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Abstract

Mitosis ensures accurate segregation of duplicated DNA through tight regulation of chromosome 

condensation, bipolar spindle assembly, chromosome alignment in the metaphase plate, 

chromosome segregation and cytokinesis. Poly(ADP-ribose) polymerases (PARPs), in particular 

PARP1, PARP2, PARP3, PARP5a (TNKS1), as well as poly(ADP-ribose) glycohydrolase (PARG), 

regulate different mitotic functions, including centrosome function, mitotic spindle assembly, 

mitotic checkpoints, telomere length and telomere cohesion. PARP depletion or inhibition give rise 

to various mitotic defects such as centrosome amplification, multipolar spindles, chromosome 

misalignment, premature loss of cohesion, metaphase arrest, anaphase DNA bridges, lagging 

chromosomes, and micronuclei. As the mechanisms of PARP1/2 inhibitor-mediated cell death are 

being progressively elucidated, it is becoming clear that mitotic defects caused by PARP1/2 

inhibition arise due to replication stress and DNA damage in S phase. As it stands, entrapment of 

inactive PARP1/2 on DNA phenocopies replication stress through accumulation of unresolved 

replication intermediates, double-stranded DNA breaks (DSBs) and incorrectly repaired DSBs, 

which can be transmitted from S phase to mitosis and instigate various mitotic defects, giving rise 

to both numerical and structural chromosomal aberrations. Cancer cells have increased levels of 

replication stress, which makes them particularly susceptible to a combination of agents that 

compromise replication fork stability. Indeed, combining PARP1/2 inhibitors with genetic 

deficiencies in DNA repair pathways, DNA-damaging agents, ATR and other cell cycle checkpoint 

inhibitors has yielded synergistic effects in killing cancer cells. Here I provide a comprehensive 

overview of the mitotic functions of PARPs and PARG, mitotic phenotypes induced by their 

depletion or inhibition, as well as the therapeutic relevance of targeting mitotic cells by directly 

interfering with mitotic functions or indirectly through replication stress.
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1 Nuclear functions of poly(ADP-ribose) polymerases

Poly(ADP-ribose) polymerases (PARPs) catalyse reversible ADP-ribosylation on serine, 

glutamate, aspartate, arginine, lysine and cysteine residues of histone and non-histone 

proteins using NAD as a cofactor [1]. Of the 17 known PARP members in humans, PARP1, 

PARP2, PARP3, PARP5a (TNKS1) and PARP5b (TNKS2) are localized in the nucleus and 

can synthesize poly(ADP-ribose) (PAR), with the exception of PARP3 [1]. Other PARPs act 

as monoenzymes to attach mono(ADP-ribose), whereas PARP13 has no reported enzymatic 

activity [1]. Poly (ADP-ribose) (PAR) is a highly negatively charged homopolymer of 

repeating ADP-ribose units linked by unique glycosidic ribose-ribose bonds [1]. It is rapidly 

degraded by poly(ADP-ribose) glycohydrolase (PARG) to ensure that the PAR levels are 

tightly regulated [2].

Nuclear PARPs and PARG regulate various nuclear functions such as DNA repair, DNA 

replication, gene expression, chromatin dynamics, cell death and mitotic progression [1,3–

5]. PARP1 is strongly activated in response to DNA damage and is responsible for the 

synthesis of the majority of PAR following genotoxic stress [4,6]. PARP1 regulates various 

DNA repair pathways, replication, mitosis, gene expression and cell death [3,6–16]. PARP2 

is important for DNA repair, mitosis, meiosis I and haploid gamete differentiation [17,18]. 

PARP3 synergizes with PARP1 in the repair of double-strand DNA breaks (DSBs) and 

regulates mitosis and telomere integrity [19]. PARP5a, also called tankyrase 1 (TNKS1), 

regulates telomere integrity, mitosis and DNA repair [20,21]. PARG is necessary for 

replication and recovery from prolonged replication stress, DNA repair and mitosis [22–25].

PARP1 deficiency in mice leads to DNA damage-induced genomic instability and 

embryonic lethality in combination with PARP2 deficiency [18]. PARP2-deficient mice also 

exhibit impaired spermatogenesis and mitotic chromosomal aberrations [17,18]. PARP1−/− 

PARP3−/− double knock-out mice exhibit increased sensitivity to ionizing radiation 

compared to PARP1−/− animals [19]. TNKS1−/− TNKS2−/− double knock-out is 

embryonically lethal [26]. TNKS1-depleted cells arrest in metaphase and suffer from 

telomere shortening and telomere fusions [27–29]. PARG knock-out leads to early 

embryonic lethality, while PARG-deficient cells are sensitive to ionizing radiation and 

exhibit mitotic abnormalities after genotoxic exposure [22,30].

