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Abstract: The pandemic of COVID-19 has posed unprecedented threats to healthcare systems world-
wide. Great efforts were spent to fight the emergency, with the widespread use of cutting-edge
technologies, especially big data analytics and AI. In this context, the present study proposes a
novel combination of geographical filtering and machine learning (ML) for the development and
optimization of a COVID-19 early alert system based on Emergency Medical Services (EMS) data,
for the anticipated identification of outbreaks with very high granularity, up to single municipalities.
The model, implemented for the region of Lombardy, Italy, showed robust performance, with an
overall 80% accuracy in identifying the active spread of the disease. The further post-processing of
the output was implemented to classify the territory into five risk classes, resulting in effectively
anticipating the demand for interventions by EMS. This model shows state-of-art potentiality for
future applications in the early detection of the burden of the impact of COVID-19, or other similar
epidemics, on the healthcare system.

Keywords: COVID-19; machine learning; health geomatics; geographic information system; emergency
medical services; spatial filtering; geo-AI; resources management

1. Introduction

Even before the pandemic of COVID-19, the potential central role of data science in
infectious disease forecasting and outbreak science was already recognized [1]. In the
last two years, the worldwide scientific community has made unprecedented efforts to
mitigate the effects of the COVID-19 pandemic, focusing on the application of cutting-edge
technologies related to data science: artificial intelligence (AI), machine learning (ML), and
big data analytics were considered key assets in extracting information useful to fight the
pandemic [2–8]. Despite the fact that the worst phase of the emergency seems to have
passed thanks to the availability of vaccines, it is likely that healthcare systems will have to
pay special attention for many years to come to monitor and quickly detect possible events
of local recrudescence due to new COVID-19 variants.

Different strategies with three different time horizons have been proposed [3]: (1) the
rapid identification of outbreaks and the diagnosis of cases (short-term); (2) the identifi-
cation of therapeutic options (medium-term); (3) the development of resilient smart cities
(long-term). Similarly, the monitoring, surveillance, detection, prevention, and mitigation
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of indirect effects were identified as goals for applying new technologies, such as big data,
AI, the Internet of Things (IoT), and blockchains [7] in public health. In the long term, the
use of such tools could represent a unique opportunity to trigger a paradigm shift capable
of supporting future policies in public health and medicine.

The spreading of a pandemic is inherently a spatial phenomenon. Coherently,
in a recent systematic review [9], a specific focus on different studies that conducted
spatial analysis in relation to COVID-19 was explored, in which the following aspects
were identified:

1. Spatiotemporal analysis: a descriptive and/or predictive modeling of the evolution of
the pandemic within a certain territory (usually at the national and regional level) was
explored using official data on positive cases, often also considering people’s mobility,
with examples relevant to China [10], South Korea [11], the USA [12], and Italy [13].

2. Health and social geography: the relationship between the virus spreading (based on
confirmed cases) and healthcare resources [14], such as nurses [15] or surgeons [16],
was explored together with the correlation between confirmed cases and demographic
and/or socio-economic characteristics [17,18].

3. Environmental variables: the correlation between confirmed cases and environmen-
tal factors, mainly climatic variables [19], such as humidity and temperature [20],
was inspected.

4. Data mining: different analyses were performed in relation to additional and alternative
data sources, such as mobility [21,22] and flights [23], to corroborate spatial analysis.

5. Web-based mapping: web services implemented to easily visualize and facilitate the
comprehension of the obtainedresults.

From this review, the potentialities of geographic information systems (GIS) as a set of
tools for capturing, storing, checking, manipulating, analyzing, and displaying spatially
georeferenced data to handle the geospatial component of the pandemic analysis, also
at the local level, were highlighted, as in other studies [24–26]. In a recent update of
this review [27], including 221 papers published in only one year, the importance of data
quality, in terms of both availability and spatial-temporal granularity, was underlined,
to allow the unveiling of new explicative patterns in the spreading of COVID-19, with
higher informative content towards decision-making at the local level. From these reviews,
the combination of spatial analysis and data science (mostly AI and specifically ML) has
emerged as the best pathway to build descriptive and predictive models to monitor the
evolution of the COVID-19 pandemic.

In the recent literature (see Table 1), the implementation of AI predictive models to
foresee the evolution of COVID-19 curves in a certain territory has received consistent
attention [26,28–33], with a specific focus on support for decision-making to implement
public health policies [28]. The use of AI methods is recognized as able to outperform the
classical statistical models (such as the Susceptible–Exposed–Infectious–Recovered SEIR
model) in short-term forecasts [29]. However, some issues still remain unsolved:

• All the considered models rely on official diagnosis data, which are characterized by
significant confounding factors, such as testing capabilities, logistics, data communica-
tion flows, and people’s behavior.

• The geographic resolution of the models remains low, considering whole
countries [26,28–31] or at least large administrative areas [32,33]. A low granularity can
consistently limit the effectiveness of models as decision support for policymakers [32].

• Spatial mapping usually results in a slow generating process [28,31] and therefore is
difficult to keep updated and not usable to guide day-by-day activities.

These limitations were addressed in this study by implementing different strategies.
Regarding the data source, we previously demonstrated [34] how the geo-localized col-
lection of calls to the emergency medical number and consequent ambulance dispatches
by the Emergency Medical Services (EMS) could be considered as an alternative source
of information to monitor the epidemic spreading across a territory, as also assessed in
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previous studies [35–40], thus overcoming the intrinsic limitations of the official diagnosis
data [8,41–44], in particular during the first pandemic wave [45]. However, this kind of data
was never used, to the best of our knowledge, to implement territorial predictive models.
Moreover, EMS data are simple, low in weight, and widely collected, guaranteeing their
quick usability, fast processing (thus overcoming the slowness of spatial mapping [28,31]),
and high replicability in different territories.

Table 1. Main relevant features of similar studies in the scientific literature.

