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Abstract
Since the first confirmed case was reported in January 2020, Hong Kong has experienced multiple
waves of COVID-19 outbreaks. Recent literature has explored the spatial patterns of disease
incidence and their relationships with the built environment and demographic characteristics.
Nonetheless, few studies aim at the comparative patterns of different epidemic waves occurring in
the same spatial context. This study analyses spatial patterns of the third and fourth COVID-19
epidemic waves and then evaluates the spatial relationship between case incidence and built en-
vironment and socio-demographic characteristics. By collecting local-related cases, this study
incorporates a two-fold analytical strategy: (1) Using rank-size distribution and log-odd ratio to
depict the spatial pattern of COVID-19 incidence rates; (2) through global and local regression
models, investigating incidence’s associations with the urban built environment and socio-
demographic characteristics. The results reveal that the two different epidemic waves have far
distinct spatial tendencies to their infection risk factors, reflecting location-specific associations with
the built environments and socio-demographics. Collectively, we discover that the third and fourth
COVID-19 waves are likely associated with residential context and urban activities, respectively.
Practical implications are discussed that would be of interest to policymakers and health
professionals.
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Introduction

As first discovered in China in December 2019, Coronavirus disease 2019 (COVID-19) has been
recognized as an emergent contagious disease caused by the severe acute respiratory syndrome
coronavirus infection. Subsequently, theWorld Health Organization (WHO) documented the spread
of COVID-19 as a global pandemic in March 2020 due to the quickly and widely spreading to other
countries (WHO, 2020). Statistics observed by health officials have reported that a significant
proportion of cases are confirmed in urban areas with dense populations and affluent human
activities (Liu, 2020; Paul et al., 2020). By bridging the previous outbreaks in cities, it is thus
suggested that the geographical context at the urban scale can play critical roles in the course of the
COVID-19 pandemic.

Existing studies have substantially contributed to the spatial patterns of infectious diseases and
intimated that it is recognized as a diffusion phenomenon within a specific region (Loon, 2005). This
can be attributed to the designated nature of virus transmission via the physical human-to-human
interactions occurring in a shared space (Meade, 2014). Such transmissions in urban areas are
considered as a more complex spatial process with multiple determinants, including a series of
characteristics of built environments and socioeconomic demographics (Dietz et al., 2020; Mollalo
et al., 2020). As patterns of virus spread can be substantially different across urban areas of a city,
knowledge from the geospatial perspective in cities should be a necessary and powerful tool for
understanding COVID-19 proliferation.

Regarding COVID-19 outbreaks reported in urban areas, the transmission process of the virus
could be enabled and embedded by the spatial medium and associated mainly with built envi-
ronments and socio-demographic characteristics (Drefahl et al., 2020; Huang et al., 2020; Mogi and
Spijker, 2021). As for the former type of characteristics, the densely built environments in cities
have driven the virus transmission towards a more sophisticated and intensive process. Explicitly,
the built environment in urban settings is referred to as spatial carriers. Physical infrastructures
provide the potential for human contacts and thus the precondition for the transmission of viruses.
Various communities characterized by built environments may produce different impacts in
strengthening the severity of local spreads. Some experiments have suggested that built envi-
ronmental features (e.g., transport accessibility, land use configuration) can significantly correlate to
the spatial patterns of COVID-19 contagion in cities of Asia and Europe (Huang et al., 2020; Yip
et al., 2021). Meanwhile, the socio-demographic status of city residents also plays a considerable
role in framing uneven geographical patterns of the COVID-19 outbreaks. Relevant literature has
emphasized that communities with marginalized socio-demographic conditions may have a higher
risk of being exposed to viruses. Specifically, disadvantaged socio-demographic status, including
ethnic minorities, poor education, and low income, can induce residents to contract the disease more
easily (Borjas, 2020; Emeruwa et al., 2020; Guo et al., 2022). Besides, the marginalized socio-
demographic conditions likely lead to poor housing conditions with insufficient indoor ventilation
(Ahmad et al., 2020). Although discussions of the environmental and socio-spatial issues are
increasingly prevalent in research fields, a particular focus related to COVID-19 ignored mostly by
current studies is the comparative patterns of different epidemic waves occurring in the same spatial
context.

