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Peptides vaccination is an interesting approach to activate T-cells toward desired

antigens in hematological malignancies. In addition to classical tumor associated

antigens, such as cancer testis antigens, new potential targets for peptide vaccination

comprise neo-antigens including JAK2 and CALR mutations, and antigens from immune

regulatory proteins in the tumor microenvironment such as programmed death 1 ligands

(PD-L1 and PD-L2). Immunosuppressive defenses of tumors are an important challenge

to overcome and the T cell suppressive ligands PD-L1 and PD-L2 are often present in

tumor microenvironments. Thus, PD-L1 and PD-L2 are interesting targets for peptide

vaccines in diseases where the tumor microenvironment is known to play an essential

role such as multiple myeloma and follicular lymphoma. In myelodysplastic syndromes

the drug azacitidine re-exposes tumor associated antigens, why vaccination with related

peptides would be an interesting addition. In myeloproliferative neoplasms the JAK2

and CALR mutations has proven to be immunogenic neo-antigens and thus possible

targets for peptide vaccination. In this mini review we summarize the basis for these novel

approaches, which has led to the initiation of clinical trials with various peptide vaccines

in myelodysplastic syndromes, myeloproliferative neoplasms, multiple myeloma, and

follicular lymphoma.

Keywords: peptide vaccination, follicular lymphoma, multiple myeloma, myeloproliferative neoplasms,

myelodysplastic syndrome, PD-1, cancer testis antigen, neo-antigens

INTRODUCTION

Cancer vaccine therapy is based on the principle of activating an immune response toward cancer
cells. The concept dates back to the Nineteenth century when William Coley attempted to raise
an immune response against cancer by exposing patients to bacterial extracts (1). In the view of
modern research standards Coley’s results are questionable, but since then the field has evolved
immensely and modern therapeutic cancer vaccines induce potent anti-tumor immune responses.
The field of therapeutic cancer vaccines involves a variety of methods including cellular vaccines,
RNA/DNA based vaccines, viral vaccines, and peptide/protein vaccines described in detail by
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Gou et al. (2) Peptide vaccines hold the advantage of short
production times and easy administration and will be the focus
of this review. This method is based on peptides from selected
tumor proteins that are injected into patients along with an
immune activating adjuvant. After injection, the peptides are
processed by antigen presenting cells and presented to T cells
in the draining lymph node, as illustrated in Figures 1B,C.
T cells recognizing the presented epitopes are primed to
recognize cells expressing the target proteins, as these are
presenting the epitopes on the cell surface. The vaccine field
is fueled by the continuous discovery of targetable epitopes.

FIGURE 1 | Targeting PD-L1 and PD-L2 expressing cells. (A) T cells in the

tumor microenvironment often express PD-1 and are vulnerable to

stimulation from the ligands PD-L1 or PD-L2 expressed on tumor cells or

tumor infiltrating cells such as macrophages or Myeloid-derived suppressor

cells (MDSC). (B) Immunogenic peptides derived from the PD-L1 and PD-L2

can be injected in the patients where they are endocytosed and processed by

antigen presenting cells (APC). (C) The APCs present the peptides to T cells in

the draining lymph node along with co-stimulatory signals, which are

necessary for priming and optimal cytotoxicity. (D) Tumor cells, macrophages

and MDSCs expressing PD-L1 and PD-L2 also present epitopes derived from

these proteins on surface MHC molecules and are vulnerable to primed PD-L1

and PD-L2 specific T cells.