Target Variable Data Source Max Geographic
Granularity Algorithm Selected Performance

Evaluation

Mollalo et al., 2020
[26]

Cumulative
incidence

Socioeconomic,
behavioral,

environmental,
topographic, and

demographic factors

County Multi-Layer
Perceptron (MLP) RMSE = 0.72

Hussein et al., 2022
[28] Daily infected cases Official diagnoses Country Time-Delay Neural

Network (TDNN) RMSE = 1.15

Alsayed et al., 2020
[29]

Epidemic peak,
infected cases Official diagnoses Country

Susceptible–
Exposed–Infectious–

Recovered (SEIR)
model, Adaptive

Neuro-Fuzzy
Inference System

(ANFIS)

Normalized
RMSE = 0.041

Singh et al., 2020
[30]

Cumulative cases,
deaths, recoveries Official diagnoses Country

AutoRegressive
Integrated Moving
Average (ARIMA)

Akaike information
criterion value = 20

Hussein et al., 2021
[31] Daily infected cases Official diagnoses Country

Linear forecast model
+ custom

mathematical
equation

RMSE = 2.15

Lynch et al., 2021
[32,33] Cumulative cases Official diagnoses County Moving Average

(MA) MdAE = 0.67

Friedman et al., 2021
[36]

Excess
out-of-hospital

deaths, respiratory
complaints, oxygen

saturation level
of patients

Emergency Medical
Services (EMS) data City

Comparison against
Linear Continuous

Fixed Effect
Not applicable

COVID-19
APHP-Universities-

INRIA-INSERM
Group, 2020

[37]

Requirements for
ICU beds

EMS data, positivity
ratio, emergency

department visits,
hospital admissions

Region Correlation curve
analysis R2 = 0.79–0.99

Levy et al., 2021
[38] Hospitalizations EMS data State

AutoRegressive
Integrated Moving
Average (ARIMA)

AIC

Xie et al., 2021
[40] EMS demand Hospitalizations County Time series

regression R2 = 0.85

Our study Territorial alert level EMS data Municipality Random Forest (RF) Accuracy = 80%

Despite the fact that other causes could have contributed to the increase in the number
of these events (such as, for example, seasonal flu), the volumes that characterized COVID-
19 waves were significantly different [46], so the impact of regular EMS baseline activity for
other respiratory or infective issues could therefore be neglected. This kind of approach
could also be important in the upcoming scenario, in which we are witnessing progressively
decreasing preventive measures towards virus diffusion, which may result in a lower level
of population screening and the abrupt local spreading of the disease.

With relevance to the geographic granularity, the limit to overcome is the low statistical
meaningfulness of models focusing on small areas in terms of resident population, so that
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a certain level of aggregation is necessary to identify actual patterns in the data rather
than random noise. To solve this issue, a new custom method for spatial aggregation is
here proposed, based on drive-time distance and linear spatial filtering, which allows for
reaching a meaningful size in terms of population while still keeping a spatial focus on the
central point of the aggregated cluster, i.e., a single municipality as a target, regardless of
its dimension.

In accordance with the conducted analysis, we hypothesized that the implementa-
tion of data science methods, applied to the georeferenced database of calls and vehicles
dispatched by EMS for respiratory and infective causes, could be used to infer early alert
monitoring relevant to the COVID-19 spatio-temporal evolution, with anticipation, higher
granularity, and more reliability compared to official infection data. In our previous
study [34], we already demonstrated the possibility to identify the timing points of change
in the shape of the curves of EMS dispatches across different districts, evidencing the possi-
ble start of epidemic growth. To further exploit the proposed framework in the direction of
providing support for decision-making, in this study our aim was to develop and validate
a continuous monitoring model, based on ML methods with supervised learning, for the
day-by-day analysis of the evolution of EMS data, in order to generate an ‘early-alert’
COVID-19 system with a higher level of geographic granularity (single municipalities
instead of districts with 100,000 residents), to promptly identify the occurrence of new
hotspots across the analyzed territory. The main novelties introduced are:

• The use of a proxy data source—EMS data instead of official swab tests—characterized
by a smaller time lag for communication and processing, less dependent on people’s
behavior, available infrastructures (also for information flow), and already automati-
cally collected.

• A high geographic granularity (single municipalities), obtained through spatial pro-
cessing methods.

• A simple and agile architecture, both in the data structure and in the computing
algorithm, which allows fast execution and daily updates to the model.

The implementation relies on the retrospective data collected by EMS relevant to the
Italian region of Lombardy (with a population of 10.06 M inhabitants over a surface of
23,844 km2), the first area outside of China to record an outbreak of COVID-19.

2. Materials and Methods
2.1. Model Development and Optimization

In order to apply supervised ML to tackle a classification problem, the following steps
were identified:

I. Definition of the target variable: the class-defining label that the algorithm must
assign to each record;

II. Identification of the explicative attributes: measurements on which the classifica-
tion is based;

III. Identification of the main computational block: ML classification algorithm to be
trained and subsequently applied;

IV. Definition of a post-processing algorithm, aimed at elaborating the output of the
main computational block in order to enhance the representativeness and usability
of the output.

To this aim, the methodology and the output of our previously published descriptive
model [34] were exploited to define a binary label (step I) corresponding to the active
spreading or no diffusion of COVID-19 in a specific territory. More specifically, after
dividing the Lombardy region into 77 districts of approximately 100,000 residents, for
each district, the time series representing the number of vehicles dispatched by the EMS
(normalized by the resident population) for respiratory or infective issues was analyzed
to automatically define a first inflection point, representing an estimate of the start of
the pandemic spread. This operation was performed using a previously validated signal
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processing algorithm suited for the identification of inflection points for curves with noise
superimposed [47]. Briefly, it is based on a geometrical criterion in which a trapezium is
built on the time series and, iteratively, one vertex is moved over time: the position of such
a vertex characterized by the maximal trapezoid area is considered as the inflection point.
Data preceding this point were labeled as ‘0’ (no diffusion) while data following it were
labeled as ‘1’ (active spreading), as represented in Figure 1. To enhance the informative
content within the training set, in addition to our previous analysis focused only on the
period from 1 January to 23 March 2020, the data relevant to the following waves of the
pandemic in Lombardy were also considered. Moreover, the ending points of the waves
were also identified by applying the same algorithm to the reversed data. In this way,
the final training set was composed of a total of 58,190 daily records, randomized and
composed of a balanced share of the two classes, spanning from 1 January 2020 to 13 March
2022 (802 days).