As aforesaid, this omission can be problematic and challenging because many countries and
regions have witnessed two-wave or even multi-wave COVID-19 outbreaks. It is requisite for
epidemiological professionals to confirm whether spatial shifts can be documented over different
waves of outbreaks within the same spatial context. If so, the following focal points are whether and
what built environment and socio-demographic characteristics can be correlated to different
outbreak waves of COVID-19 in a city. Although several experiments have been proposed on the
relationships between the features mentioned above and COVID-19 transmission, studies are still
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seldom seen from a two-wave perspective. Using Hong Kong as a study area, we, therefore, seek to
bridge this research gap by asking the following questions: (1) How to identify the spatial dis-
tributions of the third and fourth epidemic waves in Hong Kong? (2)Whether spatial heterogeneities
of these two-wave epidemic patterns vary over time? (3) Given the various built environment and
socio-demographic characteristics, how are these variables comparatively related to the different
COVID-19 spatial patterns? (i.e., what selected features will associate the exposure risk in different
COVID-19 outbreaks?)

This study investigates the spatial patterns of the two-wave COVID-19 epidemic and the as-
sociated built environment and socio-demographic characteristics. First, we depict the spatial
distribution of patients infected with COVID-19 during the third and fourth epidemic waves. Two
metrics, including rank-size distribution and log-odds ratio, are implemented to quantify and
compare spatial heterogeneity. Then, ordinary least squares regression (OLS) and geographically
weighted regression (GWR) models are applied to assess the relationships between the two-wave
patterns and the characteristics of the associated built environment and socio-demographics.

Literature review

The spatial associations between the incidence of epidemic and local factors have long raised the
concerns of scholars from multi-discipline research communities. Substantial evidence from
previous studies has shown that disease incidence of an epidemic can be associated with different
locational contexts, with much of this variation explained by characteristics like population density,
age level, urban structure, race composition, and others (Drefahl et al., 2020; Kwok et al., 2020).
Literature related to spatial variation of COVID-10 cases has also highlighted that significant
differences can be observed across geographical units, such as city, county, or neighborhood
(Kuebart and Stabler, 2020).

The spread of infectious diseases is not only the consequence of biological features of the virus
but also a manifestation embedded by intensive human contacts within physical space. Spatial
analyses have been performed to learn underlying connections between disease incidence and local
variables of built environment characteristics. Some have confirmed that the environment plays a
considerable role in disease dynamics and the health conditions of individuals (Emeruwa et al.,
2020; Spencer et al., 2020). Pinter-Wollman et al. (2018) highlighted that the built environment can
exhibit a strong relationship with the containment of infectious diseases, for instance, the built
structures may shape the complexity of infectious diseases. These built structures can be char-
acterized as the urban geometry attributes such as building geometry, sky view factor (SVF), road
networks, and the distribution of green spaces. Similar findings are also reported by Kwok et al.
(2020) that applied urban geometry characteristics to explain the distribution of local COVID-19
cases confirmed in Hong Kong, suggesting that building geometry and road network settings could
be factors to increase spreading risk. Compared to rural regions, research by Lee et al. (2020)
summarized that urban settings have some common environmental characteristics, which are critical
factors in facilitating the virus transmission process. In the US, for example, Paul et al. (2020)
emphasized that the mean prevalence of COVID-19 in urban counties (107.6 per 100,000) is
significantly higher than in rural counties (43.6 per 100,000) within the same period. Mogi and
Spijker (2021) further reported that population density is strongly and positively associated with
COVID-19 in European countries. Therefore, it is suggested that one built environment factor in
urban areas that is highly related to COVID-19 spread is density. In this sense, some evidence has
been proposed to demonstrate that the high density of commercial venues with intense face-to-face
contacts can lead to the harmful behavior of contracting infectious viruses (Liu, 2020; Yip et al.,
2021). Collectively, it can be seen that the COVID-19 transmission process in cities to some extent
correlates to the specific settings of urban built environments.
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In addition to built environments, another stream of literature has reported that the socio-
demographic status of individuals can also contribute to the incidence of epidemics. The range of
socio-demographic characteristics is broad and covers comprehensive facets of the COVID-19
pandemic. Almagro and Orane-Hutchinson (2020) provided helpful insight to measure the im-
portance of socioeconomic factors such as population density, commuting patterns, and occupations
in explaining the spatial disparities of COVID-19 cases. A crucial implication drawn from their
investigation is that patients’ occupations are testified as a critical factor in explaining this epi-
demic’s early transmission across NYC neighborhoods. Borjas (2020) claimed that poor or im-
migrant neighborhoods with disadvantaged socio-demographic status have lower opportunities for
virus tests and higher risks to be confirmed as positive cases. One interesting point is that these
marginalized neighborhoods contain larger household or predominantly black populations, illus-
trating a medical inequality caused by race composition regarding COVID-19 risk. To further
explain this phenomenon, some have figured out that people residing in communities with poor
socioeconomic developments may have worse working environments, lower levels of health
awareness, and more frequent usage of public transportation (Chen, 2020; Sá, 2020). For instance,
blue-collar workers at worsening socio-demographic status are faced with scarce health protection
in precarious environments like slaughterhouses or construction sites. By in turn linking to the built
environments, Lee et al. (2020) suggested that such physiological and medical inequalities in
marginalized neighborhoods are more likely to be exacerbated by denser housing space, insufficient
supplies of freshwater, and poor sanitation facilities. In this context, populations with such socio-
demographic characteristics may have a higher exposure risk to the COVID-19 outbreak.

