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Abstract

Numerous data mining models have been proposed to construct computer-aided medical

expert systems. Bayesian network classifiers (BNCs) are more distinct and understandable

than other models. To graphically describe the dependency relationships among clinical var-

iables for thyroid disease diagnosis and ensure the rationality of the diagnosis results, the

proposed k-dependence causal forest (KCF) model generates a series of submodels in the

framework of maximum spanning tree (MST) and demonstrates stronger dependence

representation. Friedman test on 12 UCI datasets shows that KCF has classification accu-

racy advantage over the other state-of-the-art BNCs, such as Naive Bayes, tree augmented

Naive Bayes, and k-dependence Bayesian classifier. Our extensive experimental compari-

son on 4 medical datasets also proves the feasibility and effectiveness of KCF in terms of

sensitivity and specificity.

Background

Data mining [1] [2] is used to extract unknown but potentially useful information by using

available incomplete, noisy, fuzzy, and random practical application data. The medical domain

consists of a considerable amount of data, including complete human genetic code informa-

tion; clinical information on the history of patients, diagnosis, inspection, and treatment; and

drug management information. Data mining can be applied in the medical field to analyze

medical data, extract implicit valuable information, provide correct diagnosis and treatment,

and study the genetic law of human diseases and health [3].

While dealing with a large amount of historical information of patients in the database,

data mining needs to confirm the diagnosis based on age, gender, auxiliary examination

results, and physiological and biochemical indicators of patients. Thus, data mining should

eliminate interference of human factors and establish diagnosis rules with good universality,

provided that large amounts of data are analyzed in the process. Consequently, researchers can
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establish a prediction model, test it, and construct an accurate algorithmic model, which can

be used for diagnosis of clinical medical conditions.

Now, about 20 million Americans have some form of thyroid disease, and people of all ages

and races can have the chance to get thyroid disease [4]. Recently, a fair mount of data mining

methods have been investigated to diagnose this kind of disease. To explore the value of con-

trast-enhanced ultrasound combined with conventional ultrasound in the diagnosis of thyroid

microcarcinoma, multivariate logistic regression analysis is performed to determine indepen-

dent risk factors [5]. Proper interpretation of the thyroid data besides clinical examination and

complementary investigation is an important issue, a comparative study of thyroid disease

diagnosis is made by using three different types of neural networks, i.e. multilayer neural net-

work, probabilistic neural network and learning vector quantization neural network [6]. An

enhanced fuzzy k-nearest neighbor (FKNN) classifier based computer aided diagnostic system

is presented for thyroid disease [4]. The neighborhood size k and the fuzzy strength parameter

m in FKNN classifier are adaptively specified by the particle swarm optimization approach.

The application of Support Vector Machines is proposed to classify thyroid bioptic specimens

[7], together with a particular wrapper feature selection algorithm (i.e., recursive feature elimi-

nation). The model is able to provide an accurate discriminatory capability using only 20 out

of 144 features, resulting in an increase of the model performances, reliability, and computa-

tional efficiency. To elucidate the cytological characteristics and the diagnostic usefulness of

intraoperative cytology for papillary thyroid carcinoma, decision tree analysis is used to find

effective features for accurate cytological diagnosis [8].

Bayesian method is an intelligent computing method used in reasoning and managing

uncertainty problems [9]. BNC is a probability network based on graphical models used to

provide probabilistic inference, thus it is more distinct and understandable than other meth-

ods. A BNC consists of a structural model and a set of conditional probabilities. The structural

model is a directed acyclic graph, in which nodes represent classes C and a set of random attri-

butes X = (X1, X2, . . ., Xn). Arcs between nodes are used to describe the conditional depen-

dence relationships, which are quantified using conditional probabilities for each node given

to the parents. Bayesian methods have gained increasing interest in medical diagnosis. BN and

graph theory are used to encode causal relations among variables for diagnosis and predictions

in the medical domain [10–12].