Such epitopes are either neo-antigens, which are formed by
somatic mutations that generate a novel mutant antigen, or
non-mutated antigens that are overexpressed by the neoplastic
cells. Unfortunately, therapeutic cancer vaccination has yet to
show significant clinical impact. Limitations to this approach
involves a variety of immune escape mechanisms including
defected antigen presentation identified in many tumors and T
cells unable to find or penetrate the tumors, which might be a
minor issue in hematological malignancies as these by nature
are less immune restricted than solid tumors (3). Another major
limitation is the immunosuppressive mechanisms employed by
tumor cells and regulatory cells in the tumor microenvironment
(Figure 1A) (2). Immune checkpoints such as the PD-1/PD-
L1 pathway inhibit activated T cells and thereby prevent an
effective antitumor response. Monoclonal antibodies blocking
these pathways known as checkpoint inhibitors allow the
activated T cells to function regardless of the suppressive signals
from the surroundings. Checkpoint inhibitors have proven
effective in both solid and hematological cancers (4). However,
not all tumors respond to checkpoint inhibitors and they are
associated with serious side effects. Targeting the checkpoints
through therapeutic vaccination offers a novel way to directly
target regulatory pathways in the tumor microenvironment
and potentially modify tolerance to tumor antigens. Like the
checkpoint inhibitors the vaccine approach might relieve the
immune suppression and potentiate anti-tumor T cell responses,
but in addition, the vaccine may recruit activated T cells
to the tumor site and promote epitope spreading when the
target cells are killed. Addressing the immune regulatory
mechanisms is essential to improve the outcomes of peptide
vaccination.

In this mini review we summarize novel strategies to
overcome immune suppression and enhance tumor recognition,
which have led to clinical trials in myelodysplastic syndrome,
myeloproliferative neoplasms, multiple myeloma, and follicular
lymphoma.

TARGETING IMMUNE CHECKPOINTS IN
MULTIPLE MYELOMA

Multiple myeloma (MM) is a neoplastic disease of plasma cells
with hallmarks including hypercalcemia, renal insufficiency,
anemia, and bone lesions. In the recent years several new
treatment options have become available, which has improved
the median survival. However, the disease is still incurable. All
cases of MM are preceded by the precursor state monoclonal
gammopathy of undetermined significance (MGUS) and
some patients progress via an intermediate state termed
smoldering multiple myeloma (SMM) (5). Since the majority
of genetic mutations are already present in the precursor
states, changes in the microenvironment are believed to
impact the risk of progression (6). The microenvironment
in MM is severely immunosuppressive (7), and decreased
humoral and cellular immune responses to viral and neoplastic
epitopes in patients with MGUS and SMM are risk factors
for progression to MM (8). Progression from MGUS to MM
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is also correlated to the expression level of the immune
checkpoint molecule programmed death ligand 1 (PD-L1)
on MM cells (8). PD-L1 interacts with the molecule PD-1
on T cells and serves as a powerful negative regulatory
signal, which plays a major role in the normal physiologic
maintenance of immune self-tolerance, reviewed in Keir
et al (9). In symptomatic MM, T cells and natural killer
(NK) cells in the tumor microenvironment display increased
amounts of PD-1, and MM-cells, osteoclasts and dendritic
cells demonstrate elevated levels of PD-L1 (10–16). One
study showed that PD-L1 is variably expressed on clonal
plasma cells in newly diagnosed MM patients (17). The
PD-1/PD-L1 pathway not only promotes the progression
of myeloma indirectly by immune evasion; bone marrow
stromal cells induce myeloma cells to express PD-L1,
which results in increased tumor cell proliferation and
reduced susceptibility to anti-myeloma chemotherapy (18).
Extramedullary plasmacytomas from patients with late stage
MM are characterized by increased expression of PD-L1
(19). Furthermore, the level of PD-1 on T cells is inversely
correlated with overall survival (20). Additionally, patients
display increased levels of PD-L1 on myeloma cells at relapse
or when refractory to treatment, and is associated with an
aggressive disease phenotype (21). Increased numbers of
T cells with upregulated PD-1 and an exhausted immune
phenotype is identified in patients that relapse after high-dose
chemotherapy followed by allogeneic hematopoietic stem cell
transplantation (HDT-ASCT), indicating that the PD-1/PD-L1
axis could be an important determinant of early relapse after
HDT-ASCT (22).

We have characterized T cells in cancer patients that are
able to recognize peptides derived from PD-L1 protein, and
demonstrated that specific T cells isolated and expanded from
these patients are able to recognize and kill PD-L1 expressing
cells (23, 24). PD-L1 specific T cells target both tumor cells
as well as PD-L1 expressing cells in the microenvironment
(Figure 1D) (25, 26). Furthermore, stimulation of T cell
cultures with PD-L1 peptide was in vitro shown to boost
the antineoplastic effect of a dendritic cell (DC)-vaccine
(27). This effect is likely based on the ability of PD-L1
specific T cells to kill regulatory PD-L1 positive cells in the
cell culture, consequently leading to an attenuated immune
regulation.