The ongoing pandemic of COVID-19 has progressively caused severe threats to most countries,
in which many of them have experienced multiple waves of reported cases to date. With that being
said, we still lack specific knowledge of the spatial variation patterns of a two-wave COVID-19
epidemic. That is, little effort has been devoted to quantifying the collective differences of several
statistical peaks of epidemics, with respect to the surrounding built environment and local socio-
demographics. Saito et al. (2020) presented a brief comparison of the severity and patience
characteristics of the first and second waves in Japan, while Kan et al. (2021) introduced a space-
time scan statistic technique to detect the high-risk areas of COVID-19 cases reported in the first
three outbreak waves in Hong Kong.

Study area and dataset

To investigate the patterns of two-wave COVID-19 outbreaks, Hong Kong, a Specialized Ad-
ministrative Region (SAR) of China, is designated as the study area. It covers a total area of
1100 km2 with a total population of more than 7 million people. We consider Hong Kong as a
reasonable case study for the following reasons. First, since the initial COVID-19 case was reported
on January 23rd, 2020, Hong Kong has experienced four waves of epidemic outbreaks with over
11,100 confirmed cases by March 8th, 2021, which can be primarily classified into imported and
local-related cases. Second, Hong Kong is one of the most densely populated cities in the world.
Most residents live in a built-up area with approximately 264 km2, accounting for 24% of the total
area. A small proportion of the area is seen as the urbanized regions for human activities, in which a
high urban density is thus anticipated and provides a representative urban environment for in-
specting the transmission of the COVID-19 virus. The built environment and socio-demographic
features are disparate in this city, ranging from well-developed Central Business Districts to high-
density residential neighborhoods.

As shown in Figure 1(a) and suggested by supplementary table S1, our research scope is the third
and fourth wave epidemics, which are regarded as two separate phases: Phase I between 6th July
and 28th August 2020, while Phase II between 8th November 2020 and 20th February 2021.
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The COVID-19 data used in this research is retrieved from the Department of Health in Hong
Kong, which is freely accessed at https://data.gov.hk/en-data/dataset/hk-dh-chpsebcddr-novel-
infectious-agent. This dataset depicts the details of confirmed cases, including reported and
onset dates, residential location, visit place, case classification, and some individual information
(Supplementary figure S1). The COVID-19 cases reported in Hong Kong can be classified into
two categories in accordance with the origin of infection, namely, imported-related cases that
are patients who were infected overseas, and local-related cases, which include cases with
clearly local sources or untraceable sources (i.e., local cases), and cases involving infection by
local cases (i.e., Epidemiologically to local cases). For spatial analysis, all residential locations
are considered and geocoded for their coordinates that can be aggregated into DCCAs, while
Figure 1(b) exhibits the spatial distribution of the confirmed cases.

