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Predictive limitations of spatial 
interaction models: a non‑Gaussian 
analysis
B. Hilton, A. P. Sood & T. S. Evans*

We present a method to compare spatial interaction models against data based on well known 
statistical measures that are appropriate for such models and data. We illustrate our approach using 
a widely used example: commuting data, specifically from the US Census 2000. We find that the 
radiation model performs significantly worse than an appropriately chosen simple gravity model. 
Various conclusions are made regarding the development and use of spatial interaction models, 
including: that spatial interaction models fit badly to data in an absolute sense, that therefore the 
risk of over-fitting is small and adding additional fitted parameters improves the predictive power of 
models, and that appropriate choices of input data can improve model fit.

The ability to predict the number of vehicles, the amount of goods, or the spread of disease between two loca-
tions, using only limited data about each location, is important in a variety of academic disciplines. Problems 
of this nature can be studied using ‘spatial interaction models’. Given some measures of the importance of each 
site i, and the distance dij between two sites i and j, these models predict the flow from site i to site j, denoted Fij . 
The distance dij need not be a geographical distance; it could reflect the cost of travel or other socio-economic 
measures of separation. These models only predict flows between distinct sites, and so i  = j.

The nature of spatial interaction models and the associated data means that residual errors cannot always 
be assumed to be Gaussian, though this is often assumed in the literature. Our primary goal is to improve upon 
the statistical analysis commonly carried out in the literature and apply this improved analysis to determine the 
relative effectiveness of key examples from two popular families of models: gravity models and radiation models. 
Additionally, our methods are used to identify which features of these models give the greatest improvement 
in results.

We will start by reviewing the data used in our work. In “Models” section, we will look at the various spatial 
interaction models we consider. The statistical methods used are described in “Statistical methods” section with 
more details on alternatives used in the literature given in Appendix D of the Supplementary Information. Our 
results are then shown in “Results” section. We will conclude with a discussion of our work. A summary of the 
notation used in this paper is provided in Appendix A of the Supplementary Information.

Data
It is inherent to the nature of statistical analysis that models must be compared against data. In this paper we 
wish to focus on the features of spatial models and on the features of different analysis methods used to study 
spatial data and models. To do this we sought a dataset which acts as a standard to be used when comparing dif-
ferent models and different analysis techniques. It is essential then that such a standard is an open data set and 
it would be useful if the standard dataset was already well known and well studied to give authors many sources 
of independent information on the standard dataset. We have chosen to work with the US Census 2000: the 
county-to-county worker flow data from the US Census 20001. It is both an open source dataset and widely used.

In particular, the US Census 2000 datset was used in Simini et al.2 when developing the Radiation model. This 
ensures that any differences between our results and those of Simini et al.2 arise due to changes in the analysis 
rather than simply the choice of data. Using this data, the radiation model was compared favourably against the 
gravity model2.

As a further check and to verify that our conclusions are a result of the models and the US commuter flow 
system rather than merely a feature of the specific data set, we also used the parallel data set from the American 
Community Survey3 2009–2013. We obtained the populations of the counties at the census dates of 20004 and 
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20105. Though we often use the language of commuting to describe our approach, our methods are data set 
agnostic, and therefore our results have wider applicability.

In the US Census 2000, there are 3109 counties or their equivalents within the 48 contiguous United States. 
These form the sites used by our spatial models. The US Census 2000 asked, for each person listed: “at what loca-
tion did this person work last week?” Respondents were further instructed “if this person worked at more than 
one location, [to] print where he or she worked most last week.” This means that our figures for commuting will 
include data from those who occasionally work at other locations for a few days and these are likely to inflate the 
number of long distance trips recorded relative to data representing where a person worked for most of a year. 
Information on the distribution of flows is shown in Fig. 1 and Appendix E of the Supplementary Information.

From this data we define three values associated with each site i, which are generic to many spatial interaction 
contexts: the site population Pi , the flow into a site Ii , and the flow out Oi . While these three values are likely to be 
correlated at each site for our commuting data, there are large individual differences as sites may have developed 
specialised functions. For instance in the US Census 2002 data1, many people work in San Francisco county 
who commute in from other counties (265,291 people), but fewer live in San Francisco county and commute 
elsewhere (130,036 people).

