was confirmed
as an ALS-related gene (Nicolas et al., 2018). Kinesins are the
microtubule-based motor proteins involved in the anterograde
transport of cargos. Currently, it is unknown if KIF5Amutations
themselves are sufficient to cause ALS but genome-wide analysis
has identified KIF5A mutations as low or high-risk factors for
the development of ALS (Nicolas et al., 2018). The mechanisms
through which KIF5A mutations would be contributing to ALS
onset have not been studied yet, but several hypotheses exist
focused on the central role of kinesins in axonal transport. For
instance, KIF5A knockout mice (KIF5A−/−) display abnormal
transport of NF proteins (Xia et al., 2003), which has been
proposed as a causative mechanism of NF accumulation, an
ALS hallmark, as discussed previously (Chevalier-Larsen and
Holzbaur, 2006). Additionally, primary motor neurons (PMNs)
derived from KIF5A−/− mice showed transport deficits, reduced
axonal outgrowth, and reduced survival. In particular, such
transport deficits were observed for mitochondria (Karle et al.,
2012). The impairment of mitochondrial transport was observed
in both anterograde and retrograde direction, consistent with
previous findings in Drosophila models lacking the KIF5A
homolog khc (Martin et al., 1999). Importantly, deficits in
mitochondria transport and function have also been identified
as hallmarks of ALS (Chevalier-Larsen and Holzbaur, 2006;
Smith et al., 2019). KIF5A also has been shown to affect neurite
outgrowth through its interaction with protrudin in the mouse
brain, which plays a role in the regulation of vesicular transport
in neurons (Matsuzaki et al., 2011). Impaired neurite outgrowth
could potentially affect the ability of MNs to form synaptic
connections, which are lost in ALS.

Profilin 1 (PFN1)
Profilin 1 (PFN1) is an essential protein for the polymerization of
filamentous (F)-actin through binding of monomeric (G)-actin.
Early studies assessing the impact of PFN1mutations in different
neuronal cell types showed that a profilinmutant (H119E), which
conserved its ability to bind all its target proteins except actin,
blocked neurite formation in vitro (Suetsugu et al., 1998). Later,
in vivo studies in Drosophila showed growth cone arrest and
reduced axon outgrowth in embryonic MNs carrying a mutation
in chickadee, the homolog to PFN1 (Wills et al., 1999). In 2012,
the exome sequencing of two large ALS families displaying a
dominant pattern of inheritance and the subsequent screening
of a larger cohort revealed a link between ALS and several
mutations in PFN1 (C71G, M114T, E117G, G118V). In the same
study and consistent with early findings, PMNs overexpressing
mutated PFN1 (G118V) demonstrated a reduction in levels of
bound actin relative to wild-type PFN1, inhibition of axonal
outgrowth, and growth cone size reduction (Wu et al., 2012).
Since then, additional ALS cohorts have been analyzed and
furthermutations in the PFN1 gene have been identified, not only
in fALS but also in sALS (Ingre et al., 2013; Tiloca et al., 2013;
Yang et al., 2013; Smith et al., 2015).

Aside from dysregulation of actin dynamics that disrupt
axonal growth and promote growth cone arrest, PFN1 has
been linked to other ALS features that include abnormalities in
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autophagy (Nguyen et al., 2019) and cytoplasmatic aggregations
(Wu et al., 2012; Smith et al., 2015). PFN1 aggregates co-stained
for the transactive response DNA-binding protein 43 (TDP-
43) in vitro. Interestingly, abnormal PFN1 pathology was
not observed in a cohort of sALS patients with TDP-43
pathology, suggesting that whereas mutant PFN1 can induce
aggregation of TDP-43, PFN1 aggregation does not occur in
patients with TDP-43 pathology. The mechanisms inducing
TDP-43 accumulation through mutant PFN1 remains unknown
(Wu et al., 2012). TDP-43 is encoded by TARDBP, another
ALS-related gene ubiquitously expressed in the majority of cells,
which plays a key role in the regulation of RNA metabolism
in different subcellular compartments (Brown and Al-Chalabi,
2017; Mathis et al., 2019). Further studies are needed to analyze
the possible interaction between these two genes in disease
onset in sALS.