Based on these observations, we have initiated a phase
I study testing safety and efficacy of PD-L1 peptide
vaccination as a monotherapy consolidation after HDT-
ASCT in patients with MM. Furthermore, we are initiating
a vaccination study with PD-L1 peptide for patients
with SMM. Of note, monotherapy with the anti PD-1
monoclonal antibody (mAb) nivolumab did not show
effect in MM (28). Several combination studies of PD-1
specific mAbs have been halted by the Food and Drug
Administration (FDA) due to increased mortality in the
experimental arms. The halt has recently been lifted
on several studies, but the difficulties using anti-PD-1
mAbs for MM underline the need for development of
alternative approaches to target the PD-1/PD-L1 pathway
in MM.

TARGETING IMMUNE CHECKPOINTS IN
FOLLICULAR LYMPHOMA

Follicular lymphoma (FL) is an incurable disease characterized by
waxing and waning courses of the disease and is often monitored
without the need for active treatment. Over time the disease
expands and there is a substantial risk of transformation to more
aggressive lymphomas. The mainstay treatment is chemotherapy
and anti-CD20 mAbs. Since FL is an indolent disease, it is
believed to be ideal for vaccination therapy, which has been
explored in FL, in the form of anti-idiotype cancer vaccines.
So far this approach has failed to show clinical benefit when
tested against placebo or chemotherapy in phase III trials (29–
31). There are many possible reasons for the lack of success in
these trials, but the immunosuppressive microenvironment in FL
is a probable explanation. A gene expression study in FL revealed
that the gene signature from regulatory immune cells was
an independent adverse prognostic factor (32). Another study
looked at the gene expression of specific immunosuppressive
proteins in the microenvironment and found 24 out of
54 to be upregulated in FL compared to healthy tissue
(33). PD-L1 and programmed death ligand 2 (PD-L2) were
among the upregulated genes, which also was confirmed by
immunohistochemistry. Both PD-L1 and PD-L2 play a role in
immune suppression and contribute to the reduced cytotoxic
potential of effector T cells (34). In FL PD-L1 expression has also
been identified on tumor-infiltrating macrophages (35).

The clinical relevance of the PD-1 pathway was investigated
in a phase I checkpoint inhibition trial, where heavily treated FL
patients were treated with the PD-1 blocking mAb Nivolumab
as monotherapy. 4 out of 10 had an objective response and one
achieved complete response (CR) (28), indicating that the PD-
1/Ligand pathway could be important for successful vaccination
therapy. As mentioned above, cytotoxic PD-L1 specific T cells
can be expanded in cultures by stimulation with PD-L1 derived
peptides. Likewise, immunogenic PD-L2 epitopes have been
identified, and spontaneous immune responses against these
epitopes have been observed in cancer patients (36). Additionally,
PD-L2 specific T cells are cytotoxic to PD-L2 expressing tumor
cells. Based on these findings and additional unpublished data,
we are conducting a phase I vaccination trial with PD-L1
and PD-L2 derived peptides in relapsed FL as maintenance
after chemotherapy (NCT03381768). This vaccine is primarily
targeting the PD-L1 and PD-L2 positive tumor infiltrating
macrophages known to stimulate tumor vascularization and
moreover have been correlated with disease transformation and
poor prognosis (37, 38). Furthermore, the macrophages seem to
have a lymphoma propagating role by secretion of IL15 (39).
Thus, by targeting PD-L1 and PD-L2 expressing tumor- and
regulatory cells in FL, we hope to shift the immunological balance
toward tumor elimination.