We use this data on the population and the number of commuters arriving and leaving a site to determine 
model parameters associated with site importance. We use wi (site weight) as a generic site importance model 
parameter but, depending on the model, we can use up to three more specific site parameters to characterise a 
site: a repulsiveness parameter ti controlling the total flow out of a site, an attractiveness parameter ni that controls 
the flow into a site, and in some cases an ‘aspiration’ parameter mi that controls how far a commuter will travel.

The distances needed for the models were great-circle distances between the geographical centres of each pair 
of US counties. These data were obtained from the National Bureau of Economic Research6.

Models
Gravity models.  One of the most widely used spatial interaction models is a class of models known as ‘grav-
ity models’, which have been used in a variety of socio-economic contexts since the 19th Century but have seen 
much development since the 1950s (see elsewhere7,8 for general reviews).

The simplest gravity model is given by

where F̂ij is the model’s estimate of the flow Fij from i to j. The wi and wj parameters are the weights of sites i and 
j respectively, some measure of the importance of sites. The function f (dij) is some monotonically decreasing 
function of (generalised) distance: the ‘deterrence function’. This function is often chosen without theoretical 
motivation and typically includes additional parameters; these must be determined using previously known 
data. Such flexibility in the form of the deterrence function can be regarded as a key limitation of the gravity 
model2. However, in practice simple forms are often found to be effective. Common deterrence functions include 
exponentials9 ( f (x) = e−βx for some β > 0 ) and power laws10,11 ( f (x) = x−β for some β > 0 ). The deterrence 
functions invariably include a global parameter, β in our examples, that is the same for all pairs of sites. This might 
be set from data, for instance β−1 represents a typical length scale for the exponential form. However, such global 
model parameters are often determined by varying their values until the model has the best possible fit to the data.

In order to accurately test the extent of the difference in predictive power between models, they must share 
any feature that is not being explicitly compared. All the models considered here are ‘production constrained’ 
models in which the output of each site is fixed by a model parameter for that site. So rather than the simplest 
gravity model of Eq. (1), we will use a production constrained gravity model7,12,13 of the form

(1)F̂ij = wiwjf (dij) ,
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Figure 1.   The distribution of commuter flow sizes in the US Census 2000 data1.
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This obeys 
∑

j F̂ij = ti , the production constraint making the site model parameter ti equal to the total flow leav-
ing site i. The nj parameter is some measure of the ‘attractiveness’ of site j that controls the flow into each site, 
though this is not necessarily equal to the flow into site j. Even if ti = ni (as is often assumed), it is worth noting 
that this model already describes an asymmetric flow with F̂ij  = F̂ji in general. Thus, unlike the simple gravity 
model, this production constrained gravity model can produce flow asymmetries akin to those that are present 
in real data, as illustrated by the example of San Francisco county considered in “Data” section.

For our work with the gravity model Eq. (2), we will set the output site parameter equal to the number of 
commuters leaving a site, ti = Oi , while the site attractiveness parameter will be set equal to the number of 
commuters arriving ni = Ii . We will choose the single global model parameter β in Eq. (2) to be the value that 
gives the best fit to our data as explained below. For comparison, the gravity model against which the radiation 
model is compared in Simini et al.2 also used a power law deterrence function, but had no constraints on inputs 
or outputs, and used nine fitted parameters (see Appendix C of the Supplementary Information).

Other forms for the deterrence function in our gravity model were also investigated, but the power law in 
Eq. (2) proved the fairest comparison14,15.

The radiation model.  The radiation model was derived in the context of commuter flows, using the under-
lying assumption that a worker seeking employment will accept the most proximate job offer that meets their 
requirements. The most general form of the radiation model used by Simini et al.2 is

The model parameter ti controls the total flow leaving each site i and we have that 
∑

j F̂ij ≈ ti making this radia-
tion model a production constrained model. We will return to this approximation below. The ni model parameter 
is the number of opportunities drawing commuters into site i, the site attractiveness parameter in this model. 
The sij is given by the sum of all opportunities of sites closer to i than j, the intervening opportunities measure16

Here θ(x) is one for x > 0 and zero otherwise so the sum does not include ni or nj . The last model parameter 
mi is a measure of the aspiration of commuters leaving site i. That is, the larger the value of mi , the greater the 
aspirations of the commuters leaving site i, and the further they must travel to achieve their aspirations. Thus, 
mi does not alter the total flow leaving site i, but mi controls the distribution of the flow leaving site i.