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 5 of 20 
 

 

to automatically define a first inflection point, representing an estimate of the start of the 
pandemic spread. This operation was performed using a previously validated signal 
processing algorithm suited for the identification of inflection points for curves with 
noise superimposed [47]. Briefly, it is based on a geometrical criterion in which a trape-
zium is built on the time series and, iteratively, one vertex is moved over time: the posi-
tion of such a vertex characterized by the maximal trapezoid area is considered as the 
inflection point. Data preceding this point were labeled as ‘0′ (no diffusion) while data 
following it were labeled as ‘1′ (active spreading), as represented in Figure 1. To enhance 
the informative content within the training set, in addition to our previous analysis fo-
cused only on the period from 1 January to 23 March 2020, the data relevant to the fol-
lowing waves of the pandemic in Lombardy were also considered. Moreover, the ending 
points of the waves were also identified by applying the same algorithm to the reversed 
data. In this way, the final training set was composed of a total of 58,190 daily records, 
randomized and composed of a balanced share of the two classes, spanning from 1 Jan-
uary 2020 to 13 March 2022 (802 days). 

 
Figure 1. Subdivision of the time series, representing the vehicles dispatched by EMS for respira-
tory and infective issues (normalized by the resident population) in a certain territory, in periods 
where a label (0 = ’no diffusion’; 1 = ‘active spreading’) was assigned to each point generated, ac-
cording to the automated identification of inflection points (change in the shape of the data, see [34] 
for more details). 

The next step (II) is the identification of the explicative attributes, the features to be 
computed and associated with the label of each day, on which the algorithm will perform 
the classification. For this purpose, the series of unfiltered data relevant to both the daily 
calls to the EMS number and the daily dispatches of EMS vehicles, relevant to respiratory 
and infective causes, normalized by the resident population in the district under analysis, 
were considered. This choice was supported by the very high correlation of both the 
number of ambulances dispatched (r2 = 0.81) and emergency calls (r2 = 0.96) with official 
casualties at the province level (the official data with the highest granularity available) 
due to COVID-19 during the first pandemic peak in Lombardy, as shown in [34]. 

Figure 1. Subdivision of the time series, representing the vehicles dispatched by EMS for respiratory
and infective issues (normalized by the resident population) in a certain territory, in periods where
a label (0 = ‘no diffusion’; 1 = ‘active spreading’) was assigned to each point generated, according
to the automated identification of inflection points (change in the shape of the data, see [34] for
more details).

The next step (II) is the identification of the explicative attributes, the features to be
computed and associated with the label of each day, on which the algorithm will perform
the classification. For this purpose, the series of unfiltered data relevant to both the daily
calls to the EMS number and the daily dispatches of EMS vehicles, relevant to respiratory
and infective causes, normalized by the resident population in the district under analysis,
were considered. This choice was supported by the very high correlation of both the
number of ambulances dispatched (r2 = 0.81) and emergency calls (r2 = 0.96) with official
casualties at the province level (the official data with the highest granularity available) due
to COVID-19 during the first pandemic peak in Lombardy, as shown in [34].

For each target day, its value and those of the six preceding days were used (7 values
for calls + 7 values for ambulances dispatched = 14 attributes), and further elaborated to
extract the following features from both signals:
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• ‘Position’ features: max value, min value, max-min, time position of the max, and min
values in the seven days (5 × 2 = 10 attributes);

• ‘Statistical’ features: mean value, median value, standard deviation (3 × 2 = 6 attributes);
• Linear regression features: intercept, slope, and Pearson’s correlation coefficient of the

linear regression (3 × 2 = 6 attributes);
• Exponential regression features: base numerical coefficient, exponential coefficient,

and Pearson’s correlation coefficient of the exponential regression (3× 2 = 6 attributes).

The resulting total number of computed features was 42, and a detailed list is provided
in Appendix A.

The following step (III) consisted of defining the ML classification algorithm to be
trained and consequently applied to classify as ‘0’ or ‘1’ (i.e., ‘no diffusion or ‘active
spreading’, respectively) the current target day, based on a retrospective series of 7 data
points for each territorial cluster, capturing the possible trends existing in such data, and
the relevant label assignment probability. Following a trial-and-evaluation strategy, three
different ML approaches (logistic regression, random forest classifier, and support vector
machine, widely applied algorithms in the recent literature in the field of EMS demand
forecast [48–50]), together with different combinations of their explicative attributes, were
tested and optimized. Therefore, attribute selection was based on a trial-and-evaluation
strategy rather than a priori techniques. The pre-processing of attributes consisted of a
single step (the computation of derived attributes), and no further mathematical processing
(such as Principal Components Analysis) was implemented.

A performance test was carried out using a 10-fold cross-validation protocol. The
whole dataset was balanced in terms of validation labels, with both labels equally rep-
resented in terms of the number of records for each district and for each fold in the
cross-validation process, thus guaranteeing a balance in both the test and the training set
for all iterations; in addition, the order of the records was randomized to avoid feeding the
algorithm with almost-periodical cycles.

With the most performant model identified, a further analysis was performed consid-
ering the probability of label assignment by the algorithm as a test threshold, thus inferring
the area under the curve (AUC) of the receiving operator characteristic (ROC) curves. This
analysis was conducted separately for the three main waves of COVID-19 occurring in
Lombardy during the whole period under observation (as can be noticed from the example
reported in Figure 1):

• The first wave, in the spring of 2020, with the original strain and no vaccine available.
• A second wave, from the autumn of 2020 to the spring of 2021, composed of two

peaks, the former relevant to the Alpha variant (when vaccinations were not available
yet) and the latter to the Delta variant (when vaccinations were available, with an
increasing amount of vaccinated people over time).

• A third wave from the winter of 2021–2022 to the spring of 2022, relevant to the first
Omicron variant, despite the high level of vaccination across the population.