The Markov blanket of a target attribute is the minimal attribute set for explaining the tar-

get attribute based on the conditional independence of all the attributes to be connected in a

BN [13]. Koller and Sahami [14] defined the Markov blanket of a target attribute as the mini-

mal set of conditioned attributes, in which all other attributes are independent of the target

attribute in the probabilistic graphical model. Hence, the Markov blanket of a target attribute

removes unnecessary attributes and represents the minimal information for explaining the tar-

get attribute. In a BN model, the Markov blanket of T, i.e., MB(T) is the union of parent, child,

and parent of children nodes of T [13, 15]. For example, in Fig 1, the parent nodes of T are B
and C, the child node of T is F, and the parent of the children node of T is E. Thus, the Markov

blanket of T is MB(T) = {B, C, F, E}, indicating that nodes A, D, and G are independent of T
conditioned on MB(T).

The performance of a classifier is evaluated using two key factors, namely, classification

accuracy and space complexity of a model. A BN cannot express all relationships between the

attributes and the class. Thus, a trade-off should exist between the structure complexity and

classification accuracy. Some restricted Bayesian classifiers, e.g., Naive Bayes (NB), tree aug-

mented Naive Bayes (TAN), and k-dependence BNs (KDB), exhibit satisfactory performance

for classification at different levels of conditional independence assumption. When carrying

out medical analysis, different doctors may consider different factor or attribute as starting
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point. One BNC is unable to express this diversity. This paper proposes a novel learning algo-

rithm called the k-dependence causal forest (KCF). This algorithm generates a series of submo-

dels, which are used to construct classifiers with different root nodes at arbitrary points (values

of k) along the attribute dependence spectrum. The KCF algorithm aims to describe the signifi-

cant dependency relationships between root node Xr and MB(Xr) while simultaneously provid-

ing accurate diagnosis to patients with thyroid diseases.

Materials and methods

Data

This research work adopts the public thyroid disease dataset from the University of California,

Irvine (UCI) Machine Learning Repository [16]. The UCI database currently contains 335

datasets, and the number of sets continuously increases. The thyroid disease dataset was stored

in the UCI by Ross Quinlan during his visit in 1987 for the 1987 Machine Learning Workshop;

the set contains 9172 real historical instances. Each instance consists of 29 attributes, which

can be classified into 20 classes. The characteristics of thyroid disease dataset are multivariate

and domain theory, the characteristics of the contained attributes are categorical and real, and

the associated task of the dataset is classification.

Three restricted Bayesian classifiers

BNs are often used to solve classification problems by constructing classifiers from a given set

of training instances with class labels. With high classification accuracy and efficiency, BN clas-

sifiers perform outstandingly in a number of classification methods. This paper briefly intro-

duces the three popular restricted Bayesian classifiers. In the following discussion, capital

letters, such as X, Y and Z, denote attribute names, and lower-case letters, such as x, y and z,

denote the specific values taken by those attributes. Sets of attributes are denoted by boldface

capital letters, such as X;Y and Z, and assignments of values to the attributes in these sets are

denoted by boldface lowercase letters, such as x, y and z.

The NB classifier is the simplest BN model and is very robust [17]. Given the n independent

attributes X = (X1, X2, . . ., Xn) and m classes c1, c2, . . ., cm, classification will derive the

Fig 1. An example Markov blanket.

https://doi.org/10.1371/journal.pone.0182070.g001
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maximum of P(ci|x), where 1� i�m. Result can be derived from the Bayesian theorem, as Eq

(1) shows:

PðcijxÞ ¼
PðciÞPðxjciÞ

PðxÞ
ð1Þ

The rigorous assumption in NB is that all attributes are conditionally independent of each

other. Thus, the class assignments of the test samples are based on Eq (2).

arg max
ci

PðciÞPðxjciÞ ¼ arg max
ci

PðciÞ
Yn

j¼1

PðxjjciÞ ð2Þ

The basic framework of TAN [18] is the extension of the Chow-Liu tree [19], which utilizes

conditional mutual information to build a maximum spanning tree (MST). TAN is a one-

dependence classifier because it allows each attribute to have at most one parent in addition to

the class. In practice, TAN is regarded as a good trade-off between the model complexity and

classification performance. Fig 2 shows an example of the condition mutual information

matrix with six attributes and corresponding undirected MST. The selected six attributes are

the first few attributes with the maximum mutual information with class I(Xi; C) in the thyroid

disease dataset.