We noted above that the flow leaving each site i is not exactly equal to the ti model parameter. This is easily 
corrected17 and by writing Eq. (3) using a partial fraction decomposition, we arrive at a normalised form of the 
radiation model

Here Nc =
∑

i ni is the total number of opportunities in the system. With this normalisation, the production con-
straint is perfectly enforced in the normalised radiation model, 

∑
j F̂ij = ti . If Nc ≫ ni ,mi then this normalised 

radiation model form is almost the same as Eq. (3) showing this correction (the factor in brackets) is often small.
One of the important features of the radiation model is that the form is fixed; there is no equivalent here to the 

choice of deterrence function seen in gravity models. This means there are no explicit global model parameters 
in the radiation model, such as the β in Eq. (2). The lack of such global model parameters (as opposed to those 
parameters linked to site properties) leads to the description of the radiation model as having a “parameter-free 
nature”2.

However, to use the radiation model, or indeed any spatial interaction models, we must first relate the site 
model parameters to values in our data. Mapping these site model parameters to data values can be done in 
many ways and this leads to a family of radiation models. The versions of the radiation model analysed here are 
summarised in Table 1, with more details given in Appendix B of the Supplementary Information. In particular, 
the original radiation model2 used the total population Pi of site i to set the three site model parameters with 
mi = ni = Pi and ti = αPi : model F in Table 1 (see also (B.8) in Supplementary Information). Note that α is a 
single fitted global model parameter, exemplifying how such parameters can be introduced to spatial interaction 
models through the mapping of data to model parameters. In such a case, even the radiation model is no longer 
parameter free in the sense defined above. In our examples only our radiation models A to E are parameter free, 
the remaining radiation models and our gravity model both have one fitted global model parameter.

The radiation model has been widely used in the literature as the basis for a variety of other models18–20. We 
will focus on the family of models described above that include only minor changes to the original radiation 
model in order to draw conclusions about the effects of each of these changes.

(2)F̂ij =
tinjd

−β
ij

∑
k nkd

−β

ik

. (i �= j)

(3)F̂ij = ti
minj

(mi + sij)(mi + nj + sij)
.

(4)sij =
∑

k|k �=i

nkθ(dij − dik) .

(5)F̂ij =

(
Nc

Nc −mi

)
ti

minj

(mi + sij)(mi + nj + sij)
.
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Statistical methods
There are two statistical challenges when dealing with spatial interaction models and data. Suitable statistical 
measures must be chosen to evaluate how well the models’ parameters (where present) give the best fit to data, 
and secondly some metric must be selected to establish which model is ‘best’. However, the choice of this metric 
is not obvious. For example, one may decide to prioritise accurately predicting which pairs of sites will have 
zero flow ( Fij = 0 ) over gaining accurate estimates of the sizes of large flows. We attempt to sidestep such issues 
by asking in an unbiased statistical sense how probable the models are. In order to achieve this, it is worth first 
considering some of the techniques found in the existing literature.

Common techniques for comparing models.  A wide range of methods are used to compare spatial 
data against data21 for a study of spatial data and models using many such measures. However, there are prob-
lems with the underlying statistical basis for many of the most popular approaches.

The Sørensen-Dice coefficient is often used to compare models against real data17,18,21–26 and is sometimes 
referred to as the ‘common part of commuters’ in this context. This is defined as DSC =

∑
ij min(F̂ij , Fij)/

∑
ij Fij 

for model values F̂ij and flow data Fij from site i to site j. One drawback of the Sørensen-Dice coefficient is that 
small percentage deviations in the predictions of large flows have a significant impact on the Sørensen-Dice coef-
ficient. However the main reason we do not use this measure is that it has no statistical basis; it used elsewhere 
because of its ‘intuitive explanatory power’ to quote22 Gargiulo et al. The Sørensen-Dice coefficient may still be 
useful but we are looking for a measure whose validity can be assessed apriori with more rigour.