To do so, the intervals corresponding to the different waves were computed separately
for each district, setting the end of each wave 15 days after the identified ending inflection
point. Data from each wave were evaluated as an external dataset, hence excluding them
from the training phase, in order to avoid overfitting the model. From these curves, an
optimal working point was identified through the index of union [51], allowing us to define
an optimized sensitivity and specificity.

2.2. Model Post-Processing

Due to the simple and poorly informative binary classification, considering the large
variability in the data, and the lack of an actual ground truth to validate the model, the
output was further post-processed to be interpreted from a probabilistic perspective (step
IV). Specifically, the probabilities associated with the label assignments relevant to four
consecutive target days were considered, computing their mean value and mean daily
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variation between consecutive days, and used separately to define two new features, each
characterized by three possible labels:

• Confidence level: certainly low (mean value < 0.4), uncertain (mean value between 0.4
and 0.6), certainly high (mean value > 0.6);

• Confidence trend: decreasing (mean variation < −0.1), stable (mean variation between
−0.1 and 0.1), increasing (mean variation > 0.1); the +/−0.1 threshold was selected
as corresponding to the change in value necessary to move from a fully uncertain
confidence level (0.5) to either low or high.

The thresholds for the confidence level were arbitrarily selected, but the reasoning
behind this choice was to keep a balance between the post-processing and the original ML
output: as a consequence, an uncertainty interval around the original 0.5 threshold was
introduced, thus leading to the selected 0.4–0.6 range. The confidence trend thresholds
followed consequently.

According to these two features, five ‘alert classes’ were defined as:

• Class 1: certainly low confidence level with a decreasing or stable confidence trend;
• Class 2: certainly low confidence level with an increasing confidence trend, or an

uncertain confidence level with a decreasing confidence trend;
• Class 3: uncertain confidence level with a stable confidence trend;
• Class 4: uncertain confidence level with an increasing confidence trend, or a certainly

high confidence level with a decreasing confidence trend;
• Class 5: certainly high confidence level with a stable or increasing confidence trend.

The number of classes was set to five in order to keep it minimal, targeting the best
possible explicability while still accounting for both confidence level and confidence trend.
A graphical representation of this post-processing is reported in Figure 2.
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Figure 2. Post-processing elaboration of a machine learning model probability output, applied to
classify the time series of ambulances dispatched and calls received by EMS for respiratory and
infective issues (see text for details), to distinguish between a scenario of no epidemic diffusion and a
scenario of active spreading by generating five possible classes of alert.

2.3. Geographical Processing

In order to avoid edge effects and to enhance real-world applicability by considering
administrative boundaries, while the model was trained on the same geographical subdivi-
sion used in [34], it was instead applied at the level of each single municipality. To do so, it
was necessary to compute ‘dynamic’ districts large enough to be statistically meaningful
but centered on each single municipality. The first step was to compute driving-time
distances among all municipalities, in order to perform an aggregation that could be more
representative of a real-world scenario. Specific processing was applied to the city of Milan,
which was subdivided into its 9 administrative sub-municipalities. The whole process
resulted in a total number of 1514 municipalities in the Lombardy region, for which a
1514 × 1514 driving-time distance matrix was computed. A target of 100,000 residents was
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set, where a population’s municipalities except the target one (i.e., the center of the district)
were weighted according to their distance (with distances scaled in the 0–1 range, and
therefore applied as a weight): consequently, the overall absolute population of ‘dynamic’
districts actually resulted higher than 100,000. As a result, the ‘dynamic’ district, centered
on a target municipality m, was obtained by aggregating the closest c = 1 . . . N munici-
palities, with priority given by the driving-time distance dmc (scaled between 0 and 1 on
the series of all dmc with c = 1 . . . 1513) until the weighted total population wtp reached
100,000, with wtp computed as:

wtp = pm + ∑N
1 pc × dmc|0−1 (1)

where pm is the resident population in the target (center) municipality m, pc is the popula-
tion of municipality c, and dmc|0−1 is the driving-time distance between municipality m
and municipality c (scaled between 0 and 1 in the entire region).

In order to focus on the target municipality, it was also necessary to differently weight
the events (i.e., the dispatch of an ambulance or a call received by the EMS department
for respiratory and infective issues) occurring in the ‘dynamic’ district. To this aim, the
previously described weighting system was applied, based on the driving-time distance
between the municipality where the event occurred (ce) and the target municipality m, thus
computing a time series (for each day i) of events as:

TSi = ∑Em
1

1
wtp

+ ∑E
1

1× dmce |0−1
wtp

(2)

with:
Em = total number of events during day i in the target municipality m;
E = total number of events during day i in all the other municipalities within the

‘dynamic’ district;
dmce |0−1 = drive-time distance (scaled between 0 and 1) between the municipality

where the event occurred, ce, and the target municipality m.

3. Results
3.1. Model Development and Optimization

The optimization of the ML algorithm was performed on the basis of the results
of the 10-fold cross-validation protocol, separately for each combination of explicative
attributes and for each computational algorithm. Three different metrics (precision, recall,
F1 score) were considered separately for each of the two labels (i.e., ‘no diffusion’ or ‘active
spreading’) and also for all records together (with both flat and weighted averages), also
adding the F1 score for accuracy. For all metrics, their distribution in the 10-fold cross-
validation process (median, first quartile, third quartile, lower and upper 95% confidence
interval) was considered, for a total of 3 × 4 × 5 + 1 × 5 = 65 parameters. However, these
65 parameters were weighted differently in order to give priority to the identification of
true positives, thus resulting in a unique final score, representing the evaluation on which
the classification decision was based. The different weights applied are reported in Table 2,
and the complete results relevant to the final score obtained for each algorithm and tested
attribute combinations are reported in Table 3.

According to this strategy, the model that resulted as the most performant was a
random forest classifier fed with the ‘position’ and ‘statistical’ attributes of the two signals,
yet without the time series, achieving an 81% F1 score (76% sensitivity, 87% specificity)
for the ‘no diffusion’ label and a 79% F1 score (73% sensitivity, 85% specificity) for the
‘active spreading‘ label, with a weighted overall score of 0.8052. Noticeably, the range of
final scores reached by the different combinations is not wide and multiple combinations
resulted in similar values (e.g., 10 combinations resulted in a weighted final score between
0.8 and 0.8052).
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As regards the AUC evaluation for the three main waves of COVID-19, the results
showed a good performance, with AUC values above 0.87 in the first and third wave, and a
slightly lower value of 0.84 for the second wave, as can be expected considering that it was
characterized by two distinct peaks and by an extended phase of plateau. The complete
results are reported in Figure 3.

