
Efficient Sample Tracking With
OpenLabFramework
Markus List1,2,3, Steffen Schmidt1,2, Jakub Trojnar1,2,5, Jochen Thomas6, Mads Thomassen1,3,
Torben A. Kruse1,3, Qihua Tan3,4, Jan Baumbach7 & Jan Mollenhauer1,2

1Lundbeckfonden Center of Excellence in Nanomedicine NanoCAN, University of Southern Denmark, Odense, DK, 2Institute of
Molecular Medicin (IMM), University of Southern Denmark, Odense, DK, 3Clinical Institute (CI), University of Southern Denmark,
Odense, DK, 4Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, DK,
5Department of Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Odense, DK, 6io-consultants GmbH & Co.
KG, Heidelberg, DE, 7Department of Mathematics and Computer Science (IMADA), University of Southern Denmark, Odense, DK.

The advance of new technologies in biomedical research has led to a dramatic growth in experimental
throughput. Projects therefore steadily grow in size and involve a larger number of researchers.
Spreadsheets traditionally used are thus no longer suitable for keeping track of the vast amounts of samples
created and need to be replaced with state-of-the-art laboratory information management systems. Such
systems have been developed in large numbers, but they are often limited to specific research domains and
types of data. One domain so far neglected is the management of libraries of vector clones and genetically
engineered cell lines. OpenLabFramework is a newly developed web-application for sample tracking,
particularly laid out to fill this gap, but with an open architecture allowing it to be extended for other
biological materials and functional data. Its sample tracking mechanism is fully customizable and aids
productivity further through support for mobile devices and barcoded labels.

W
ith the development of high-throughput technologies, laboratory work has seen a paradigm shift from
small projects involving single or few researchers towards large-scale projects involving several
laboratories and often hundreds or thousands of samples. Sample management is therefore a growing

issue, especially since most laboratories still attempt to keep track of their samples using spreadsheet tools. A high
turn-over of academic staff coupled with maintenance of individual files that are often locked or outdated, as well
as inconsistent nomenclature and labeling, can lead to tedious repetition of previously existing work. The
significant amount of time that is often spent on locating samples would be better used for performing experi-
ments. Moreover, expensive storage space is wasted, since samples are often not labeled properly and cannot be
identified. Even if a label is given, it usually does not include a standardized minimal amount of information that
allows unambiguous identification of the materials or the experiments they were derived from. Numerous
commercial and open-source solutions have been developed in an attempt to overcome these problems.

Although solutions are offered by commercial companies like LabvantageH, most academic laboratories find it
difficult to afford the license costs, which usually rise with additional users and technical features. The focus of this
paper is thus open-source systems.

As Table 1 shows, open-source laboratory information management systems (LIMS) are often customized
towards specific types of biomaterials or research data, as for instance genotyping1–3, protein production4,5,
protein-protein-interaction6, 2D gel electrophoresis7, or protein crystallography8 data. Some generic LIMS target
specific laboratory tasks, such as sample management3,9,10, laboratory work-flows and protocols2,11–13, documenta-
tion, management of lab stocks, or clinical studies14. Further solutions exist for molecular genetics and the
creation of vector libraries15. There is, however, no dedicated LIMS for the management of large vector construct
and cell line libraries. At our Lundbeck Foundation Center of Excellence in Nanomedicine (NanoCAN) at the
University of Southern Denmark in Odense such large-scale libraries need to be handled efficiently (see16 for a
short overview about our work). This motivated us to develop a novel open-source LIMS platform:
OpenLabFramework (OLF).

Results
Any LIMS that involves sample management on a large scale should fulfill a number of requirements listed in the
following as R1-15. Existing open-source LIMS fulfill these requirements to varying degrees (Table 2).

OPEN

SUBJECT AREAS:
GENETIC DATABASES

SOFTWARE

FUNCTIONAL GENOMICS

Received
14 January 2014

Accepted
18 February 2014

Published
4 March 2014

Correspondence and
requests for materials

should be addressed to
M.L. (mlist@health.sdu.

dk)

SCIENTIFIC REPORTS | 4 : 4278 | DOI: 10.1038/srep04278 1

Implementation. A LIMS for an academic environment needs to be
open-source (R1), in order to save costs and to allow for adaptation to
the specific requirements of a given scientific field and laboratory.
Since adaptation can be a difficult and time-consuming task, a LIMS
that is modular and extensible by design (R2) would be most
appropriate. Although difficult to assess for existing projects, a
LIMS should be reliable and its implementation simple. Existing
frameworks and software packages that are maintained and tested
by a large community are often more reliable than individual
solutions and should thus be incorporated.