Sometimes a comparison is made using statistics that assume an underlying Gaussian distribution: i.e. 
where it is assumed that the error distribution p(Fij|F̂ij) (the probability that the flow is found to be Fij given 
a predicted flow F̂ij ) is Gaussian for any i, j. A common example of a measure of this type is the coefficient of 
determination17,27,28 R2 = 1−

∑
ij(Fij − F̂ij)

2/
∑

ij(Fij − F̄)2 but other examples include mean squared errors29, 
and Pearson correlation coefficients30,31. However, real data sets give integer valued data, feature no negative flows, 
and usually have a high proportion of very small flows. A Gaussian model of fluctuations when applied to small 
pairs of sites with small flows will predict real and sometimes negative flows which are poor approximations (at 
best) for the actual fluctuations.

The Kolmogorov-Smirnov test is also seen in spatial modelling20 and it is defined in terms of 
K = sup |F̂ij − Fij| . One advantage is that this test does not make assumptions about the distribution of fluctua-
tions in Fij or F̂ij . However, the Kolmogorov-Smirnov test does require that the two input functions are independ-
ent. Unfortunately, in spatial modelling the parameters of the model are usually estimated by fitting the model 
to the data so now model values F̂ij and data values Fij are no longer independent. The Kolmogorov-Smirnov 
test is then invalid and it can produce dangerous results in such circumstances32.

Finally, none of these tests measure the effects of fitting parameters: varying a model parameter to fit data 
can improve the accuracy of the model for that data set, but at the expense of reducing the model’s predictive 
power on other data sets. Further discussion on these commonly used techniques, as well as an application of 
these techniques to the models in this paper, can be found in Appendix D of the Supplementary Information.

Poisson regression.  The limitations of these techniques motivate the application of alternative statistical 
methods33. Our starting point is the determination of the error distribution p(Fij|F̂ij) . Were there data on com-
muting for every day over a few years, we could look at the actual fluctuations in flows and examine the validity 
of this statistical model. However, without this data, and given that the chosen data sets (see “Data” section) 
contain discrete count data, the simplest assumption we can make is to assume that the flow Fij between any one 
pair of sites is Poisson distributed: that for any given pair of sites, we model the probability of finding flow Fij in 
the data as p(Fij|F̂ij) = exp(−F̂ij)(F̂ij)

Fij/(Fij!) , where we have taken the model estimate F̂ij to be the mean of 

Table 1.   A summary of the different versions of the radiation model. The tick in the ‘Normalised?’ column 
indicates that a model uses a normalisation that enforces the production constraint exactly Eq. (5), while a 
cross in that column indicates that the original form Eq. (3) is used for that model. In each case we specify 
which of the site data values, ( Pi population, Ii commuters arriving, Oi commuters leaving) is used for the 
model site parameters (aspirations mi , opportunities ni , out flow ti ). See Appendix A of the Supplementary 
Information for a summary of the notation. The single global model parameter α is found by optimising the fit 
of the model to the data. The model used by Simini et al.2 is equivalent to our model F. The full equations are 
given in Appendix B of the Supplementary Information as indicated in the final column.

Name mi ni ti Normalised? Eq.

A. Total population Pi Pi Pi × (B.3)

B. Departing commuters Oi Oi Oi × (B.4)

C. Departing commuters, normalised Oi Oi Oi � (B.5)

D. Arriving & Departing, Naïve split Oi Ii Oi × (B.6)

E. Arriving & Departing, Revised split Ii Ii Oi � (B.7)

F. Total population, fitted factor Pi Pi αPi × (B.8)

G. Departing commuters, fitted factor Oi Oi αOi × (B.9)

H. Arriving & Departing, Revised, Fit factor Ii Ii αOi � (B.10)
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our distribution. For small flows, the majority of values in our data, this is significantly different from a Gaussian 
distribution.

In fact, the models used here are built on Poisson processes making this assumption even more appropriate. 
We can interpret the flows given by gravity models as the flows which maximise a certain entropy function7,12,13. 
This in turn means that we can interpret a Gravity model at a microscopic level as placing discrete trips with 
a probability specified by the form of the entropy function. Even links with small flows are well described by 
a Poisson distribution in gravity models. Likewise the Radiation model2 is constructed from probabilities that 
commuters leaving one site will arrive at another, probabilities which are independent of the state of the system. 
Again the result quoted for flows in the Radiation model is just the mean of a predicted Poisson distribution.