Transgenic mice models of PFN1 have been generated to
study the contribution of this gene to ALS pathology. For
instance, mice harboring the PFN1G118V variant display several
clinical and pathological characteristics of ALS, including loss of
lower and upper MNs, loss of NMJs, and profilin aggregation.
Consistent with profilin function and results obtained in PMNs
overexpressing the same mutation in PFN1, these mice also show
an abnormal G/F actin ratio in the spinal cord (Fil et al., 2017).
Similarly, another mouse model in which mutated PFN1 (C71G)
was restricted to MNs during development showed abnormal
G/F actin ratio in the spinal cord and significant motor deficits
(Brettle et al., 2019).

Spastin (SPAST)
Spastin protein, coded by the gene SPAST (or SPG4) is
a member of the ATPases associated with diverse cellular
activities (AAA) family that can induce MT severing in vitro,
thereby influencing MT dynamics (Errico et al., 2002).
In support of this observation, overexpression of spastin
increases MT disassembly, negatively affecting axonal transport
(Kasher et al., 2009). Over 150 mutations within the SPAST
gene have been identified to date, most of them being
causative of hereditary spastic paraplegia (HSP) but two
mutations have been associated with an ALS phenotype
(Meyer et al., 2005; Münch et al., 2008). The first ALS
reported case linked to the SPG4 gene was the result of
a duplication mutation within exon 1 (Meyer et al., 2005).
Unlike the duplication mutation that gave rise to an early-
onset but slowly progressing ALS, a missense mutation in
SPAST (S44L) gave rise to a rapidly progressive adult-
onset ALS (Münch et al., 2008). Excitability studies were
performed to identify the cortical excitability changes in
HSP, ALS, and PLS patients. The three diseases were shown
to have different patterns of cortical excitability, ALS is
characterized by cortical hyperexcitability. Nevertheless, the
molecular mechanisms behind the different excitability found
in HSP and ALS remain unknown (Geevasinga et al., 2015). So
far, there are no studies of spastin in ALS. However, SPAST
mutations leading to an HSP phenotype display a dying-back
axonopathy of the affected neurons, especially the corticospinal
MNs. Moreover, such axon abnormalities have been identified

in iPSC-derived neurons (Denton et al., 2014, 2016), which are
known to be a powerful tool to study human neurons in vitro.

Tubulin Alpha 4a (TUBA4A)
Genetic screening of several fALS (Smith et al., 2014; Li et al.,
2018) and sALS (Pensato et al., 2015) patients has revealed
several mutations in the TUBA4A gene, encoding the tubulin
alpha 4a protein, a ubiquitously expressed MT protein highly
enriched in the nervous system but lacking a known role in MNs
(Rustici et al., 2013; Smith et al., 2014). Through several in vitro
experiments, Smith et al. (2014) demonstrated that most of the
identified variants showed the inefficient formation of α-/β-
tubulin dimers, decreased incorporation into MTs, and inhibited
MT network stability. However, it remains controversial whether
the proteins resulting from TUBA4A mutations can form
aggregates since only one familial ALS mutation (W407X) has
been shown to trigger the formation of small ubiquitinated
cytoplasmic inclusions in vitro in PMNs and HEK293T cells
(Smith et al., 2014).

Unlike other MT proteins linked to neurological disorders,
TUBA4A expression increases dramatically (>50-fold) with age
in humans, potentially explaining why a mutation in this gene
may promote a late-onset disease (Tischfield et al., 2011; Smith
et al., 2014; Clark et al., 2016). Interestingly, decreased levels of
TUBA4A-mRNA have been found in the brain and spinal cord
of sALS and fALS patients with mutations in SOD1 and C9orf72
(Helferich et al., 2018). Unfortunately, the impact of TUBA4A
mutations in MT dynamics and how its expression changes over
time have not been assessed in vivo. Recently, a neuron-like
cell line with transient overexpression of ALS-related mutated
forms (R320C and A383T) of TUBA4A showed altered neurite
length and MT defects after exposure to selenium (Maraldi et al.,
2019). This novel study highlighted a potential link between
environmental factors and TUBA4A mutations in triggering
ALS onset. The development of animal models harboring ALS
mutations in the TUBA4A gene will help lead to understanding
the role of TUBA4A in ALS.