3.2. Model Post-Processing

As regards the significance of the classification process defined in the post-processing,
there was no ground truth available to quantitatively validate its performance. However, it
was hypothesized that the correct assignment to a certain class should be reflected by the
difference in the number of ambulances dispatched by EMS in the following days. Therefore,
this parameter was measured (considering the following 7 days) for all dynamic districts
across the whole time series, and value distributions were computed for all five classes.
This hypothesis was confirmed by a non-parametric Friedman test among all distributions,
which resulted in a p-value < 0.001, followed by pairwise Wilcoxon’s rank-sum tests (with
Bonferroni correction) that showed p-values largely below 0.05. The complete results of
these tests are reported in Table 4.

Table 2. Weights applied for the different metrics (precision, recall, F1 score), computed for the ‘no
diffusion’ label, ‘active spreading‘ label, and for the whole dataset, to evaluate the performance of a
machine learning algorithm trained to identify these two scenarios, as resulting from a 10-fold cross-
validation protocol; the median, first quartile, third quartile, and lower and upper 95% confidence
interval values across the distribution among the 10 folds are reported (i.e., the median value of recall
for the ‘active spreading’ label was weighted 0.1).

Weights Assigned to
Different Parameters in the 10-Fold

Cross-Validation
Precision Recall F1 Score

‘No diffusion’ label

Median 0.03 0.06 0.03
1st quartile 0.0075 0.015 0.0075
3rd quartile 0.0075 0.015 0.0075

95% lower C.I. 0.0075 0.015 0.0075
95% upper C.I. 0.0075 0.015 0.0075

‘Active spreading’ label

Median 0.05 0.1 0.05
1st quartile 0.0125 0.025 0.0125
3rd quartile 0.0125 0.025 0.0125

95% lower C.I. 0.0125 0.025 0.0125
95% upper C.I. 0.0125 0.025 0.0125

Accuracy

Median NA NA 0.06
1st quartile 0.015
3rd quartile 0.015

95% lower C.I. 0.015
95% upper C.I. 0.015

Macro Average

Median 0.015 0.03 0.015
1st quartile 0.0038 0.0075 0.0038
3rd quartile 0.0038 0.0075 0.0038

95% lower C.I. 0.0038 0.0075 0.0038
95% upper C.I. 0.0038 0.0075 0.0038

Weighted Average

Median 0.015 0.03 0.015
1st quartile 0.0038 0.0075 0.0038
3rd quartile 0.0038 0.0075 0.0038

95% lower C.I. 0.0038 0.0075 0.0038
95% upper C.I. 0.0038 0.0075 0.0038
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Table 3. Optimization of a machine learning algorithm for a daily binary classification of territorial
districts in the condition of the active spreading of the COVID-19 epidemic (‘1’) or no diffusion of the
epidemic (‘0’) on the basis of ambulances dispatched and calls received by the EMS department in
Lombardy, Italy, between 1 January 2020 and 13 March 2022. The table reports the final scores of dif-
ferent combinations of machine learning algorithms and attribute combinations (see Appendix A for
a detailed list), computed by averaging the different metrics (and their distributions indicators) on the
10-fold cross-validation protocol, according to the defined weights (see Table 2). In bold, the highest
results reached for each algorithm are highlighted, while the overall best result is also underlined.

Machine Learning Algorithm:
Attributes Included *

Features Numbers
(Ref. to Appendix A) Random Forest Support Vector

Machine Logistic Regression

All 1–42 0.7967 0.7809 0.7829
Time-Series (TS) 1–14 0.7887 0.7805 0.7818

All Derived Attributes 15–42 0.799 0.7804 0.7826
Ambulances Dispatches 1–7, 15–28 0.7965 0.7806 0.7827

Emergency Calls 8–14, 29–42 0.7939 0.7792 0.7811
Max-Min + TS 1–14, 15–19, 29–33 0.7934 0.7792 0.7819

Max-Min 15–19, 29–33 0.7981 0.7786 0.7798
Statistics + TS 1–14, 20–22, 34–36 0.7975 0.7787 0.78

Statistics 20–22, 34–36 0.8017 0.7791 0.7804
Position and Statistics + TS 1–14, 15–22, 29–36 0.8017 0.7791 0.7805

Position and Statistics 15–22, 29–36 0.8052 0.779 0.7806
Lin Regression + TS 1–14, 23–25, 37–39 0.8039 0.7789 0.7815

Lin Regression 23–25, 37–39 0.8032 0.7792 0.7815
Exp Regression + TS 1–14, 26–28, 40–42 0.8015 0.7597 0.7481

Exp Regression 26–28, 40–42 0.7996 0.7601 0.7482
Lin & Exp Regression 23–28, 37–42 0.7993 0.7604 0.7483

Position + Lin Reg + TS 1–19, 23–25, 29–33,
37–39 0.7983 0.7605 0.7484

Position + Lin Reg 15–19, 23–25, 29–33,
37–39 0.7994 0.7605 0.7484

Position + Exp Reg + TS 1–19, 26–33, 40–42 0.799 0.7605 0.7484
Position + Exp Reg 15–19, 26–33, 40–42 0.7996 0.7605 0.7483

Position + Lin & Exp Reg + TS 1–19, 23–33, 37–42 0.799 0.7606 0.7483
Position + Lin & Exp Reg 15–19, 23–33, 37–42 0.7991 0.7608 0.7484
Statistics + Lin Reg + TS 1–14, 20–25, 34–39 0.7883 0.7799 0.7837

Statistics + Lin Reg 20–25, 34–39 0.7974 0.7815 0.7841

Statistics + Exp Reg + TS 1–14, 20–22, 26–28,
34–36, 40–42 0.8005 0.761 0.749

Statistics + Exp Reg 20–22, 26–28, 34–36,
40–42 0.8009 0.7611 0.7489

Statistics + Lin & Exp Reg + TS 1–14, 20–28, 34–42 0.8002 0.7611 0.7501
Statistics + Lin & Exp Reg 20–28, 34–42 0.8003 0.7611 0.7503

* LEGEND (see Appendix A for detailed list): TS (time series) = daily calls to the EMS number, daily dis-
patches of EMS vehicles, relevant to respiratory and infective causes, normalized by the resident population;
POSITION = max value, min value, max-min, position of the max and min values in the time window; STATIS-
TICS = mean, median, standard deviation; LIN REG (Linear regression) intercept, slope, and Pearson’s correlation;
EXP REG (Exponential regression): base numerical coefficient, exp coefficient, and Pearson’s correlation.