Using these assumptions, we can now ask how probable it is that the data would be observed given the distri-
bution predicted by the model. This is known as ‘Poisson regression’. Using Poisson regression, we calculate the 
log-likelihood ln L for model values F̂ij , given some flow data Fij , where we retain the option to work only with 
flows above a minimum value Fmin , namely

It is important here that the predicted flow in these models is never zero so we we always get a finite result for 
ln L(Fmin) . Log-likelihood functions and maximum likelihood estimations provide a rigorous way to estimate 
fitted parameters, and to quantitatively compare how well models fit data. While adding more fitted parameters 
will always improve the fit of the model to the data, this risks over-fitting to the particular data set used, reduc-
ing the models’ general predictive power. Thus log-likelihood values cannot tell us whether or not these fitted 
parameters have truly improved the model, and we need a different measure of model effectiveness.

Ideally, in order to test model effectiveness, a form of cross-validation would be used, wherein the model 
is fit to some data and then tested against a second data set drawn from the same distribution34. However, the 
difficulty in obtaining multiple real data sets drawn from the same distribution means that some other model 
selection criterion must be used. One widely-used method is the Bayesian information criterion35,36 given by

where k is the number of fitted parameters, n is the number of data points, and L is the likelihood. The Bayesian 
information criterion can be used to compare models against a single common data set. It has a robust statisti-
cal basis37, introducing a penalty that increases with the number of fitted parameters. This penalty is sometimes 
considered too harsh38.

Finally, it would be useful to have a measure of goodness-of-fit. Log-likelihood (and therefore Bayesian 
information criterion) values can only be used to compare models. They allow us to say one model matches real 
data more closely than another, but do not conclude that they resemble real data well in any absolute sense. For 
this, we need some value against which likelihood values can be compared. One method is to use the saturated 
likelihood Ls : the value that the likelihood would take if the predictions from the model exactly matched the 
data. The ratio of the actual likelihood to this saturated value must be between zero and one and can be used to 
define the deviance D ≥ 0 through L/Ls = exp(−D/2) . In our case we have that

For all three of these statistics (log-likelihood, BIC and deviance), the lower the magnitude, the better the model 
fits the data.

Results
Figure 2 shows the log-likelihoods for the various versions of the radiation model in Table 1, and for the pro-
duction constrained gravity model of Eq. (2), calculated using the commuting data of the US census 20001. The 
exact values of the log-likelihoods and associated standard errors are shown in Table 2. Radiation model D (see 
Table 1) has been omitted from the figures in this section because of its extremely large log-likelihood—it is 
far worse than any other model. This is unsurprising since this model has assumed that mi and ni can be used 
analogously with ti and ni in the gravity model, without any theoretical justification for why this might be the 
case; an asymmetry is naïvely introduced into the model where the quantities governing site inflow and outflow 
are disentangled without a derivation matching this to the real world. This result thus acts as a simple check of 
our approach in dealing with radiation model parameters, rather than the intuitive approach of assuming that 
any parameters pertaining to the source site i are ‘repulsiveness’ measures and parameters pertaining to target 
site j are ‘attractiveness’ measures.

These log-likelihoods allow for an initial comparison between models. Radiation model A (‘Populations’) is 
the worst model other than radiation model D. The total flow out of each site in radiation model A is generally 
significantly larger than real flows, leading to its poor performance. Changing the site model parameters to be 
equal to the departing commuters data value Oi (radiation model B—‘Departing commuters’) improves the model 
significantly, as expected. Adding in a normalisation (radiation model C—‘Departing commuters, Normalised’) 
only results in a slight improvement. This is because of the large number of commuters in the USA; the largest 
possible value of the normalisation factor is 1.0168 and the mean value is 1.0003. Using a model in which the 

(6)
ln L(Fmin) =

∑

i, j
i �= j,

(
−F̂ij + Fij ln(F̂ij)− ln(Fij!)

)
θ(Fij − Fmin) .

(7)BIC(Fmin) = k ln(n)− 2 ln(L(Fmin)),

(8)
D(Fmin) = 2

∑

i, j
i �= j,

(
(F̂ij − Fij)+ Fij ln(Fij/F̂ij)

)
θ(Fij − Fmin) .
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site model parameters for input and output flow, ni and ti respectively, are related to the corresponding data val-
ues, Ii and Oi respectively, produces the best results. This is radiation model E—‘Arriving & Departing, Revised’.