Data handling. Dealing with a large number of samples in a library or
biobank requires efficient mechanisms for sample management (R3)
and physical sample tracking over several hierarchical levels (R4).

Since related information and experimental results are usually stored
in additional documents, a management system, where files can be
linked to an arbitrary number of samples (R5), would be most useful.
Another requirement is that raw data previously entered into the
system can be exported to various file formats. This requirement is
usually met through an integrated reporting mechanism (R6).

Flexibility in deployment. Academic laboratories are often part of an
existing IT infrastructure, but support is in many cases limited, e.g. to
a single database management system (DBMS), such as MySQL.
LIMS deployment should thus be as flexible as possible not be bound
to a specific operating system or DBMS. While the first requirement
is fulfilled by all LIMS considered in this paper, multiple database
support remains an issue (R7). Furthermore, if a suitable server is not
available, deployment locally (R8) or to a cloud service (R9) is
advantageous.

User acceptance and excess value. Triplet et al. have identified
approachability as a major hurdle in the acceptance of a LIMS9.
Modern web-technologies like Ajax allow for a more responsive
and intuitive user interface, which in turn improves the user experi-
ence and reduces the learning period. Another crucial requirement
for a successful adaptation of a LIMS is good documentation (R10).
User acceptance can also be improved by offering an excess value
over traditional spreadsheet tools, for instance by incorporating the
use of barcodes (R11), label printing (R12), and mobile devices, such
as smartphones (R13). A further advantage would be the incorpora-
tion of data analysis tools directly within the LIMS (R14).

Security. LIMS typically address security concerns by restricting
access through secure user logins and different user roles. Security
would also be enhanced by audit logging features (R15), where a
version number is added to each database entry. Any change will
then result in a copy of the entry with a new version number, so that
accidentally overwritten entries can be restored.

OpenLabFramework. We present OpenLabFramework (OLF), a
laboratory information management system (LIMS) primarily
targeted at advanced sample and storage management in mid-sized
laboratories with less than 50 users. It facilitates a seamless
integration of virtual and real world storage handling by making
use of mobile devices, which are carried by lab personal anyways,
in combination with cheap and fully integrated barcode labeling

Table 1 | Some examples of existing browser-based LIMS solutions. Corresponding project URLs can be found in Supplemental Table 1

Project Name Ref. Main purpose Built with

MMP-LIMS 1 Genome mapping in maize Java
AGL-LIMS 2 Genotyping work-flow Java
SMS 3 Gene mutation screening & biobanking Java
PiMS 4 Sample & experiment tracking for protein production Java
ProteinTracker 5 Protein production & purification Java
PARPs Database 6 Protein-protein interaction data and data-mining Perl/Java
LIPAGE 7 2D gel electrophoresis based proteomics PHP
LISA 8 Protein crystallography PHP
EnzymeTracker 9 Data analysis, sample management, spreadsheet functionality PHP
FreeLIMS Sample management, reports Java
YourLabData Sample tracking and lab notebook -
Open-LIMS Experimental work-flow, sample & document management PHP
OpenFreezer 10 Sample management & tracking PHP/Python
iLAP 11 Data management, analysis, experimental protocol design Java
SIGLa 12 Customized experimental work-flows Java
BIKA Whole lab work-flow for clinical studies Python
MicroGen 13 Mircoarray information and work-flow MS-Access
LabLog Project Documentation Java
LabStoRe Chemical lab stocks PHP
SIMBioMS 14 Linking experimental, patient, and high-throughput data Java
MolabIS 15 Molecular genetics data Perl

Table 2 | Feature Comparison of requirements across browser-
based LIMS solutions for sample management using the following
abbreviations: EnzymeTracker (ET), Free-LIMS (FL), SLIMS (SL),
YourLabData (YL), Open-LIMS (OL), ProteinTracker (PT), AGL-
LIMS (AL), SMS (SM), MolabIS (MI), SIMBioMS (SI), OpenFreezer
(OF), and PiMS (PS). o depicts limited fulfilment. Sample Tracking
refers to the physical location of samples. Local Deployment refers
to a local installation not requiring a database installation. Cloud
Deployment refers to documented cases