In this review I will focus on the role of nuclear PARPs (PARP1-3 and TNKS1) and PARG 

in mitosis. I will begin with an overview of key events during mitotic progression, followed 

by a detailed description of the mitotic functions of PARPs and PARG, as well as mitotic 

phenotypes caused by their depletion or inhibition.

2 Mitosis

During mitosis, cells divide in such a way that genetic information, which was duplicated 

during S phase, is equally split between two daughter cells [31]. Mitosis starts after G2, ends 

with cytokinesis, and consists of five distinct stages: prophase, prometaphase, metaphase, 

anaphase and telophase (Fig. 1A). Before mitosis, duplication of the genetic material in S 
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phase generates two sister chromatids that are intertwined (catenated) and held together by 

the cohesin complex [32].

At the onset of prophase, sister chromatids are decatenated by topoisomerase II and 

subsequently condense through the action of condensins [33,34]. Furthermore, Haspin 

phosphorylates histone H3 at Thr-3 as a platform for the recruitment of the chromosomal 

passenger complex (CPC) components Survivin and the Aurora B kinase, which 

phosphorylates Ser-10 and Ser-28 [35]. Histone phosphorylation regulates the phospho/

methyl switch, whereby H3T3ph adjacent to H3K4me3 elicits dissociation of transcription 

factors from promoters [36], H3S10ph adjacent to H3K9me3 leads to dissociation of HP1 

(heterochromatin protein 1) [37,38], while H3S28ph adjacent to H3K27me3 causes 

expulsion of the Polycomb repressive complexes [39]. H3 phosphorylation by Aurora B also 

promotes condensin I deposition [35].

During prophase and prometaphase, the cohesin complex is removed from chromosome 

arms through phosphorylation of the cohesin subunit STAG2 (stromal antigen 2) by PLK1 

(Polo-like kinase 1) [40]. In addition, Aurora B and CDK1 (cyclin-dependent kinase 1) 

phosphorylate sororin and thereby abolish its ability to antagonize the cohesin release factor 

WAPL (wings apart-like protein homologue) [41]. Centromeric cohesion is protected by 

SGO1 (Shugoshin 1) and phosphatase PP2A, which antagonize Aurora B and CDK1 by 

dephosphorylating sororin [42].

Another important event during prophase is the formation of kinetochores around 

centromeric regions, which enable attachment of centromeres to spindle microtubules 

[43,44]. During prometaphase, the nuclear envelope breaks down and the mitotic spindle is 

formed from dimers of α and β tubulin that nucleate from γTuRCs (γ-tubulin ring 

complexes) [45]. While centrosomes are the major site of microtubule nucleation at the 

spindle poles, microtubule nucleation is additionally mediated by chromatin or by 

microtubules themselves [45]. The mitotic spindle is assembled from kinetochore 

microtubules, which attach the chromosomes to spindle poles via the kinetochore; astral 

microtubules, which radiate from spindle poles and position the spindle; and non-

kinetochore microtubules, which separate the poles and provide stability to the spindle [45]. 

Chromosome assembly along the spindle equator and alignment in the metaphase plate 

marks the transition to metaphase [46]. The CPC monitors and corrects erroneous 

kinetochore-microtubule attachments by phosphorylating kinetochore components and also 

activates the spindle assembly checkpoint (SAC) [47,48]. SAC prevents progression into 

anaphase until all kinetochores are properly attached to the spindle [49]. If SAC is satisfied, 

cyclin B and securin are degraded by the APC/C (anaphase-promoting complex/cyclosome) 

ubiquitin ligase and securin can thus no longer inhibit separase [50].

At the end of metaphase, centromeric cohesion is removed by separase, which cleaves 

phosphorylated SCC1 (RAD21) to break the cohesin ring [51]. This enables separation of 

sister chromatids to opposite poles during anaphase, followed by the formation of two nuclei 

during telophase.
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Post-translational protein modifications (PTMs) such as phosphorylation, ubiquitination and 

SUMOylation were shown to regulate different functions across all stages of mitosis [52]. In 

this review, I will discuss the importance of poly(ADP-ribosyl)ation (PARylation) for 

mitosis.