Awide range of built environment and socio-demographic characteristics has been demonstrated
in associating with the COVID-19 transmission process in cities (Huang et al., 2020; Yip et al.,
2021). Accordingly, this paper hypothesizes that the urban environments and socio-demographics
carry relatively evident relationships with virus transmission. As suggested by Ewing and Cervero
(2010), we conceptualize built environment indicators into 5Ds (i.e., density, diversity, design,
destination accessibility, and distance to transit). Specifically, density reflects the activity density of
a place that has often been calculated by population and building numbers per spatial unit. Diversity
indicates the intensity of miscellaneous urban functions and services, while design assesses the
urban structure, such as road networks and pedestrian-oriented infrastructure (Zhang et al., 2021).
Destination accessibility evaluates the ease of access to trip attractions, and distance to transit is
often considered as the distance from the residences to the nearest public transit hubs. Besides,
socio-demographics are also recommended as important factors to explain the incidence of COVID-
19 and thus implemented in this spatial analysis. Retrieved from the 2016 population by-census,
four aggregated metrics are implemented involving education level, population age level, mean
income, jobs-housing ratio, and race composition. Supplementary table S2 summarizes the built
environment and socio-demographic characteristics applied in our case.

Methodology

Rank-size distribution and log-odds ratio

Rank-size distribution has been widely applied as one of the most useful tools for assessing the
heterogeneity of human concentrated patterns founded on their magnitudes (Reed, 2002). Math-
ematically, rank-size order manifests the frequency distribution of collective events. Here, we
implement rank-size distribution to report the spatial heterogeneity of case concentration and
investigate how the spatial distribution patterns vary between two phases. The COVID-19 intensity
is defined using the incidence rate, which is the number of reported cases per 1000 people in each of
DCCAs during a particular time period:

InjðdiÞ ¼ FjðdiÞ
�
PopðdiÞ (1)

Here, during a phase j, InjðdiÞ represents the incidence rate of COVID-19 cases in a DCCA
ðdiÞ,FjðdiÞ, is the number of confirmed cases located in a DCCA di, and PopðdiÞ denotes the
population ð∗1000Þ in the same DCCA di. Following this logic, given a phase, a rank-size dis-
tribution can be generated to reflect the spatial heterogeneity and concentration of COVID-19
incidence rate. It should be noted that incidence rate only includes new cases during a certain period
while the prevalence rate includes new and pre-existing cases.
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Figure 1. (a) Temporal distribution of COVID-19 cases reported in Hong Kong. (b) The spatial distribution of
the confirmed COVID-19 cases in two separate phases at the level of District Council Constituency Area
(DCCA) with established urban centers and new towns in New Territories.
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Although using rank-size distribution can help us capture a holistic image of how COVID-19
incidence of different phases is distributed across space, it does not link the two phases on the same
geographic scale. As such, we consider another evaluation metric, log-odds ratio, to depict the
relative balance of phase I and phase II incidences. Given that the total incidence of phase I and
phase II are different, a normalization process based on the total number of confirmed cases of
different phase ði:e:,Tj and TkÞ is requisite to support the comparison. In a DCCA di , the log-odds
ratio of two phase j and k, is represented as:

RðdiÞ ¼ log10

�
InjðdiÞ � Tj

InkðdiÞ � Tk

�
(2)

The value of RðdiÞ can be categorized into three interpretations. A value of RðdiÞ equals to zero
indicates that the relative incidence of COVID-19 is identical in area di, while a value larger than
zero denotes that the relative incidence of phase j is higher than that of phase k, and vice versa.

Global and local regression analysis

We then incorporate both global and local regression models to explore the association of the
normalized size of COVID-19 incidence with the built environment and socio-demographic
characteristics. It is worth noting that the variance inflation factor (VIF) is used to assess the
correlations among all independent variables in addressing multicollinearity issues.

The aim of OLS regression is to identify and measure relationships examine the relationship
between the incidence of COVID-19 and built environments and socio-demographic factors. The
formula of OLS is illustrated in equation S1. This model can provide a holistic image of the
examined relationship and serve as a baseline model in this study.