For a TAN model, the class assignments of the test samples are based on Eq (3).

arg max
ci

PðciÞPðxjciÞ ¼ arg max
ci

PðciÞ
Yn

j¼1

Pðxjjci; xjpÞ ð3Þ

where Xjp is the parent node of Xj.

After selecting each attribute as the root node and setting the outward direction of all the

arcs from the attributes, six different directed MSTs are generated, as shown in Fig 3. The root

node is filled in black. The directed MSTs can be regarded as different representations of the

same spectrum of causal relationships under different conditions. One MST corresponds to n
directed trees, and each tree uses different attributes as the root node. Although TAN can

achieve a global one-dependence optimization, MST cannot be extended to arbitrary k-depen-

dence structure when k> 1.

The KDB [20] is a k-dependence classifier because it allows each attribute to have a maxi-

mum number of k parents in addition to the class attribute. Starting with the highest, an attri-

bute order is pre-determined by comparing the mutual information I(Xi; C). By comparing

Fig 2. An example of conditional mutual information matrix (a) and corresponding undirected MST (b). Attributes {X2, X17, X19, X21, X23,

X25} correspond to clinical variables on thyroxine, TSH, T3, TT4, T4U and FTI, respectively.

https://doi.org/10.1371/journal.pone.0182070.g002
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conditional mutual information I(Xi; Xj|C), each attribute can select a maximum number of k
parents among the attributes ahead of itself in the pre-determined order.

For a KDB model, the class assignments of the test samples are based on Eq (4).

PðXjCiÞ ¼
Yn

k¼1

PðXkjCi;Xi1; � � � ;XipÞarg max
ci

PðciÞPðxjciÞ ¼ arg max
ci

PðciÞ
Yn

j¼1

Pðxjjci; xj1; � � � ; xjpÞ ð4Þ

where {Xj1, � � �, Xjp} are the parent attributes of Xj and p = min(j − 1, k).

KCF algorithm

MST contains the most significant relationships among attributes. Thus at training time, we

aim to achieve high-dependence directed trees by extending one-dependence directed trees

that are inferred from MST. Each one-dependence directed tree is extended to the k-depen-

dence conditional tree along the attribute dependence spectrum. Finally, we will obtain a series

of k-dependence trees rather than one augmented tree. Leaf node Xi can be used to select other

nodes as parents along the path from Xi to the root node by comparing the conditional mutual

information. For example, as shown in Fig 3(a), X2, X23, X25 are the possible parents of X17,

and X2, X23 are the possible parents of X25. Different root nodes correspond to different span-

ning trees or Bayesian classifiers, the ensemble of which finally forms a forest. When k> 1,

e.g., k = 2, more parents can be selected for each non-root node by comparing the conditional

mutual information. Fig 4 shows the k-dependence Bayesian classifiers when k = 2. The newly

added arcs are annotated with red color.

At the testing time, KCF estimates the class membership probabilities by using each sub-

classifier, and the final result is the average of the outputs of all subclassifiers. The training pro-

cedure (KCF-Training) and testing procedure (KCF-Testing) are depicted below.