Within the GIS environment, it was possible to graphically represent the results of the
model, thus enabling a powerful and quick visualization and interpretation of the data
through mapping. Some examples are reported in the following Figure 4, relevant to the
peaks of the three main waves (two different peaks were observed during the second wave)
occurring in Lombardy during the analysis period.
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Figure 3. ROC curves representing the performance of the selected machine learning algorithm
(random forest classifier) for a daily binary classification of territorial districts in the condition of the
active spreading of the COVID-19 epidemic (‘1’) or no diffusion of the epidemic (‘0’) on the basis of
ambulance dispatches and calls received by EMS department in Lombardy, Italy, between 1 January
2020 and 13 March 2022. The considered threshold is the label probability as provided in the output
by the algorithm. The three COVID-19 waves (spring of 2020, autumn of 2020 to spring of 2021,
winter of 2021–2022 to spring of 2022) were evaluated separately, training the model with the data
from the other two. The area under the curve was computed, along with the sensitivity and specificity
of their optimized [51] working points.

Table 4. Median (25th–75th percentile) of the number of ambulances dispatched for respiratory
and infective issues by the EMS department on the territory of Lombardy, Italy, relevant to the
5 classes representing the level of confidence of being in a situation of the active spread of COVID-19,
assigned by post-processing from the machine learning algorithm output for each municipality,
between 1 January 2020 and 13 March 2022 (see text for details); the last column reports the p-values
of pairwise Wilcoxon’s rank-sum tests (after Bonferroni correction), assessing the difference in the
distribution across different classes.

Assigned Class Ambulances Dispatched/Population in the Following
7 Days: Median [25th–75th Percentile]

p-Value of Pairwise Wilcoxon’s
Rank-Sum Tests (Bonferroni Corrected)

Class 1 1.83 [0.96–2.55]

Class 2: p < 0.001
Class 3: p < 0.001
Class 4: p < 0.001
Class 5: p < 0.001

Class 2 3.21 [2.57–4.16]

Class 1: p < 0.001
Class 3: p < 0.001
Class 4: p < 0.001
Class 5: p < 0.001

Class 3 3.73 [2.85–4.69]

Class 1: p < 0.001
Class 2: p < 0.001
Class 4: p < 0.001
Class 5: p < 0.001
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Table 4. Cont.

Assigned Class Ambulances Dispatched/Population in the Following
7 Days: Median [25th–75th Percentile]

p-Value of Pairwise Wilcoxon’s
Rank-Sum Tests (Bonferroni Corrected)

Class 4 3.96 [3.00–5.03]

Class 1: p < 0.001
Class 2: p < 0.001
Class 3: p < 0.001
Class 5: p < 0.001

Class 5 6.24 [4.63–9.00]

Class 1: p < 0.001
Class 2: p < 0.001
Class 3: p < 0.001
Class 4: p < 0.001
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Figure 4. Map representation of the output of a machine learning model representing, for every
municipality of Lombardy, Italy, the alert level of confidence, as expressed in five classes, of being in
a condition of the active spreading of COVID-19, on the basis of a post-processing of the machine
learning output. Four dates are here considered: 15 March 2020 (top left) as the peak of the first wave;
5 November 2020 (top right), as the first peak of the second wave; 15 March 2021 (bottom left), as
the second peak of the second wave; and 6 January 2022 (bottom right) as the peak of the third wave.

4. Discussion

In this study, the development and validation of a monitoring model based on super-
vised learning (ML methods) for the evolution of COVID-19 was proposed, in order to
make a step ahead from only descriptive analysis and thus generate an ‘early-alert’ system,
with geographic granularity up to single municipalities. The choice of the best-performing
algorithm and of the most informative set of attributes was carried out considering the



Int. J. Environ. Res. Public Health 2022, 19, 9012 13 of 19

output of the spatial-temporal model presented in [34], and it is therefore based on the
optimization of the accuracy in the binary classification. The best results were obtained
with a random forest classifier, fed with the ‘position’ and ‘statistical’ attributes of the
two signals, yet without the time series, reaching an overall accuracy of 80% (as computed
with a 10-fold cross-validation protocol). Therefore, the first relevant result is represented
by the higher performance achieved by the random forest classifier when compared with
logistic regression and a support vector machine. A possible explanation could be related
to the different nature of such ML algorithms: while logistic regression is a mathematical
interpolation, and a support vector machine is a separation-based method, the random
forest classifier is rule-based. As in our framework, the problem is posed as a classifica-
tion task, rather than a numerical regression, it is not surprising that the best results are
obtained using rule-based reasoning, especially as a consequence of the priority given to
the identification of true positives (through the weighting system described in Table 2).

Similar considerations could be drawn for the optimization of the attributes set. The
fact that the best results were obtained with ‘position’ and ‘statistical’ attributes can be
interpreted as a consequence of the rule-based nature of the algorithm. The numerical
series, together with their interpolations, are of low interest for the algorithm, which does
not process them as signals but instead makes better use of their derived characteristics.
Removing the time series from the input probably frees some computational capability
(required to extract the relevant characteristic of the signal), which is redirected towards a
better performance in the actual classification. The fact that the support vector machine
and logistic regression were achieving better results when considering the linear regression
on the signal, along with the statistical parameters, might confirm this hypothesis. It is
worth noticing that the results are not largely different across the proposed algorithms, and
are even closer across different attribute sets.