Requirements ET FL SL YL OL PT AL SM MI SI OF PS OLF

Open-source R1 3 3 3 7 3 3 3 3 3 3 3 3 3

Modularity R2 7 7 7 7 3 7 3 7 3 3 3 7 3

Sample
Management

R3 3 3 3 3 3 3 3 3 3 3 3 3 3

Sample Tracking R4 7 7 o 3 7 7 7 3 3 7 3 3 3

File Management R5 7 7 7 3 3 7 3 7 7 3 7 7 3

Reports R6 3 3 3 7 7 3 3 3 3 7 7 7 3

Multiple DBMS R7 7 7 7 7 7 7 3 7 7 3 7 3 3

Local Deployment R8 7 7 7 7 7 7 7 7 3 3 7 7 3

Cloud Deployment R9 7 7 7 7 7 7 7 7 7 7 7 7 3

Documentation R10 3 7 3 o 3 3 7 3 3 3 3 3 3

Barcodes R11 3 7 7 7 7 7 7 3 7 7 7 7 3

Labels R12 7 7 7 7 7 7 7 3 7 7 7 7 3

Mobile Devices R13 7 7 7 7 7 7 7 7 7 7 7 7 3

Data Analysis R14 3 7 7 7 o 7 7 7 7 7 7 7 7

Audit-Logging R15 3 7 3 7 7 7 7 o 7 7 7 7 7

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4278 | DOI: 10.1038/srep04278 2

technology. In the following we shed a light on how OLF fulfills the
LIMS requirements that we have identified before (R1–R15). A brief
comparison with existing open-source LIMS is given in Table 2.

Modularity and extendibility. OLF is published as open-source (R1)
and, due to its modular structure, it can be adapted to different types
of laboratory data and sample types. New functionality can also be
added and integrated (R2). Various features are covered by the fol-
lowing modules.

. GeneTracker:

. GeneTracker is intended to fulfill requirements specific to the
hierarchical organization of genes, gene variants, vector con-
structs, and genetically engineered cell lines, thus helping to keep
track of extensive sample libraries in the field of targeted geno-
mics. The organization of these samples is further supported
through OLF’s built-in user and project management features.

. Sample Storage:

. The Storage module adds options for tracking and organizing
samples in a customizable storage infrastructure (R3–4). This
infrastructure is hierarchical, starting from buildings and rooms
and ending in individual freezers and storage boxes. Interactive
grids help the user to assess the content of a storage box at a
glance. Together with GeneTracker, samples can be added or
removed from storage in an intuitive manner, while providing
an overview of remaining copies and related samples.

. File Uploads:

. The FileAttachments module allows users to up- and download
arbitrary files, allowing for a better organization of their results
and documents. Files are stored with a combination of timestamp
and original file name to avoid conflicts arising from identical file
names. Files are uploaded to a configurable folder on the server
and not to the database itself. They can be linked to an arbitrary
number of samples, so that other users can quickly obtain an
overview of files relevant to a sample (R5).

. Barcode and Label Support:

. The functionality of the Storage module is complemented by the
Barcode module, with which a user can create and print barcode
labels (R11–12). These can later be used to locate a sample in OLF
by scanning the barcode using a USB-connected scanner or a
mobile device (R13). The Barcode module currently requires a
connected DYMOH label printer but can be extended in the future
to support other devices.

Reporting. Apache POI is utilized to export lists of samples to various
file formats, including Excel (XLSX), Open Document Spreadsheets
(ODS), PDF, and comma separated values (CSV). This feature is
currently available for lists of genes, vector constructs, and cell lines.
The storage hierarchy and individual boxes can also be exported to
Excel spreadsheets (R6).

Flexibility. Grails applications are not bound to a specific database
management system and will even work with non-SQL solutions,
such as MongoDB (R7). OLF is compiled either as WAR file, which
is suitable for deployment on a large number of Java-based web
containers, or as locally executable JAR file, which comes packed
with its own web container and file-based SQL solution (R8). It
should be noted that OLF has only been tested thoroughly on
Tomcat versions 6 and 7.

Cloud deployment. Grails also offers a plug-in for cloud deployment
using the VMware Cloud-Foundry service (http://www.cloudfoundry.
com/) (R9). Apart from CloudFoundry credentials and memory
settings, no further configuration is needed. Upon deployment
CloudFoundry automatically configures a suitable database to work
with the application.