Fig 3. An example of directed MSTs with different root nodes, which are filled in black. Attributes {X2, X17, X19, X21, X23, X25}

correspond to clinical variables on thyroxine, TSH, T3, TT4, T4U and FTI, respectively.

https://doi.org/10.1371/journal.pone.0182070.g003
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Algorithm 1 KCF-Training

Input:Pre-classifiedinstanceset DB with n predictiveattributes
{X1, � � �, Xn}.
Output:Subclassifiers{KCF1, � � �, KCFn }.
1: ComputeconditionalmutualinformationI(Xi; Xj|C) for each pair of

attributesXi and Xj, wherei 6¼ j.
2: BuildundirectedMST by comparingconditionalmutualinformation.
3: For each attributeXi(i = 1, 2, . . ., n)
(a) Transformthe MST to be a directedone by choosingXi as the root and

settingthe directionof all arcs to be outwardfrom it.
(b) Let the Bayesiansubclassifierbeingconstructed,KCFi, beginwith

the directedMST.
(c) Add a node to KCFi representingclassvariableC.
(d) Add an arc from C to each node in KCFi.
(e) For each node Xj(j 6¼ i), add m − 1(m = min(d,k), d is the numberof nodes

alongthe branchfrom root to Xj) arcs from m − 1 distinctattributesXP
to Xj. XP shouldlocatein the branchfrom root to Xj and correspondto
the firstm − 1 highestvaluefor I(XP; Xj|C).

4: Computethe conditionalprobabilitytablesinferredby the structureof
KCFi by usingcountsfrom DB, and outputKCFi.

Fig 4. The KCF (k = 2) model corresponding to the MSTs shown in Fig 3. Attributes {X2, X17, X19, X21, X23, X25, C} correspond to clinical

variables on thyroid, TSH, T3, TT4, T4U, FTI and Class, respectively.

https://doi.org/10.1371/journal.pone.0182070.g004
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Algorithm 2 KCF-Testing

Input:KCF1, KCF2, . . ., KCFn and a testinginstancee.
Output:The conditionalprobabilities P̂ðcjeÞðp ¼ 1; 2; . . . ; tÞ, wherec is the class
label.
1: For each KCFi(i = 1, 2, . . ., n), estimatethe conditionalprobability P̂ iðcjeÞ

that e belongsto classc.
2: Averageall of the probabilities P̂ðcjeÞ ¼ 1

n

Pn
i¼1

P̂ iðcjeÞ.
3: Returnthe estimated P̂ðc1jeÞ, P̂ðc2jeÞ, . . ., P̂ðctjeÞ.

k is related to the classification performance of a high-dependence classifier. An appropriate

value of k cannot be effectively preselected to achieve the optimal trade-off between the model

complexity and classification performance [21]. For each KCFi, the space complexity increases

exponentially as the value of k increases to achieve a trade-off between the classification perfor-

mance and efficiency. We set k = 2 in the following experiments.

Results

The detailed introduction of the 29 attributes from thyroid disease dataset in UCI database is

shown in Table 1. And numeric attributes in thyroid disease dataset are discretized by using

10-bin equal frequency discretization. In order to minimize the bias associated with the ran-

dom sampling of the training and holdout data samples in comparing the classification accu-

racy of two or more methods, 10-fold cross-validation is applied to compare the general

performance of KCF with three Bayesian network classifiers (i.e., NB, TAN and KDB) and five

non-Bayesian network classifiers, i.e., IBK(k-Nearest Neighbours) [22], SMO(Support Vector

Machine) [23], MultilayerPerception(Artificial Neural Network) [24], DecisionStump(Deci-

sion Tree) [25] and SimpleLogistic(linear logistic regression) [26]. In 10-fold cross-validation,

whole data are randomly divided to 10 mutually exclusive and approximately equal size sub-

sets. The classification algorithm trained and tested 10 times. In each case, one of the folds is

taken as test data and the remaining folds are added to form training data. Thus 10 different

test results exist for each training-test configuration. The average of these results gives the test

accuracy of the algorithm. All the experiments have been carried out in a C++ software spe-

cially designed to deal with out-of-core classification methods. The average classification accu-

racy (inversely related to zero-one loss [27]) are 75.17%(NB), 80.65%(TAN), 80.43%(KDB),

81.89%(KCF), 78.15%(IBK), 79.67%(SMO), 77.34%(MultilayerPerception), 73.81%(Decision-

Stump) and 79.53%(SimpleLogistic). Obviously, the proposed KCF algorithm achieves the

highest classification accuracy compared with other algorithms and thus performs much more

effectively in thyroid disease diagnosis.