TARGETING CANCER TESTIS ANTIGENS
IN MYELODYSPLASTIC SYNDROME

Myelodysplastic syndrome (MDS) is a malignant disorder
characterized by clonal expansion of mutated myeloid precursor
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cells, resulting in an accumulation of blasts in the bone marrow
and cytopenia due to ineffective hematopoiesis. MDS responds
poorly to chemotherapy, and the only curative treatment is
allogeneic HSCT (allo-HSCT), which most often is not feasible
due to the high treatment related mortality. Hypomethylating
agents (HMA), such as azacitidine or decitabine, are standard
therapies for patients with high-risk MDS, who are not eligible
for an allo-HSCT. HMAs works by incorporating themselves
into the DNA by competitively binding at cytidine nucleotides.
After DNA incorporation, the drug covalently attaches to DNA
methyltransferase (DNMT), resulting in a loss ofmethylation and
subsequently re-expression of the affected genes as the cell divides
(Figure 2A) (40).

Several possible synergies may be achieved by combining
HMA with therapeutic cancer vaccination. Firstly, a group of
genes called cancer testis antigens (CTA) not usually expressed
in healthy tissue due to gene methylation, has been found to
be expressed by neoplastic cells (41). Treatment with HMA
has shown to enhance the expression of CTA (42–46), while
not affecting the expression in healthy tissue (47–49). Since
healthy cells do not express CTA, the immune system has not
developed central tolerance to these antigens, and they can be
exploited as targets for immunotherapy. Secondly, HMA induces
transcription of DNA from endogenous retroviruses resulting
in an inflammatory response in tumor cells (50–53). Double
stranded RNA from the viruses activates viral defense pathways,
which causes the cell to produce interferon’s and upregulate
HLA class I molecules (Figure 2A). This inflammatory response
makes the cancer cells more susceptible to immune mediated
killing. Thirdly, the bone marrow of MDS patients has
an immunosuppressive microenvironment with an increased
amount of myeloid derived suppressor cells (MDSCs) (54). HMA
has been shown to deplete MDSCs (55), thus potentially making
it easier for T cells to exert an effective tumor-specific immune
response.

Vaccination against CTA as monotherapy has previously
been tested in many cancer types with varying success
(56–58), and trials combining CTA-derived epitopes with
HMA are now emerging (59, 60). In NCT02750995 we
are targeting four CTAs (NY-ESO-1, PRAME, MAGE-A3,
and WT-1) in combination with azacitidine, and another
study is investigating a dendritic cell directed vaccine
targeting NY-ESO-1 in combination with decitabine and
a PD-1 checkpoint inhibitor (NCT03358719). The use of
checkpoint inhibitors is expected to further enhance the
potency of the combination therapy, since HMA also induces
upregulation of PD-L1 on tumor cells and PD-1 on T cells
(61, 87).

TARGETING NEO-ANTIGENS IN
MYELOPROLIFERATIVE NEOPLASMS

Chronic myeloproliferative neoplasms (MPN) are cancer
diseases of the hematopoietic stem cells of the bone marrow
and are characterized by an increased production of peripheral
blood cells. MPNs display a very homogenic mutational

landscape, as 50% of patients harbor the Janus Kinase 2
(JAK2)V617F driver mutation (62, 63), and 20–25% have a
driver mutation in exon 9 of the calreticulin (CALR) gene
(64, 65). Recently, both of these mutations were shown to be
targets of specific T cells (Figure 2B) (66–68). These findings
have opened an avenue for therapeutic cancer vaccination
with peptides derived from the JAK2- or CALR-mutations
for patients with MPN. However, MPN-patients display
several immune-regulatory mechanisms that may attenuate
the tumor specific immune response induced by vaccination.
Wang et al. showed that patients with MPN have increased
numbers of MDSC in peripheral blood, and that mononuclear
cells from MPN-patients express increased amounts of the
immunoregulatory enzyme arginase-1 compared to healthy
donors (69). Additionally, MDSCs from MPN patients are
more suppressive to T cells compared to MDSCs from
healthy donors. Prestipino and colleagues recently showed
that the JAK2V617F-mutation enhances PD-L1 expression in
mutant cells through activation of STAT3 and STAT5 (70).
As described above, both arginase-I and PD-L1 are targets
of specific T cells (23, 24, 71), and the immune mediated
killing of arginase-I and PD-L1 expressing cells is believed to
enhance the tumor specific immune response (72). Recently,
strong and frequent spontaneous T-cell responses against both
PD-L1 and arginase-1 were detected in patients with MPN
(73, 74). We hypothesize that enhancing these already existing
anti-regulatory T-cell responses through therapeutic cancer
vaccination with arginase-I and PD-L1 derived epitopes can
boost the neo-antigen specific immune response induced by
vaccination with JAK2/CALR-mutant epitopes. This method
of combinatorial cancer vaccination targeting both driver
mutations and immunoregulation could potentially break the
immune evasion leading to anti-tumor immunity and clinical
effect. Another means to enhance the anti-tumor immune
response would be to combine JAK2/CALR-vaccines with PD-1
specific mAbs, as treatment with these drugs have been shown to
enhance the amount of neo-antigen specific T cells in peripheral
blood (75).