Every model with an additional fitted factor works better than its counterpart: F is better than A, G is better 
than B, and H is better than E. Moreover, even model F (‘Populations, Additional Fitted Factor’), which one 
might expect would overestimate the flows due to its large site parameter values, arrives at a better log-likelihood 
than either model B (’Departing Commuters’) or C (‘Departing Commuters-Normalised’). However, model G 
(‘Departing Commuters, Additional Fitted Factor’) is more successful than model F (‘Populations, Additional 
Fitted Factor’), indicating that the matching of model site parameters to appropriate site data values still has merit.

The explanation for the particularly strong improvement resulting from fitting lies in the idea, corroborated 
below, that none of these models fit real data particularly well. Consequently, allowing a parameter to vary until 
the best possible value is found optimises the models’ effectiveness far more than ensuring model site values are 
well matched to data when the overall model only approximates reality very roughly. Intriguingly, our gravity 
model Eq. (2), whose form was chosen so as to be comparable to our radiation models, matches our real data 
more closely than any of our radiation models.

Log-likelihoods alone do not tell the full story. Figure 3 shows the BIC values for the models. Despite the BIC 
often being regarded as overly harsh with regards to additional parameters38, the trend shown is exactly the same 
as in Fig. 2. This is because the penalty applied by the BIC is k ln(n) , and ln(n) is only 8.04. This is much smaller 
than the log-likelihood values of order 107 . We can therefore conclude that there is very little risk of over-fitting, 
and that adding relevant additional fitted parameters significantly improves the models.

Table 2.   The log-likelihood values Eq. (6) for the various radiation models of Table 1 and the production 
constrained gravity model of Eq. (2). The standard error in the log-likelihood comes from the uncertainty in 
the value of any fitted parameters, calculated from the Hessian. Thus we have no estimate of uncertainty for 
models without a fitted parameter, as indicated by an “N/A” entry.

Model Log-likelihood ln L Error due to fit

A −8.4× 10
7 N/A

B −3.2× 10
7 N/A

C −3.2× 10
7 N/A

D −7.0× 10
8 N/A

E −2.6× 10
7 N/A

F −2.7× 10
7

1× 10
−4

G −2.6× 10
7

3× 10
−4

H −1.9× 10
7

3× 10
−4

Gravity model −1.4× 10
7

3× 10
−4

Populations Departing
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Departing
Commuters,
Normalised

Arriving &
Departing,
Revised

Populations,
Additional

Fitted Factor
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−0.8
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g
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d
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Figure 2.   The log-likelihood values Eq. (6) for radiation models A, B, C, E, F, G, H (from left to right) described 
in Table 1, alongside the production constrained gravity model of Eq. (2). Less negative values represent better 
models. These data are from the US Census 20001. The uncertainty in the value of any fitted parameter led to a 
negligible change in these results.
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Figure 4 shows the deviance values for each model. The blue bars are almost identical in appearance to Fig. 3 
because the magnitude of the actual log-likelihood ( ∼ 107 ) far exceeds that of the saturated log-likelihood (~ 
40,000). This comparison underscores how poorly these models fit real data in an absolute sense.

Given that most of the data is zero, we might wonder to what extent these trends are an artefact of how well 
the zero-flows are predicted rather than how well the models predict the exact sizes of the other flows. Fig. 4 
addresses this by considering the deviance values for the models compared against truncated data sets, in which 
only flows above a certain Fmin are considered. The figure shows that the trends are almost completely as above. 
The only exception is for flows greater than 10,000 predicted by model A (‘Populations’). This model uses the 
largest weights and therefore overestimates most flows, but predicts more reasonable values for the larger flows. 
This suggests larger flows are therefore systematically underestimated by the other models. However, only 0.022% 
of flows predicted by model A are greater than 10,000, so this trend does not significantly affect the validity of 
our overall conclusions.