As the independent variables are probably related to the local context, the spatial non-stationarity
of study variables can be ignored by using a global regression model (Crespo and Grêt-Regamey,
2013). Geographically weighted regression (GWR) is hence introduced to tackle the issues of spatial
non-stationarity, which can be regarded as a varying association between independent and de-
pendent variables (Wang et al., 2018). GWR is proposed as a local regression model, allowing the
variable coefficients to be varied across space and mitigating the statistical bias caused by spatial
non-stationary. The equation of GWR is shown follows

InjðdiÞ ¼ β0i þ
X
k

βkixki (3)

where Inj is the COVID-19 incidence rate in phase j, β0i represents the local regression intercept, and
xki and βki denote the independent variables and the local estimated regression coefficients of DCCA
i, separately. It should be mentioned that βki is a spatial function and its values are associated with the
results of applying weights on geographic coordinates of the observation DCCA i. In this case, we
select the Gaussian weighting function to define the weighting structure since it can provide a
continuous function for distance and thus better calibrate the model. Akaike Information Criterion
(AIC) is tested to define the optimal kernel bandwidth.

Analytical results

Spatial patterns of the COVID-19 incidence

In reply to the RQ1 related to the spatial geographic distribution of COVID-19 incidence, we
provide rank-size distribution and log-odds ratios for exploring the spatial patterns in this
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subsection. As manifested in Figure 2(a), the epidemic incidence from both phases decays dra-
matically for the first few DCCAs, yielding that these areas contain a substantial amount of
confirmed cases with intensive epidemic situations. From a statistical perspective, this phenomenon
can be described as the king effect, where the percentage of the top-ranked observations is much
larger than the rest ones. It depicts a high degree of spatial heterogeneity of COVID-19 cases in
respect to both phases at the DCCA level. As the rank increases, it is clear to observe that the disease
incidence of the remaining areas tends to decay more smoothly compared to the first few areas. In
order to quantify the decay patterns, we furthermore fit the curves using the power-law function
shown as y ¼ a � xb, in which the parameter b reflects the rate of decay. Fitted curves for phase I and
phase II are y ¼ 5:43 � x�0:52 and y ¼ 9:12 � x�0:57, while the corresponding R squared values are
0.95 and 0.96, respectively. It should be stressed that the decay rates of rank-size distribution are
similar to each other, implying that decaying speed is comparable between two different phases.

Figure 2(b) exhibits the spatial distribution of disease incidence with the top-ranked areas for
phase I and Phase II. From a visual perspective, the two phases show relatively disparate patterns.
For example, in phase I, the top 2 ranked DCCAs are clustered in Wong Tai Sin, a high-density

Figure 2. (a) Rank-size distribution of the COVID-19 incidence of the two phases. (b) Spatial distribution of
the COVID-19 incidence of the two phases with the top 3 ranked DCCAs.
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residential district in northeast Kowloon, with more than 85% of the district’s residents living in
public housing estates. Conversely, during phase II, DCCAs with a high level of COVID-19
incidence tend to situate at Jordan, a mixed-function neighborhood located in the Kowloon
Peninsula with commercial, residential, entertainment services for locals and tourists.

Despite that the statistical and spatial distributions have provided concentration patterns, a more
direct comparison linking two incidence layers in the same geographic regions is requisite. A log-
odds ratio between phase I and phase II is computed here, showing the spatial variation of epidemic
patterns shift between two distinct phases. Supplementary figure S2 displays the histogram of log-
odds ratios and its spatial distribution, presenting an overview of the relative balance as regards two-
wave COVID-19 incidence over space. DCCAs with opposite ratios produce similar distributions,
from where 49.2% and 50.8% of DCCAs are observed with positive and negative ratios, re-
spectively. This result highlights that the COVID-19 concentration of those two phases is mostly
equivalent in Hong Kong, following the findings of the overall rank-size distribution. We addi-
tionally derive some interesting patterns from the geographic distribution. During phase I, a higher
level of COVID-19 incidence rate is reported in the peripheral areas of the downtown core and new
towns in New Territories, such asWong Tai Sin, TuenMun, and Fanling. In contrast, the central part
of Hong Kong situated in the northwestern part of Hong Kong Island and the south shore of
Kowloon Peninsula exhibit more severe situations during phase II. Plus, a similar pattern is ob-
served in Causeway Bay in eastern Hong Kong Island, which is seen as an energetic trade and
commercial hub in Hong Kong. These findings thus can establish that downtown areas with vibrant
daily activities may be correlated to the risk of virus transmission in phase II.

The relationships with built environment and socio-demographic characteristics

OLS regression results. The OLS regression model is used to examine the global relationships
between the COVID-19 disease incidence and built environment and socio-demographic char-
acteristics. Supplementary table S3 reports the regression results of the OLS regression model,
including estimated coefficient, standard error, VIF, adjusted R-squared, and AIC.