Mobile support. OLF utilizes the Spring Mobile Grails plug-in to
distinguish mobile clients from desktop clients. If a mobile device
is detected, a different view is shown that is tailored for the small-
sized screen and touch-screen interaction (R13).

User approachability and excess value. OLF offers a modern web-
interface that is clearly organized and intuitive (Figure 1), and allows
for responsive user interaction. The Compass-powered search engine
allows users to locate required information quickly and conveniently.
Users can also develop effective laboratory work-flows using the
sample tracking feature together with barcode labels and mobile
devices (Figure 2). OLF validates all user entered data for validity
and will, where applicable, provide a list of viable options in form of
select boxes. In this way, OLF effectively avoids ambiguity and
ensures consistency of sample data. Finally, OLF comes with online
documentation that introduces the system to users, administrators,
and software developers (R10).

Example for practical implementation and user acceptance - olf at the
nanocan center. Within the past three years since the introduction of
the first version of OLF in 2010 at the Lundbeckfonden Center of
Excellence NanoCAN, around 780 genes, 1,200 vector constructs,
and 300 cell lines have been added to the system, along with 1,500
associated sample locations. Data are stored on a MicrosoftH SQL
Server 2008 installation with a database size of approximately 7 MB.
The more than 20 scientists engaged in functional genomics projects
were introduced to the system through a one hour feature presenta-
tion, which enabled them to use OLF productively. The system was
reported to be intuitive, albeit only one user had previous experience
in using a LIMS system. Missing functionality considered useful for
increased productivity and user convenience, such as handling of
barcoded labels, were added to the system subsequently.

Recommended system configuration. OLF relies on a database back-
end for storing sample related data. However, only primitive data
types, such as numbers or text fields, are persisted to the database
itself, while all documents and files are stored in a folder and merely
linked in the database. In this way, we expect a database size of less
than 10–20 MB for most use cases. For smaller laboratories with less
than 20 members, the file-based SQL database that is part of OLF’s
standalone version is appropriate. Since no significant processing of
data is required, OLF is expected to be responsive even on systems
with a single CPU core. For larger laboratories, however, we recom-
mend using a system with multiple CPU cores and a dedicated data-
base management system, such as MySQL for efficiently dealing with
concurrent access in a responsive manner. Due to its dynamic nature,
OLF has a large memory footprint and we strongly recommend
providing a minimum of 768 MB of RAM on Linux and 1024 MB
on Windows.

Discussion
Numerous commercial and open-source laboratory information
management systems (LIMS) exist today. However, since commer-
cial licenses are expensive and lack the possibility to be adapted to
specific needs without additional costs, academic laboratories usually
focus on finding an open-source solution to their sample manage-
ment issues. Moreover, none of the existing solutions seems optimal
for all given tasks (Table 2). Naturally, most LIMS are dedicated to a
specific field of research and are thus not generally suited for other
fields. Some solutions, on the other hand, focus on certain general
aspects of laboratory work, such as sample tracking, protocols, or
work-flows.

OpenLabFramework (OLF) was developed to address the need for
an open-source LIMS solution for covering vector constructs and cell
line library sample tracking. Acknowledging that many LIMS remain
limited to their research domain, we created OLF in a strictly modu-
lar and extensible fashion, with dedicated modules for sample track-

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4278 | DOI: 10.1038/srep04278 3

http://www.cloudfoundry.com
http://www.cloudfoundry.com

Figure 1 | The web-interface of OLF is divided into four main parts. (A) The header contains a menu and a search field for navigation. (B) A hierarchical

project tree found in the left column can also be used for navigation. (C) The main panel is used to render the actual page. It can be further divided into a

central panel (1), where properties can be altered, an object history box (2), an operations box with additional links (3), and at the bottom a set of tabs (4)

where related information is available and can be interacted with. (D) Additional interaction possibilities are provided through add-ins that can be

customized by each user in the right column. (Screenshot by ML. OLF logo by JT).

Figure 2 | Initially, the administrators set up master data, such as vectors, cell-lines, medium compositions, as well as the storage infrastructure (*).
Users then create projects and link genes to them. Vector clones are created from the genes, which in turn can be used to create cell-line recombinants.