To explain the main reason of performance difference of BNCs, we will clarify from the

viewpoint of Markov blanket. Compared with low-dependence BNC, high-dependence BNC

can demonstrate more conditional dependencies. Thus in the following discussion, we just

compare KCF with KDB, both of which are 2-dependence BNCs. KCF will generate a series of

submodels, each of which corresponds to different focus for analysis. For example, if Xi is the

key factor for diagnosis, then doctors can use the ith submodel for further analysis. From the

definition of Markov blanket, we can get the following conclusion that Xi is directly and mutu-

ally dependent on attributes {Pa(Xi), Ch(Xi)} while indirectly dependent on attributes PC(Xi).

The other attributes are useless for further consideration. The time cost for unnecessary analy-

sis and expenditure on unnecessary physical examination will be decreased greatly. With lim-

ited time and space complexity, more Markov blanket attributes means more possible

dependency relationships to be mined. The list and number of Markov blanket attributes of
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each attribute for KCF and KDB are shown in Fig 5 and Fig 6, respectively. From Fig 6, for 25

of all of the 29 attributes the number of corresponding Markov blanket attributes for KCF is

greater than that for KDB. On average each predictive attribute has 9.1 Markov blanket attri-

butes for KCF, whereas only 4.1 Markov blanket attributes for KDB.

Conditional mutual information I(Xi; Xj|C) can be used to quantitatively evaluate the condi-

tional dependence between Xi and Xj given C. For any given target attribute Xk, Xk is directly

dependent on Pa(Xk) and Ch(Xk) is directly dependent on Xk. Thus the conditional dependen-

cies are measured by I(Xi; Xk|C) and I(Xj; Xk|C) (Xi 2 Pa(Xk), Xj 2 Ch(Xk)), respectively. PC
(Xk) is conditionally dependent on Xk but directly dependent on Ch(Xk). The conditional

dependence is measured by IðX 0i ;X
0

j jCÞ ðX
0

i 2 PCðXkÞ;X
0

j 2 ChðXkÞÞ. All the conditional

dependencies among attributes in MB(Xk) can then be measured by MB_Info(Xk), which is

Table 1. Attributes available for analysis.

Attribute Type Explanation Corresponding symbol in

Figs 2–8

age Numeric Years X0

sex Binary Female/male X1

on thyroxine Binary Yes/no X2

query on thyroxine Binary Yes/no X3

on antithyroid

medication

Binary Yes/no X4

sick Binary Yes/no X5

pregnant Binary Yes/no X6

thyroid surgery Binary Yes/no X7

I131 treatment Binary Yes/no X8

query hypothyroid Binary Yes/no X9

query hyperthyroid Binary Yes/no X10

lithium Binary Yes/no X11

goitre Binary Yes/no X12

tumor Binary Yes/no X13

hypopituitary Binary Yes/no X14

psych Binary Yes/no X15

TSH measured Binary Yes/no X16

TSH Numeric Thyroid stimulating hormone X17

T3 measured Binary Yes/no X18

T3 Numeric Triiodothyronine X19

TT4 measured Binary Yes/no X20

TT4 Numeric Total serum thyroxine X21

T4U measured Binary Yes/no X22

T4U Numeric thyroxine X23

FTI measured Binary Yes/no X24

FTI Numeric Free Tyroxine Index X25

TBG measured Binary Yes/no X26

TBG Numeric Thyroid binding globulin X27

referral source Categorical WEST, STMW, SVHC, SVI, SVHD, other X28

Category Categorical 20 class labels are divided into 7 groups: Hyperthyroid conditions, Hypothyroid

conditions, Binding protein, General health, Replacement therapy, Antithyroid treatment,