Apart from the obvious combination of JAK2/CALR mutant
vaccines with immune checkpoint blocking antibodies, the
combination of vaccines with interferon-alpha (IFN-α) is a
most interesting option. IFN-α is a potent immunostimulatory
cytokine and has been used for years for the treatment of MPN
(76). IFN-α has been shown to induce complete hematological
responses and major molecular remissions in a substantial
proportion of patients (77–79). Concurrently, treatment with
IFN-α induces marked alterations in immune cell subsets and in
the expression of HLA-related genes (80–83), and themechanism
beyond the clinical effect of IFN-α is believed to rely partially
on the induction of an anti-tumor immune response (84).
Previous reports on therapeutic cancer vaccination in other
malignancies have underscored the importance of a low tumor
burden at the time of vaccine initiation in order to obtain
a proper clinical response (85). As IFN-α is the only drug,
which is able to reduce the tumor burden in a substantial
part of the patients, it is most apparent to reduce the tumor
burden with IFN-α, and after attainment of a major molecular
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FIGURE 2 | Expression of antigens in myelodysplastic syndrome and myeloproliferative neoplasms. (A) DNA methyltransferase (DNMT) add methyl (M) groups to

parts of the genome to prevent transcription. The drug azacitidine binds to cytidine nucleotides where it covalently attaches to DNMT to prevent further methylation.

This results in the transcription of otherwise suppressed genes such as cancer testis antigens (CTA) and retroviral DNA. The CTA are processed as proteins and

presented by MHC molecules on the cell surface, while the double stranded RNA (dsRNA) trigger intracellular pattern recognition receptors causing inflammation and

increased MHC expression. (B) Mutations in the JAK2 gene results in the substitution of valine (V) to phenylalanine (F) in position 617 of the JAK2 protein. This results

in the generation of a mutant antigen. Likewise, the CALR exon 9 mutations generate a novel mutant C-terminus in the CALR protein, thus generating several mutant

antigens.

remission, initiate therapeutic cancer vaccination against the
targets described above. This could hopefully eradicate the
malignant clone and ultimately cure the patient. However, as
exposure of cells to interferon increases the expression of PD-
L1 on the exposed cells it could be worthwhile to explore the
combination of neo-antigen vaccines and IFN-αwith either PD-1
blocking mAbs and/or PD-L1 vaccine in order to counteract the
increased amounts of PD-1 ligands induced by IFN-α treatment
(86).

CONCLUSION

The trials described above represent novel approaches to
overcome some of the challenges in peptide vaccination
including the suppressive mechanisms protecting the tumor
cells from an effective anti-tumor immune response. Targeting
the immune checkpoints such as the PD-1 ligands or other
immune suppressive molecules such as arginase-1 could shift
the immunological balance in the tumor microenvironment and
ultimately induce an adequate anti-tumor immune response—
a strategy that is currently being explored in FL and MM.
Combining this approach with tumor specific antigens such
as the neoantigens described in MPN could further enhance
the anti-tumor response. Finally, combining vaccination against
shared antigens, such as CTA, with HMA treatment in
MDS is a promising approach to increase immunogenicity of

the malignant cells. If the peptide vaccines prove safe and
ultimately effective, they will become welcome additions to the
toxic treatment options currently available for patients with
hematological cancers.
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