Finally, we consider the second data set (the American Commuter Survey3 2009–2013). In Fig. 5 we show 
the deviance values for these data, though the trends are the same in all our measures. The results for this data 
reinforce all of our conclusions.
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Figure 3.   Bayesian information criterion values Eq. (7) for radiation models A, B, C, E, F, G, H (from left 
to right) described in Table 1, alongside the production constrained gravity model of Eq. (2). Lower values 
represent better models. These data are from the US Census 20001.
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Table 1, alongside the production constrained gravity model of Eq. (2), with data sets that are truncated using 
the minimum values shown in the legend. Lower values represent better models. These data are from the US 
Census 20001. For each model the top of a coloured bar represents the deviance value for that model when the 
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Conclusions and discussion
For our data on modern US commuter flows, the most accurate flow predictions came from the production-
constrained gravity model. Looking at the truly “parameter free” radiation models, that is models with no fitted 
global parameters, radiation model E (‘Arriving & Departing, Revised’) was most successful. The set of parameter 
free radiation models A–E showed that matching each model parameter to an appropriate data value improves 
the model performance as we should expect. This radiation model E benefits from a number of improvements 
over the original radiation model: choosing an appropriate input data set (e.g. the number of individuals who 
leave each site rather than population); correctly adjusting the model to include measures of both attractiveness 
and repulsiveness for each site; and introducing the correct normalisation.

Another conclusion was that adding an additional global parameter, and setting that parameter by finding 
the best fit, improves the performance of any model. The penalty of having an extra parameter is negligible for 
our data sets while there is vast room for improvement in what are poor fits in statistical terms. This is why the 
radiation model that best fits both data sets is radiation model H. This is the same as radiation model E, but with 
a single additional fitted parameter.

Despite these improvements, and in direct contrast with the results elsewhere2, our statistical measures show 
that for these US commuting data sets the radiation model is vastly inferior to an appropriately chosen gravity 
model for most realistic purposes, i.e. where there is data that can be used to fit parameters—what appears to be 
a small visual difference between models in our plots represents a large numerical difference.

The relative success of our chosen gravity model highlights another result. The use of a gravity model on the 
same data2 made less successful predictions than the radiation model in spite of its having nine fitted param-
eters to the latter’s zero. This underscores the importance of constraints, and the requirement that only models 
with corresponding constraints be compared against each other when the impact of these constraints is not the 
topic of investigation. This is why in this work all our models are production constrained in order to make our 
comparisons fair.

By examining the deviance values, we further established that none of these models fit our data well in an 
absolute sense. This is unsurprising: the large number of factors affecting commuter flows—geographical and 
socio-economic—limit the extent to which a simple model with very few parameters could make accurate 
predictions.

Our work leads us to make recommendations for spatial interaction modelling in general. First, we suggest 
that non-Gaussian regression (in particular Poisson regression) as applied to log-likelihood, Bayesian informa-
tion criterion and deviance, are good statistical methods to use when analysing spatial interaction models. These 
have a firm theoretical grounding and provide an unbiased statistical approach. Second, we should ensure any 
feature that is not being explicitly tested is controlled for. Here, this means all our models enforce the production 
constraint. In fact, it would be trivial to add the input constraint into all these models, as is standard for grav-
ity models7. Such an improvement requires no additional parameters. Third, the small penalty in the Bayesian 
information criterion arising from additional parameters, as well as the lower deviance values of models with 
fitted parameters, attest to the fact that if data exist that can be used for fitting, then a model with many physi-
cally relevant parameters can be improved by fitting to this data. Having such fitted model parameters is an 
advantage, not a disadvantage. Fourth, models should make use of as much available information as possible. We 
found that if we used the actual commuter flows in and out of sites in a way that matched that narrative behind 
a model, then results were better than trying to use the population as some proxy for the actual flows. Lastly, 
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Figure 5.   Deviance values Eq. (8) for radiation models A, B, C, E, F, G, H (from left to right) described in 
Table 1, alongside the production constrained gravity model of Eq. (2), with data sets that are truncated using 
the minimum values shown in the legend. Lower values represent better models. These data are from the 
American Commuter Survey 2009–20133. For each model the top of a coloured bar represents the deviance 
value for that model when the data is limited to flows above the value indicated in the legend.
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these simple spatial interaction models should be used only to provide an outline of real-world processes, with 
fitted parameter values giving general insights into spatially-constrained processes. These models are only ever 
crude approximations of reality.

Data availability
All the data used in this work is publicly available as cited within the text1,3–6.
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