As the optimization process can still provide enhancements to the performance, it is
not recommended to spend too much effort in this step, as the explainable and interpretable
component of the phenomenon can be extracted quite easily, while the possibility of
reaching a significantly higher performance is questionable. In this study, the focus was
mainly put on the agility and replicability of the proposed framework. A possible increase in
the performance, but at the expense of model explicability, could be achieved by exploring
the application of different approaches, such as deep learning techniques, that could
constitute the aim of future work.

Separate analyses were run on the three main COVID-19 waves that occurred in
Lombardy, showing a higher performance on the first and third one, and slightly lower
performance on the second wave, which, however, was characterized by a more complex
profile, with two distinct peaks separated by a phase of plateau.

The need for research on the predictive capabilities of EMS calls in terms of hospi-
talizations, ICU demand, and casualties was encouraged in the recent literature [35], and
multiple studies were, in fact, published about the use of EMS data in the monitoring and
management of COVID-19 emergencies, such as:

• In October 2020, a study [36] was aimed at comparing trends of EMS data with the
official data of COVID-19 cases and related casualties in the area of Tijuana, Mexico.
The analysis was focused on two main targets: changes in out-of-hospital mortality,
and a comparison of pre- and post-epidemic distributions of the values of oxygen
saturation in hospitalized patients. The correspondence between the peaks of the
analyzed indicators led the authors to the conclusion that EMS data are a valuable
source to monitor excess out-of-hospital mortality due to COVID-19.

• In November 2020, a retrospective study [37] on the Ile-de-France region, France, was
conducted, analyzing the correlation of six healthcare-related parameters, including
the number of calls to EMS, with the demand for ICU beds, resulting in a significant
time-dependent reproduction ratio with relevance to EMS calls, identifying it as a
potentially useful predictor for monitoring and in organizational models to anticipate
the demand for ICU beds.
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• In February 2021, a study [38], further elaborating previous results [39] relevant
to Kings County, WA (USA), correlated the number of COVID-19 diagnoses in a
hospital setting with the identification of suspected patients, considering shortness of
breath, cough, sore throat, muscle aches, loss of sense of smell or taste, or diarrhea.
A significant correlation was identified, with a peak when considering in the model
a nine-day lag period, suggesting that EMS data could anticipate the demand for
hospital services, thus confirming the potentiality of such data in the planning of
resource allocation and in the management of the healthcare system.

• A reverse perspective was recently proposed [40] in September 2021, to determine how
the number of patients hospitalized for COVID-19 could help in foreseeing the demand
for EMS, with reference to the Austin-Travis county (Texas, USA). The authors applied
the ‘change point detection’ method to identify changes in the mean and variance
of time series, subsequently studying with a t-test the distributions in the pre- and
post-pandemic periods (as divided by the identified change point). On this basis, a
regression model fed with forecasts of COVID-19 hospitalizations was developed and
described as a successful method to predict the demand for EMS services, thus further
confirming the correlation between these two measurements.

Compared to these state-of-art [36–40] studies, the main strength of the proposed
model stands in combining a sound performance with a very high geographic granularity,
which reached the level of single municipalities thanks to the proposed combination of ML
and spatial filtering, a novel approach in the context of EMS data analysis. This enhance-
ment could be extremely valuable in terms of applicability as support for decision-making,
enabling policymakers to differentiate the interventions across the territory rather than
managing uniformly the whole area of competence. A first immediate consequence could
be hypothesized in the allocation strategy of emergency resources (mainly ambulances and
related personnel), which can be optimized on the basis of a detailed demand analysis,
thus avoiding a uniform distribution that could result in being under- or over-dimensioned
at the same time in different areas, depending on the specific time-bounded needs for
each territory.

Moreover, the model stands on minimum requirements in terms of data and processing
capabilities. While it can be assumed that environmental, epidemiological, socio-economic,
and demographic factors could improve the predictive capabilities of the model, the
inclusion of such diverse data sources would pose severe barriers to its replicability and
extendibility. By limiting the analysis to a single, widespread, and very simple data source,
our model can be very easily implemented by other institutions in different territories.

Performing the validation of the model post-processing results, the main limitation
that needed to be faced was the absence of an actual ground truth on which data could
be validated, and on which the post-processing could be programmatically trained and
calibrated. However, the meaningfulness of the proposed five classes could still be assessed,
to some extent, by analyzing the number of vehicles dispatched by the EMS department
for respiratory and infective issues in the seven following days, according to the alert class
assigned. Indeed, the distributions of the values gave different results, with a progressively
increasing number of ambulances dispatched according to the assigned model class, and
those differences resulted as statistically significant (see Table 4), thus proving that the
proposed strategy to define different alert classes was (at least to some extent) representative
of different situations of the near-future evolution of COVID-19. The choice to focus
the validation on the demand for EMS was enforced by the priority given to the early
identification of an increase in the request for medical assistance, which is of higher concern
compared to the bare increase in overall infections, including asymptomatic and mild cases.

From the presented results, some qualitative analysis can be drawn. First of all,
the first wave (March–April 2020) appeared to be the worst, with a larger and more
synchronous spreading across the territory. However, we cannot explain if this depended
more on an effective wider diffusion of the disease, or rather on the management difficulties
generated by an unprecedented, unexpected, and abrupt emergency, with a burden on
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EMS departments beyond the maximal capabilities of the system [46,52]. The second wave
(while the official numbers in terms of infections were almost ten times higher than in the
first one) appeared close to the first but was less impactful, with a tighter maximal territorial
diffusion. Interestingly, a specific geographic area was spared according to the model: it
corresponds to a territory located in the provinces of Bergamo and Brescia, which were
the most-affected worldwide areas during the first wave [46]. This result might therefore
be explained as being due to a stronger natural immunization of the resident population,
derived from the previous extreme diffusion of the disease, and to the reduced number of
subjects at risk (due to the high mortality during the first peak). Similar considerations can
be drawn for the second peak in the second wave, where again the spatial diffusion never
covered the entire territory. The third wave appeared very similar to the second phase of
the previous one, both qualitatively (in terms of geographic areas) and quantitatively (in
terms of diffusion on the territory). It is noteworthy that, during the third wave, a five-fold
increase in the daily infection cases with respect to the second one was officially recorded,
and yet the impact on EMS was (as modeled in this study) somehow similar, showing
how different the impact was on the healthcare system thanks to widespread vaccination.
Since the summer of 2021, when vaccine coverage reached significant values in the area,
the proposed model is probably more representative of the demand for medical care rather
than of the actual diffusion of the disease—two different aspects previously intertwined
but currently uncoupled. This characteristic may be valuable in the upcoming future, when
it will be vital to suddenly detect any possible surge in the demand for EMS services due to
either a new COVID-19 variant, a fall in vaccine-induced immunization, or a combination
of these two factors.