Miscellaneous

C

https://doi.org/10.1371/journal.pone.0182070.t001
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Fig 5. The Markov blanket for KDB (k = 2) model is in yellow background and that for KCF (k = 2) model is in blue background.

https://doi.org/10.1371/journal.pone.0182070.g005
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defined by Eq (5),

MB InfoðXkÞ ¼
X

Xi2PaðXkÞ

IðXi;XkjCÞ þ
X

Xj2ChðXkÞ

IðXj;XkjCÞ

þ
X

X0i 2PCðXkÞ

X

X0j 2ChðXkÞ

IðX 0i ;X
0

j jCÞ
ð5Þ

We also compare the average weight of conditional dependencies implicated in MB(Xk),

which is defined by Eq (6),

Avg MB InfoðXkÞ ¼
MB InfoðXkÞ

number of attributes in MBðXkÞ
ð6Þ

The comparison results of MB_Info(Xk) between KCF and KDB are shown in Fig 7. For the

first 14 attributes, MB_Info(Xk)�0 {0� k� 13} for both KDB and KCF. Thus Xk {0� k� 13}

is directly dependent on class variable whereas independent of any other attributes. For 13 of

the other 15 attributes, the value of MB_Info(Xk) {14� k� 28} for KCF is greater than that for

KDB. The experimental results prove that KCF can fully demonstrate dependency relation-

ships and thus help to increase the classification accuracy.

Discussion

Thyroid cancer incidence has been rising since 1978, and its prevalence has increased dramati-

cally over the past decade; currently, thyroid cancer is the fifth most common cancer diag-

nosed among women. By contrast, the incidence of other malignancies, including lung,

colorectal, and breast cancer, decreases [28]. A statistical survey in 2014 showed that 10 million

Chinese patients have hyperthyroidism, 90 million have hypothyroidism, more than 100

Fig 6. The number of attributes contained in the Markov blanket of each attribute in the KDB (k = 2)

model and KCF (k = 2) model.

https://doi.org/10.1371/journal.pone.0182070.g006
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million are afflicted with thyroid nodules or thyroid cancer, and conservatively; more than 200

million are estimated to have thyroid disease. As the second major disease of the endocrine

system, the awareness rate and treatment rate of thyroid diseases are very low in China.

Thyroid nodule is a common clinical problem, and the prevalence of differentiated thyroid

cancer increases [29]. Early detection, diagnosis, and treatment are important in curbing the

development of thyroid diseases and reducing the mortality rate. Predicting the outcome of

diseases and dependency among clinical variables or attributes plays pivotal roles in medical

diagnosis and treatment.

For the detailed analysis, this paper calculates and compares the mutual information I(Xi;C)

first. The results are sorted starting from the highest. The attribute order is X17, X25, X21, X19,

X23, X2, X28, X27, X16, X20, X26, X18, X22, X24, X0, X1, X6, X10, X13, X7, X9, X15, X4, X8, X5, X3, X12,

X11, X14. From the perspective of medical diagnosis, the attribute with the most intimate rela-

tionship with the outcome can be considered as the key attribute and should be the focus of

the analysis. The attribute X17 represents the clinical index for thyroid stimulating hormone

(TSH) and should be analyzed initially. TSH can promote the growth of thyroid secreted by

adenohypophysis. In addition, TSH can completely improve the function of the thyroid, pro-

moting early release of thyroid hormones and synthesis of T4 and T3.

To clarify the role of the TSH attribute, this paper displays the structure of the KDB and a

KCF submodel in Fig 8(a) and 8(b), respectively. To make typical and fair comparison, we set

X17 as the common root node of both models. As shown in Fig 8(a), X17 is the common parent

of X25, X21, X28, X16, X18, X17, X3, and X12; X0 and X19 are the parent nodes of the children of

Fig 7. The sum of conditional mutual information between each attribute and the attributes contained in its Markov blanket is shown in (a).