TARGETING CYTOSKELETAL DYNAMICS
TO TREATMENT FOR ALS

Currently, neither the FDA-approved drugs for ALS nor the
drugs at different stages of clinical trials are known to have a
direct effect on the dysfunction of cytoskeletal dynamics. Besides
the IF proteins (NF-L and NF-H subunits, and peripherin)
which aggregate to form perikaryal or axonal spheroids (Hirano
et al., 1984; Corbo and Hays, 1992; Côté et al., 1993), no other
connection between any of the aforementioned proteins has
been described. For many years, the dysfunction of most of
these proteins was thought to be a result of mutations in other
genes (e.g., SOD1) that trigger the disruption of several cellular
processes within an MN (Julien, 1997; Couillard-Després et al.,
1998; Xiao et al., 2008; Hadano et al., 2010). However, this
perspective is now challenged. The discovery of mutations able
to trigger disease mechanisms, in the different genes affecting
cytoskeletal dynamics, has increased the consensus on a greater
contribution of such genes in the development of ALS. Therefore,
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in addition to NF-L and the phosphorylated form of NF-H that
have recently been identified as disease markers (Poesen and Van
Damme, 2018), these genes and their products have the potential
to be studied as clinical targets.

CONCLUSION

The discovery of ALS-related genes that affect cytoskeletal
dynamics is very recent and their study in an ALS-related context
does not extend more than 20 years. The available studies are
mainly descriptive reports of isolated subjects or one family with
a few members. Only a couple of genetic studies count with
large cohorts of patients and/or an extensive study model (e.g.,
GWAS), meaning that the population presence of most of the
mutations remains unknown. It is still unclear which of these
genes are acting as the primary cause in the onset of ALS. Some
studies identified mutations in genes only in patients with sALS
or fALS and not in controls. In contrast, others identified some
mutations in patients as well as in non-affected individuals, while
others have failed to report any significant disease-associated
mutations in the same genes. For example, variants in NF genes
are mainly considered a risk factor but a larger cohort of patients
might have to be considered to conclude if specific variants
are the primary cause of ALS or simply a risk factor. Instead
of triggering disease onset or acting as risk factors, different
mutations in ALS-related genes can also act as modifiers of
the disease by changing the age of clinical presentation (early
VS late-onset), the evolution of the disease (e.g., fast VS slow
progression), the development of certain profiles (e.g., mutations
on ALS2 or mutations on DCTN1 observed within the ALS/FTD
family case), the molecular changes observed, etc. Additionally,
the interaction between two or more of these genes to trigger
and/or modify the clinical presentation of the disease has to
be taken into account. It is also important to mention that
not all the studies systematically looked at several ALS-related
genes in the same study, meaning that the possibility exists
that a mutation might be associated as the cause of the disease
while not accounting for the presence of other mutations in
other genes that might be playing a more significant role in
the development of ALS. As to the molecular mechanisms
through which the different variants of these genes might
be contributing to ALS onset and progression, most of them
remain poorly understood. Therefore, animal models harboring

ALS-related mutations have been generated to study disease
mechanisms, however, they exist for only a few of these genes.
Similarly, there are almost no studies making use of novel
approaches such as iPSC technology and CRISPR-Cas9 to study
the impact of these mutations in ALS pathology. Due to their
large size, MNs highly rely on cytoskeletal dynamics to maintain
axonal transport and synapse integrity which allows them to
function properly. Efforts to study how the ALS-related genes
are linked to abnormalities of cytoskeletal dynamics should be
increased to better understand the mechanisms underlying this
lethal disease.
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