Samples are labeled using a DYMOH label printer and added to physical, as well as virtual storage. At a later point, the barcode can be used for efficient

retrieval and updating of sample information. Moreover, new gene variants and passages can be added with respective new labels and storage

locations conveniently. Files and documents can be added to samples and genes, in order to make experimental results and additional information such as

related publications, available to other users. (MT, TK, QT, JB and JM).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4278 | DOI: 10.1038/srep04278 4

ing, barcoded label printing, and file management. We expect that
OLF can be adapted to other research fields and biomaterials with
minimal developmental effort by implementing a content module
similar to GeneTracker, which is then complemented by plugging in
additional features as needed.

We built OLF using Grails and its extensive plug-in eco-system.
This allows OLF to satisfy basic software development requirements,
such as flexibility, reliability and simplicity. The use of a solid frame-

work allows developers to focus on user-specific requirements, as for
instance the support for mobile devices, and to keep the application
up-to-date, since it will improve together with the underlying frame-
work. The use of Grails, which can be considered the most dynamic
and flexible web-application framework available in Java, together
with its plug-ins, poses a significant simplification when adding new
web-application features. This advantage separates OLF from com-
parable LIMS, which also embrace the concept of modularity or the
use of web-application frameworks.

The introduction of OLF allows controlling sample logistics effec-
tively, which is a particular challenge upon movement, turn-over of
lab staff, and improper labeling of samples. OLF may further increase
productivity by including modern technologies so far disregarded by
most other open-source LIMS, such as printing and reading barcode
labels. The high degree of automation and standardization that can
be achieved by this may substantially reduce user-caused errors in
sample assignment. A web-layer for mobile devices provides an addi-
tional advantage. In this way, samples can now be removed from
physical and virtual storage at the same time, thus limiting the risk of
forgetting this step after the work with the sample is completed. As
illustrated in Figure 2, the implementation of OLF in a laboratory
environment can lead to a significantly more productive work-flow.

Finally, unlike most LIMS, OLF is not bound to a specific database
or web-container. OLF can be coupled with a large number of data-
base management systems, including non-SQL solutions like
MongoDB. If a suitable server is not available, OLF can be installed
locally or even be deployed to the cloud with little effort, as demon-
strated in our demo application. This flexibility will reduce technical
hurdles in the introduction of OLF to a new laboratory.

OLF offers efficient and user-friendly management of sample
information and location in the field of high-throughput biology
and functional genomics. Being extensible, it can be adapted to sat-
isfy additional requirements with little developmental effort. One

Figure 3 | OpenLabFramework is built in a strictly modular fashion. A

back-end module provides the basic functionality, including project and

user management, as well as base classes for other modules. Additional

modules extend the base classes and integrate with existing ones. Finally,

the front-end module creates views for all defined content and allows for

interaction through a responsive web-interface. (MT, TK, QT, JB and JM).

Figure 4 | The back-end provides two classes MasterDataObject (MDO) and DataObject (DO) that are extended by the different modules. MDOs can

only be created by administrators, whereas DOs can be created by any user. Existing DOs and MDOs can be combined freely by module

developers in order to build complex hierarchies. (MT, TK, QT, JB and JM).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4278 | DOI: 10.1038/srep04278 5

requirement currently neglected is the extensive integration of addi-
tional web tools, which would make OLF more attractive to end-
users. Although result data files can be uploaded and linked to
samples, we envision that direct interfacing with laboratory equip-
ment would make result data management significantly more con-
venient. The implementation of RESTful web services could expose
OLF data sets and functionality to other tools and information sys-
tems. Along with this, the reporting capabilities could be improved,
allowing for customized reports, where information from several
instances is pooled. This would also help in establishing data analysis
directly within OLF or through integration of additional tools (R15).
Another important aspect worth considering is that OLF might in
some instances require a more fine-grained access to the data. This
functionality could be added through additional user roles or access
control lists. Finally, the creation of a dedicated app for mobile plat-
forms, such as Android or iOS, would improve the mobile user
experience.

Conclusions
In order to retain an overview over large sample libraries typically
found in nowadays laboratories, an efficient system for management
and tracking of samples is required. OpenLabFramework (OLF) has
been developed with focus on vector construct and cell line libraries.
Thanks to its modularity, however, it can be adapted to new scen-
arios. OLF can be deployed using different database management
systems either locally, to a server, or to the cloud. The incorporation
of modern technologies, such as mobile devices and printing of bar-
code labels may increase productivity even further. These properties
together may be considered characteristic for a next-generation
LIMS and should provide the potential for widespread adaptation.