Variables from phase I outbreak, including POI diversity, distance to Central, population age
level, mean income, jobs-housing ratio, and race composition of Filipino are significantly related to
the COVID-19 incidence. Among these variables, mean income indicates the strongest negative
relationship with a coefficient of�0.24, implying that areas with lower income levels may produce
higher exposure risk to the COVID-19 virus. Research by Chen (2020) has suggested that lower
household income can subject socially marginalized and precarious communities to heightened
exposure to infectious disease. Housing characteristics can be regarded as one of the essential
reasons that densely populated neighborhoods of public housing and cramped conditions of living
environment enhance the spread process of COVID-19. The coefficient of jobs-housing ratio also
indicates that for the phase I outbreak, residential districts with fewer local working opportunities
tend to be hotspots of virus spread. Compared to phase I, the regression results from phase II hint at a
relatively dissimilar association to the selected local variables. Explicitly, POI density exhibits a
positive correlation with disease incidence, suggesting that areas with intensive human activities
probably contain higher COVID-19 risk. This research finding is also reported by previous literature
that hotspots and sub-centers in downtown areas are activity hubs, including populated human
interactions and daily activities. In an epidemic context, such hotspots can be potential virus
spreaders since visits and contacts can increase the risk of transmission of COVI-19 disease (Chang
et al., 2020). Additionally, the variable of distance to Central shows a substantially negative as-
sociation with the disease incidence. Although the variables mentioned above are reported with
significant associations, the values of adjusted R-squared suggest a limited capacity in explaining
the variation of the incidence rate in DCCAs.
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Figure 3. Spatial distribution of associated regression coefficients (built environment characteristics) for
phase I outbreak.
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Figure 4. Spatial distribution of associated regression coefficients (built environment characteristics) for
phase II outbreak.
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GWR results. The results from global OLS regression may not consider some variation related to the
relationships across geographic space (i.e., spatial non-stationary). We therefore present the results
generated from GWR models, which can be used to explore the spatial non-stationary We present
the results generated from GWR models, which focus on the spatial distribution of the significantly
associated local characteristics. As reported by output results shown in supplementary table S4, the
R-squared values of phase I and phase II GWR models are 0.47 and 0.55, respectively, which are
considerably higher than that of the OLS models. Supplementary figure S3 exhibits the spatial
distributions of local R-squared of the GWR models. It can be evident that the GWR models of
phases I and II can produce relatively higher explanatory capacity in the eastern parts of the study
area and northern Hong Kong Island, separately. The AIC values of GWR models are lower than
those of OLS models, which are 1058.21 and 1052.65 in GWR compared to the 1060.31 and
1161.65 in OLS models for phase I and Phase II.

As reported in Figure 3, positive coefficients of road density, distance to Central and metro
stations are mostly located in Wong Tai Sin, where POIs diversity and the number of intersections
display opposite spatial patterns. One anticipated finding is that the variable of distance to Central
exhibits an obvious positive relationship with the case incidence, suggesting that the incidence of
COVID-19 tends to be observed in peripheral areas during phase I. As for the socio-demographics
shown in supplementary figure S4, variables except for the percentage of Filipino indicate a robust
negative relationship in northeastern Kowloon, where the Wong Tai Sin district is located.
Compared to other non-residential districts, the findings in northeastern Kowloon are meaningful.
Since mean income and age level can represent important profiles of residential neighborhoods, the
result may imply that these two socio-demographic characteristics are critical infection risk factors,
which are highly related to housing environments. The research findings demonstrated here are also
reported by Kwok et al. (2020) that deficient urban design and geometry in Hong Kong are
significantly related to the transmission of viruses. In other words, people living in old residential
estates or public housing can gain a higher risk of being infected with COVID-19 disease. Moving to
the phase II outbreak, we discover some interesting patterns in southern Kowloon and northern
Hong Kong Island. Such areas are regarded as the activity centers of Hong Kong. To be specific,
Figure 4 manifests that the associated built environment characteristics have a formidable rela-
tionship on the Kowloon Peninsula. For instance, in most areas, POIs density presents positive
relationships with local incidence rates. It is therefore suggested that in these areas, COVDI-19 risk
may be positively connected to residents’ daily activities. Correspondingly, results from the former
subsections also highlight places as the spreading hotspots during phase II outbreak. Supplementary
figure S5 reports the spatial coefficients distribution of socio-demographic characteristics. Among
these factors, one interesting finding is that the incidence rate in the eastern Kowloon Peninsula
exhibits an evident pattern with strong positive correlations with the jobs-housing ratio in com-
parison with remaining areas. This result may be explained by the fact that neighborhoods in this
area (e.g., Kowloon City) mostly provide mixed commercial and residential functions, including
public housing estates and multiple day-to-day commercial services.