The average of conditional mutual information between each attribute and the attributes contained in its Markov blanket is shown in (b).

https://doi.org/10.1371/journal.pone.0182070.g007
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Fig 8. KDB (k = 2) model and a submodel of the KCF (k = 2) on thyroid disease date set shown

respectively in (a) and (b). Attributes {X0, X1, � � �, X28, C} correspond to clinical variables age, sex, on

thyroxine, query on thyroxine, on antithyroid medication, sick, pregnant, thyroid surgery, I131 treatment, query

hypothyroid, query hyperthyroid, lithium, goitre, tumor, hypopituitary, psych, TSH measured, TSH, T3

measured, T3, TT4 measured, TT4, T4U measured, T4U, FTI measured, FTI, TBG measured, TBG, referral

source and Class respectively.

https://doi.org/10.1371/journal.pone.0182070.g008
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X17. X0 is the parent node of X12, and X19 is the common parent of X18 and X28. MB(X17) con-

tains 10 attributes. MB_Info(X17) is 0.902 and Avg_MB_Info(X17) = 0.09. In the corresponding

KCF model shown in Fig 8(b), X17 is the common parent of X23, X24, X25, X27, and X28, whereas

X17 has no parent nodes and no parent of children nodes. Thus, MB(X17) only contains 5 attri-

butes. MB_Info(X17) and Avg_MB_Info(X17) turn to be 0.597 and 0.12, respectively. Similarly,

the sum of MB_Info(Xi), i.e.,
P28

i¼0
MB InfoðXiÞ, is 14.458 for KCF, whereas it is only 6.964 for

KDB. The sum of Avg_MB_Info(Xi), i.e.,
P28

i¼0
Avg MB InfoðXiÞ, is 1.576 for KDB and 1.946

for KCF. Hence, the proposed KCF model describes significant relationships among

attributes.

MST contains the most significant dependency relationships, whereas the KDB model can

only contain portions of the MST. Additionally, the KCF algorithm can generate a series of

submodels rather than one model alone. Thus, for medical diagnosis, any clinical variable or

attribute related to thyroid diseases can be regarded as the original cause, and an in-depth

research can be conducted on the disease. Hence, the proposed KCF model can handle various

patient conditions and is more suitable for providing appropriate treatment compared with a

model with a rigid root node generated by other algorithms.

Sensitivity and specificity are statistical measures of the performance of a binary classifica-

tion test, also known in statistics as classification function. In the context of medical tests sensi-

tivity is the extent to which true positives are not missed/overlooked and specificity is the

extent to which positives really represent the condition of interest and not some other condi-

tion being mistaken for it. So we select 12 datasets with binary class labels from UCI for com-

parison of classification accuracy. Table 2 summarizes the characteristics of each dataset,

including the numbers of instances, attributes and classes. Averaged One-dependence Estima-

tors (AODE) [30], which utilizes a restricted class of one-dependence estimators and aggre-

gates the predictions of all qualified estimators within this class, is introduced to compare the

bagging performance of KCF.

Experimental results of average classification accuracy for different BNCs are shown in

Table 3. Friedman test [31], which is a non-parametric measure to compare the ranks of the

algorithms for each dataset separately. The ranks of algorithms for each dataset are calculated

separately (average ranks are assigned if tied values exist). The null-hypothesis is that all the

algorithms performs almost equivalently and there is no significant difference in terms of

Table 2. Datasets.

No. dataset Instance Attribute Class

1 Echocardiogram 131 6 2

2 Heart* 270 13 2

3 Heart Disease* 303 13 2

4 Chess 551 39 2

5 Breast-cancer-w* 699 9 2

6 Pima-ind-diabetes* 768 8 2

7 Tic-tac-toe 958 9 2

8 German 1000 20 2

9 Spambase 4601 57 2

10 Mushroom 8124 22 2

11 Adult 48842 14 2

12 Census-income 299285 41 2

the datasets denoted with symbol “*” will be used for comparing sensitivity and specificity.