OLF embraces open-source in the hope of attracting not only
laboratories in need of a LIMS, but also a community of software
developers willing to adapt OLF to new scenarios. We intend to
contribute in the future by developing further modules, e.g. for seam-
less evaluation of experimental data by integration of third party
tools. Consequent utilization of community-proven open-source lib-
raries make OLF’s backend already highly reliable. With the support
of its own community, OLF as a whole is expected to reach the same
high quality standard in the future.

Methods
Grails web-application framework. We considered the JavaTM based framework
Grails to be the most promising candidate for a building a web-application. Grails is a
VMWareH/SpringSourceH product and builds on the company’s experience in
industry-standard frameworks such as Hibernate or Spring, which also form the core
of Grails. In Grails, plug-ins deliver high-quality solutions for non-trivial web
application tasks, e.g. database search (Compass and Apache Lucene), spreadsheet
im- and export (Apache POI) and a user/security management (SpringSecurity).
Grails embraces the paradigms convention over configuration and separation of
concerns to keep the code concise and clean. Furthermore, Grails hides the
complexity of data persistence with an object relational modeling technique, which
encapsulates all database interactions and models them through Java domain classes.
These characteristics allow faster development and integration of new features.

OpenLabFramework. As illustrated in Figure 3, OLF has a modular structure, in
which a back-end plug-in provides the necessary base classes, as well as user, project
and security management. Content plug-ins can then add arbitrary classes and view
templates, and integrate with other plug-ins. All plug-ins are finally merged in the
front-end application, which utilizes the scaffolding mechanism of Grails to
dynamically create Ajax-driven views for user interaction.

The back-end of OLF introduces two base classes called MasterDataObject and
DataObject (Figure 4). MasterDataObjects can be extended by classes representing
master data that are maintained by system administrators, e.g. wildtype cell lines or
vector systems in the GeneTracker module, or freezers and storage locations in the
Storage module. More dynamic content is expressed through DataObject classes,
which can be created and modified by regular users, e.g. genes or genetically engi-
neered cell lines in the GeneTracker module, or StorageElements, which contain
location data for other DataObject instances, in the StorageModule. This hierarchy
makes OLF highly generic, but also allows fine-grained interactions between more
specialized classes.

OLF strictly follows established patterns found in software architecture. Code is
separated into different functional layers according to the model-view-controller
pattern. In addition, business logic related code is bundled in service classes and tag
libraries to avoid code duplication. Furthermore, OLF introduces the concept of
content modules, which can be attached to existing pages. Content modules can either
contribute new links to OLF’s menu, render additional add-ins or tabs, or provide
additional links called operations (Figure 1). By providing a clear structure and
suitable interfaces, other developers can thus easily contribute to OLF.

1. Sanchez-Villeda, H. et al. Development of an integrated laboratory information
management system for the maize mapping project. Bioinformatics 19,
2022–2030 (2003).

2. Jayashree, B. et al. Laboratory information management software for genotyping
workflows: applications in high throughput crop genotyping. BMC
Bioinformatics 7, 383 (2006).

3. Voegele, C. et al. A sample storage management system for biobanks.
Bioinformatics 26, 2798–800 (2010).

4. Morris, C. et al. The protein information management system (PiMS): a generic
tool for any structural biology research laboratory. Acta Cryst. D67, 249–60
(2011).

5. Ponko, S. C. & Bienvenue, D. ProteinTracker: an application for managing protein
production and purification. BMC Res Notes 5, 224 (2012).

6. Droit, A. et al. PARPs database: a LIMS systems for protein-protein interaction
data mining or laboratory information management system. BMC Bioinformatics
8, 483 (2007).

7. Morisawa, H., Hirota, M. & Toda, T. Development of an open source laboratory
information management system for 2-D gel electrophoresis-based proteomics
workflow. BMC Bioinformatics 7, 430 (2006).

8. Haebel, P. W., Arcus, V. L., Baker, E. N. & Metcalf, P. LISA: an intranet-based
flexible database for protein crystallography project management. Acta Cryst.
D57, 1341–1343 (2001).

9. Triplet, T. & Butler, G. The EnzymeTracker: an open-source laboratory
information management system for sample tracking. BMC Bioinformatics 13, 15
(2012).