Discussion and conclusion

The spatial variation of epidemic incidence and its relationship to local factors have been long
studied in research communities. Recently, in response to the COVID-19 epidemic outbreak,
literature has provided substantial evidence to the knowledge of virus transmission, but very few
aims at emphasizing spatial variations of epidemic waves occurring in the same geographical
context. As this study shows, we compare spatial patterns of the third and fourth COVID-19 waves
in Hong Kong and assess the relationships between COVID-19 incidence rate and built environment
and socio-demographic characteristics.
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By leveraging rank-size distribution, we quantify the spatial patterns of COVID-19 incidence at
the DCCA level. It is apparent from this distribution that disease incidence has a notable decay effect
on both the third and fourth waves. This means that a considerable number of COVID-19 cases have
a propensity to concentrate in a few areas of the city. The concentrated patterns may be explained by
the fact that the epidemic outbreak is implemented through absolute space featured by concrete
spatiality, hinting that the COVID-19 transmission is enabled by people sharing the same physical
environment of local communities (Moore et al., 2020). This specific feature of infectious viruses
makes disease incidence more concentrated within certain areas. Furthermore, the spatial distri-
bution of disease incidence with the top-ranked areas is produced. This key finding highlights that
the high-risk hotspots of virus transmission within one epidemiological period can be spatially
clustered at the aggregate level.

As the rank-size distribution cannot directly compare two epidemic outbreaks in the same
geographic space, we take further steps by adopting a log-odds ratio to reflect the relative balance of
COVID-19 incidence. DCCAs with opposite values tend to share a similar proportion of the entire
study area, showing that the comparative distribution of both epidemics is even and comparable. An
overrepresentation of relative incidence inWong Tai Sin district suggests that this residential district
is the hardest-hit area during the phase I outbreak. In contrast, the mismatch of spatial patterns
observed from the downtown areas intimates that a more critical situation is shown in urban centers
with vibrant human activities during the phase II outbreak. Such areas have long been recognized as
the commercial and political center of Hong Kong (Yu and Liu, 2021). The spatial shifts of
spreading hotspots deliver critical evidence to illustrate that COVID-19 outbreaks may be highly
correlated to location-specific characteristics (Franch-Pardo et al., 2020; Kan et al., 2021). In
addition, the log-odds ratio provides an intuitive metric to visualize the spatial heterogeneities of
incidence rate between two epidemic waves.

This study then reports some remarkable results by investigating how built environmental and
socio-demographic local factors related to the disease incidence at an aggregate level. OLS re-
gression is first implemented to inspect the independent variables that may be related to explaining
the variation of COVID-19 incidence. Results reveal that correlated characteristics in different
waves elucidate dissimilar tendencies. More specifically, the relationships identified from the third
wave exhibit evident residential-oriented features, of which mean income, JHR, and race com-
position of white and Filipino population are highly associated with residential neighborhoods. In
this context, local marginalized communities with lower economic status face a higher risk of
COVID-19 outbreak that can be attributed to the densely populated public housing and cramped
conditions of the living environment (Ahmad et al., 2020). Apart from the third wave, the fourth
wave of epidemic outbreaks presents disparities as regards the infection risk factors. POIs density
proposes a positive relationship with epidemic incidence, highlighting that places with urban
vibrancies presumably produce a higher contact risk of COVID-19 virus to local neighborhoods.
Such places can be potential super-spreading venues as visited by a greater volume of population
flows, which can raise the chance of contracting infectious diseases (Chang et al., 2020; Tenforde
et al., 2021). The GWR model is then applied to examine the spatial non-stationarity by under-
standing how the relationships between disease incidence and local characteristics vary by geo-
graphic space. From the spatial distribution of estimated coefficients, we can easily notice that
hotspot areas for each epidemic wave display a significant effect in predominating the coefficient
magnitude, in which these areas are in agreement with those obtained by previous results. This
empirical thesis has provided a deeper insight into the local characteristics that are closely related to
infectious disease incidence. Taken together, this study presents a global regression analysis in
conjunction with a local perspective to enhance the understanding of how selected variables are
related to the COVID-19 incidence in Hong Kong. The global approach seems to be more suitable in
offering holistic evidence for revealing universal relationships and thus discussing regional-wide
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policies, while the results from local analysis can report more nuanced and complementary in-
formation (Crespo and Grêt-Regamey, 2013).