https://doi.org/10.1371/journal.pone.0182070.t002
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ranks. The Friedman statistic can be computed as Eq (7) shows,

Fr ¼
12

Ntðt þ 1Þ

Xt

j¼1

R2

j � 3Nðt þ 1Þ ð7Þ

where Rj ¼
P

ir
j
i and rji is the rank of the j-th of t algorithms on the i-th of N datasets. Thus, for

any pre-determined level of significance α the null hypothesis will be rejected if Fr > w2
a
, which

is the upper-tail critical value having t − 1 degrees of freedom. The critical value of w2
a

for α =

0.02 is 11.668. With 5 algorithms and 12 datasets, the friedman statistic Fr = 18.55 and

P< 0.001. Hence the null-hypotheses is rejected again. The average ranks of different classifi-

ers are {NB(1.54), TAN(3.00), AODE(2.54), KDB(3.88), KCF(4.04)}. Thus KCF with the high-

est rank is the most effective BNC from the perspectives of classification accuracy.

When dealing with imbalanced class distribution, traditional classifiers are easily over-

whelmed by instances from majority classes while the instances from minority classes are usu-

ally ignored. An useful performance measure is the balanced accuracy (BAC) [32] which

avoids inflated performance estimates and defined as Eq (8) shows. It is defined as the arithme-

tic mean of sensitivity and specificity, which are calculated by knowing the m binary outputs

of the classifiers (indicating membership to given classes). Overall performance is calculated

by conducting a leave-one-out test for all training samples.

BAC ¼
sensitivity þ specificity

2
ð8Þ

The experimental results of sensitivity, specificity and BAC for BNCs are shown in Table 4. By

comparing via two-tailed binomial sign test with a 95% confidence level, Table 5 shows corre-

sponding win/draw/loss (W/D/L) records summarizing the relative BAC of the different

BNCs. The W/D/L record in cell [i, j] of each table contains the number of datasets in which

BNC on row i has lower, equal or higher outcome relative to the BNC on column j. We could

see from Table 5 that the bagging mechanism helps AODE increase BAC significantly often

relative to TAN and NB. KDB can achieve not only higher classification accuracy but also

higher BAC than TAN. KCF utilizes the bagging mechanism of AODE and can represent

Table 3. Experimental results of average classification accuracy for datasets with binary class labels.

Dataset NB TAN KCF KDB AODE

Adult 84.2% 86.2% 85.1% 86.2% 86.8%

Breast-cancer-w 95.8% 96.4% 97.4% 95.3% 94.6%

Census-income 76.3% 93.6% 89.9% 94.9% 94.9%

Chess 88.7% 90.7% 90.0% 90.0% 92.4%

Echocardiogram 66.4% 67.2% 67.9% 65.6% 66.4%

German 74.7% 72.7% 75.2% 71.1% 73.0%

Heart 80.2% 80.7% 80.8% 81.9% 80.4%

Heart Disease 79.9% 79.2% 78.8% 77.6% 79.6%

Mushrooms 98.0% 100.0% 100.0% 100.0% 100.0%

Pima-ind-diabetes 75.5% 76.2% 76.2% 75.5% 76.3%

Spambase 89.8% 93.3% 93.3% 93.6% 94.1%

Tic-tac-toe 69.3% 77.1% 73.5% 79.6% 80.6%

https://doi.org/10.1371/journal.pone.0182070.t003
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high-dependence relationships. This may be the main reason why KCF achieves higher BAC

more often than the other four BNCs.

Conclusion

Bayesian network can graphically describe the conditional dependencies implicit in training

data and Bayesian network classifiers have been previously demonstrated to perform efficiently

in medical diagnosis and treatment. One single data mining model cannot deal with all diffi-

cult and complicated cases. KCF, which uses the same learning strategy as that of KDB, simul-

taneously provides n submodels rather than one. This improvement helps KCF to describe

more significant conditional dependencies. The experimental study on UCI datasets shows

that KCF enjoys obvious advantage in classification over other BNCs.
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