5. Conclusions

In conclusion, the implementation of a data science approach to infer monitoring in-
formation relevant to the evolution of the COVID-19 pandemic, based on the georeferenced
database of calls to the emergency number and ambulance dispatched for respiratory and
infective issues by EMS, can be considered successful.

In particular, the novel geo-processing algorithm to build ‘dynamic’ weighted districts
allowed the ability to reach a very high level of granularity (single municipalities), which
is, to the extent of our knowledge, unprecedented for pandemic monitoring models. Com-
pared to official data, the proposed model could be capable of anticipating the detection
of new hotspots, thanks to the immediate usability of EMS data, which are (in most cases)
automatically collected by EMS organizations and do not require additional structures for
information flow (compared, for example, to the swab tests, which require processing, veri-
fication, and communication between different actors). Although a direct comparison with
official data was not possible due to the absence of an actual ground truth, the proposed
model could be considered less biased and more representative of the spread of the disease
(at least before the availability of vaccines) and of the demand for medical care (also in the
current scenario with a high share of population covered by vaccination).

In this consideration, the developed early alert model could show its high potential
in detecting local abrupt surges in COVID-19 in the current situation (July 2022), where
periodical recrudescence could be expected in the following months due to the lifting of
protection rules and restrictions, in combination with a decline in the vaccine-induced
immune response, as well as in the context of possible future pandemics representing
unfortunate yet realistic scenarios we must cope with.
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Appendix A

A detailed description of the 42 features considered as input for the computational
algorithm. The ambulances dispatched and calls to emergency number 112 are filtered for
respiratory and infective issues only.

• Feature 1: Number of ambulances dispatched/100,000 residents at day t − 6
• Feature 2: Number of ambulances dispatched/100,000 residents at day t − 5
• Feature 3: Number of ambulances dispatched/100,000 residents at day t − 4
• Feature 4: Number of ambulances dispatched/100,000 residents at day t − 3
• Feature 5: Number of ambulances dispatched/100,000 residents at day t − 2
• Feature 6: Number of ambulances dispatched/100,000 residents at day t − 1
• Feature 7: Number of ambulances dispatched/100,000 residents at day t
• Feature 8: Number of calls to emergency number 112/100,000 residents at day t − 6
• Feature 9: Number of calls to emergency number 112/100,000 residents at day t − 5
• Feature 10: Number of calls to emergency number 112/100,000 residents at day t − 4
• Feature 11: Number of calls to emergency number 112/100,000 residents at day t − 3
• Feature 12: Number of calls to emergency number 112/100,000 residents at day t − 2
• Feature 13: Number of calls to emergency number 112/100,000 residents at day t − 1
• Feature 14: Number of calls to emergency number 112/100,000 residents at day t
• Feature 15: Min value of ambulances dispatched/100,000 residents (min in features

1 to 7)
• Feature 16: Max value of ambulances dispatched/100,000 residents (max in features

1 to 7)
• Feature 17: position of the min value of ambulances dispatches (feature 15) in the time

window (from 1 to 7)
• Feature 18: position of the max value of ambulances dispatches (feature 16) in the time

window (from 1 to 7)
• Feature 19: difference between max and min value of ambulances dispatched
• Feature 20: standard deviation of the distribution of ambulances dispatched in the

time window (feature 1 to 7)
• Feature 21: mean of the distribution of ambulances dispatched in the time window

(feature 1 to 7)
• Feature 22: median of the distribution of ambulances dispatched in the time window

(feature 1 to 7)
• Feature 23: intercept of the linear regression on ambulances dispatched in the time

window (q in y = q + cx)
• Feature 24: slope of the linear regression on ambulances dispatched in the time window

(c in y = q + cx)
• Feature 25: Pearson’s correlation coefficient of the linear regression on ambulances

dispatched
• Feature 26: base coefficient of the exponential interpolation on ambulances dispatched

in the time window (b in y = beax)
• Feature 27: exponential coefficient of the exponential interpolation on ambulances

dispatched in the time window (a in y = beax)
• Feature 28: Pearson’s correlation coefficient of the exponential interpolation on ambu-

lances dispatched
• Feature 29: Min value of emergency calls/100,000 residents (min in features 8 to 14)
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• Feature 30: Max value of emergency calls/100,000 residents (max in features 8 to 14)
• Feature 31: position of the min value of emergency calls (feature 29) in the time

window (from 1 to 7)
• Feature 32: position of the max value of emergency calls (feature 30) in the time

window (from 1 to 7)
• Feature 33: difference between max and min value of emergency calls
• Feature 34: standard deviation of the distribution of emergency calls in the time

window (feature 8 to 14)
• Feature 35: mean of the distribution of emergency calls in the time window (feature

8 to 14)
• Feature 36: median of the distribution of emergency calls in the time window (feature

8 to 14)
• Feature 37: intercept of the linear regression on emergency calls in the time window

(q in y = q + cx)
• Feature 38: slope of the linear regression on emergency calls in the time window

(c in y = q + cx)
• Feature 39: Pearson’s correlation coefficient of the linear regression on emergency calls
• Feature 40: base coefficient of the exponential interpolation on emergency calls in the

time window (b in y = beax)
• Feature 41: exponential coefficient of the exponential interpolation on emergency calls

in the time window (a in y = beax)
• Feature 42: Pearson’s correlation coefficient of the exponential interpolation on emer-

gency calls
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