10. Olhovsky, M. et al. OpenFreezer: a reagent information management software
system. Nat. Methods 8, 612–613 (2011).

11. Stocker, G. et al. iLAP: a workflow-driven software for experimental protocol
development, data acquisition and analysis. BMC Bioinformatics 10, 390 (2009).

12. Melo, A. et al. SIGLa: an adaptable LIMS for multiple laboratories. BMC Genomics
11, 8 (2010).

13. Burgarella, S., Cattaneo, D., Pinciroli, F. & Masseroli, M. MicroGen: a MIAME
compliant web system for microarray experiment information and workflow
management. BMC Bioinformatics 6, 6 (2005).

14. Krestyaninova, M. et al. A system for information management in biomedical
studies–SIMBioMS. Bioinformatics 25, 2768–2769 (2009).

15. Truong, C. V. C., Groeneveld, L. F., Morgenstern, B. & Groeneveld, E. MolabIS–an
integrated information system for storing and managing molecular genetics data.
BMC Bioinformatics 12, 425 (2011).

16. Mollenhauer, J. et al. David versus Goliath. Nanomedicine: NBM 6, 504–509
(2010).

Acknowledgments
This work was supported by the Lundbeckfonden grant for the NanoCAN Center of
Excellence in Nanomedicine, the Region Syddanmarks ph.d.-pulje and Forskningspulje, the
Fonden Til Lægevidenskabens Fremme, and co-financed by the INTERREG 4 A-program
Syddanmark-Schleswig-K.E.R.N. with funds from The European Regional Development
Fund.

Author contributions
M.L. and J.Th. developed the software requirement specification. S.S. and J.Tr. specified
requirements specific to the biomedical domain and contributed extensively to
bug-tracking and regular testing of OLF. ML implemented the application. M.T., T.K., Q.T.,
J.B. and J.M. jointly supervised the project, designed graphics and work-flow diagrams. All
authors contributed equally to drafting the manuscript. All authors read and approved the
final manuscript.

Additional information
Availability and Requirements: Project name: OpenLabFramework, URL: https://github.
com/NanoCAN/OpenLabFramework, Wiki: https://github.com/NanoCAN/
OpenLabFramework/wiki, Demo: http://www.nanocan.dk/openlabframework/demo,
(user: admin, password: demo0815), Operating system(s): Platform independent,
Programming language: Java, Groovy, Java-script, Other requirements: Java 1.6 or higher,
Tomcat 6.0 or higher, License: GNU GPL v3.

Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4278 | DOI: 10.1038/srep04278 6

https://github.com/NanoCAN/OpenLabFramework
https://github.com/NanoCAN/OpenLabFramework
https://github.com/NanoCAN/OpenLabFramework/wiki
https://github.com/NanoCAN/OpenLabFramework/wiki
http://www.nanocan.dk/openlabframework/demo
http://www.nature.com/scientificreports
http://www.nature.com/scientificreports

How to cite this article: List, M. et al. Efficient Sample Tracking With OpenLabFramework.
Sci. Rep. 4, 4278; DOI:10.1038/srep04278 (2014).

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc-sa/3.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4278 | DOI: 10.1038/srep04278 7

http://creativecommons.org/licenses/by-nc-sa/3.0

	Title
	Table 1 Some examples of existing browser-based LIMS solutions. Corresponding project URLs can be found in Supplemental Table 1
	Table 2 Feature Comparison of requirements across browser-based LIMS solutions for sample management using the following abbreviations: EnzymeTracker (ET), Free-LIMS (FL), SLIMS (SL), YourLabData (YL), Open-LIMS (OL), ProteinTracker (PT), AGL-LIMS (AL), SMS (SM), MolabIS (MI), SIMBioMS (SI), OpenFreezer (OF), and PiMS (PS). o depicts limited fulfilment. Sample Tracking refers to the physical location of samples. Local Deployment refers to a local installation not requiring a database installation. Cloud Deployment refers to documented cases
	Figure 1 The web-interface of OLF is divided into four main parts.
	Figure 2 Initially, the administrators set up master data, such as vectors, cell-lines, medium compositions, as well as the storage infrastructure (*).
	Figure 3 OpenLabFramework is built in a strictly modular fashion.
	Figure 4 The back-end provides two classes MasterDataObject (MDO) and DataObject (DO) that are extended by the different modules.
	References