Some sources of weakness should be acknowledged. First, residential locations of confirmed
cases are used to indicate the distribution of COVID-19 incidence. We assume that COVID-19
patients contract the COVID-19 virus within or near their residential neighborhoods. However,
human commuting behaviors that visit public spaces like offices or restaurants in other districts can
increase the risk of contracting COVID-19, which is not included in this study. Another major
weakness is that many non-pharmacological interventions (NPIs) such as community interventions
and border control policies have been demonstrated as effective measures preventing the spread of
Covid-19 but are not comparatively considered in this research. Previous studies have largely
suggested that NPIs can be adopted as mitigation strategies apart from medical treatments in Hong
Kong (Chan et al., 2021; Yu et al., 2021). It raises new questions about such qualitative NPIs
implemented by the government and should be answered in the future by collecting targeted
datasets. In this respect, one plausible strategy for subsequent research is to conduct a questionnaire
regarding the COVID-19 NPIs’ impact on the public. Besides, we only explore the spatial aspects of
COVID-19 outbreaks by analyzing the distribution patterns of observed cases and their correlations
to local factors. Individual-level information such as the patient’s age, gender, death, and discharge
rates should be considered, which are important indicators helping us to evaluate the epidemic
situation.

Practical implications for epidemic control

The findings of this study can produce some practical and policy implications that would be of
interest to relevant policymakers and health professionals. Referring to the third wave (phase I), the
research has presented evidence that residential districts are the hardest-hit areas, of which mar-
ginalized groups living in poor housing conditions can be closely associated with a higher risk of
COVID-19 due to the deficient living environments. To prevent the spread or mitigate the severity of
regional epidemics, targeted measures are therefore suggested to these residence groups. For
example, community-based virus testing sites can be temporarily set up in residential neighbor-
hoods with reported confirmed cases for providing no-cost COVID-19 testing services. Such
measures may help health officials to detect silent infections in high-risk populations, thus cutting
off the infectious chains. Regular cleaning and disinfection are also encouraged to maintain the
hygiene of public infrastructures of communities, particularly given the old and dense properties
with poor ventilation systems. Indeed, mid- and long-range airborne transmissions by ventilation
issues have been documented recently as a plausible cause in triggering COVID-19 outbreaks in
high-density public residential buildings in Hong Kong (Li et al., 2021; Tung et al., 2021).

As for the fourth wave (Phase II) epidemic outbreak, this study supplements some hints to the
recent discussions of social gathering activities. The fourth outbreak displays a tendency towards
downtown areas where vibrant social activities densely occur. Notably, gathering events in holidays
such as Halloween, Christmas Day, and New Year’s Eve before or during the epidemic period may
increase the chance of spreading and getting COVID-19 due to potential virus exposure in populated
circumstances. The evidence observed by Kuebart and Stabler (2020) has confirmed that cultural
festivities and street parades during carnival events in downtown areas can facilitate the spreading
process of the disease. Such activities are mostly characterized by close personal contact, food, and
alcoholic consumption. It is thus recommended that restrictions on travel and social behaviors are
vital, to curb non-essential gatherings, for cutting off the silent transmission link in the community
in a short time. Explicitly, tighter measures on personal behavior like requiring physical distancing
in face-to-face interaction or prohibiting dine-in activities could be imposed on some particular
categories of places such as restaurants and bars.
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Combined together, effective and targeted implementations from our implications can be to some
extent used as constructive suggestions for government and the public. In this regard, practical
implications emerged and discussed in this study can help to respond to the emerging transmission
chains found in different neighborhoods at the beginning of the next outbreak.
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