3 PARPs in mitosis

PARylation in mitosis was visualized nearly 40 years ago and was shown to be more 

pronounced in mitotic than in interphase cells [53–55]. Research efforts over the past 20 

years have identified different functions of PARylation and PARPs in mitosis. PARP1, 

TNKS1 and PARG were found to regulate centrosome function [13,14,22,56,57]; PARP3 

and TNKS1 regulate mitotic spindle assembly [19,27,58–60]; PARP1 and PARG regulate 

the antephase and the spindle assembly checkpoints [12,22,61–64]; PARP1, PARP3, TNKS1 

and PARG regulate telomere length, t-loop integrity and sister telomere cohesion [22,28,65–

70] (Fig. 1). PARylation of mitotic chromatin may also serve as an epigenetic bookmark at 

transcription start sites required for transcription reactivation after mitosis [71].

A plethora of mitotic phenotypes has been observed upon PARP depletion or inhibition (Fig. 

2). PARP1-depleted cells exhibit centrosome amplification, ultrafine anaphase DNA bridges 

and loss of spindle assembly checkpoint integrity [12–14,72]. PARP2 depletion causes 

anaphase DNA bridges, lagging chromosomes and chromosome missegregation [18], while 

PARP3 depletion results in multipolar spindles, chromosome misalignment and metaphase 

arrest, as well as telomere fusions [19]. TNKS1-depleted cells show centrosome 

amplification, multipolar spindles, metaphase arrest, telomere shortening and telomere 

fusions [28,29,56]. PARG depletion protects from telomere fusions but induces multiple 

mitotic defects after exposure to ionizing radiation, including centrosome amplification, 

centrosome fragmentation, multipolar spindles, chromosome misalignment and 

missegregation [22].

PARP1/2 and PARG inhibitors recapitulate the aforementioned mitotic phenotypes and 

generate additional defects through replication stress and DNA damage [15,73–77] (Fig. 2). 

PARP1/2 inhibitors inactivate and entrap PARP on DNA; the resulting PARP-DNA 

complexes interfere with DNA replication causing S-phase stalling, G2 delay, replication 

stress and DSB formation [15,73–76,78,79]. PARP1/2 entrapment and replication blockage 

also weaken cohesion between sister chromatids, resulting in premature loss of cohesion 

(‘cohesion fatigue’) and metaphase arrest [74] (Fig. 2). Unresolved replication 

intermediates, underreplicated DNA and DNA damage are known to cause chromosome 

misalignment and missegregation that lead to cell death by mitotic catastrophe [80–82]. 

Replication stress-induced mitotic failure thus seems to be the major mechanism of 

PARP1/2 inhibitor-induced cytotoxicity [76].

The following sections provide details on PARP localization to different mitotic structures, 

as well as the structural and regulatory components of the mitotic machinery that PARPs 

interact with and modify by PARylation.

Slade Page 4

Biochem Pharmacol. Author manuscript; available in PMC 2020 March 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



4 Regulation of the centrosome function by PARPs

Centrosomes are the main site of microtubule nucleation (de novo microtubule formation) 

required for the assembly of the mitotic spindle [45]. Centrosomes consist of two centrioles 

surrounded by the pericentriolar material, which contains sites of microtubule nucleation and 

expands at the onset of mitosis [45]. Centrosomes are duplicated prior to mitosis and 

separate to two opposite poles during chromosome condensation in prophase in order to 

form a bipolar spindle. In vertebrates, both centrosomes and microtubules are localized in 

the cytoplasm, which is why the nuclear envelope needs to break down for microtubules to 

access the chromosomes. The minus ends of microtubules that form the mitotic spindle are 

anchored at the centrosomes. The plus ends of microtubules serve as an attachment site for 

kinetochores – a protein complex assembled on centromeres [43,44]. Centrosome 

dysfunction impairs faithful chromosome segregation, promoting aneuploidy and 

chromosome instability as hallmarks of cancer [83].

PARP1 associates with centrosomes throughout the cell cycle and regulates centrosome copy 

number, as PARP inhibition with 3-AB or depletion in primary and immortalized PARP1−/− 

mouse embryonic fibroblasts or primary PARP1−/− mammary epithelial cells result in 

centrosome dysfunction and amplification [13,14] (Fig. 2). PARG-depleted HeLa cells also 

exhibit centrosome amplification, which is exacerbated after irradiation [22]. Centrosome 

dysfunction may stem from aberrant PARylation of the tumour suppressor p53, which is one 

of the PARP1 substrates among centrosomal proteins known to regulate centrosome 

duplication [13,84]. PARP3 also localizes at the centrosomes throughout the cell cycle 

through its N-terminal domain [85]. Overexpression of the PARP3 N-terminal domain does 

not affect centrosome copy number but results in G1/S cell cycle arrest [85]. PARP3 

depletion results in multipolar spindles [19]. Overall, the substrates of PARP1 and PARP3 

relevant for their regulation of centrosome function have yet to be characterized.

Centrosome function in human cells is further regulated by TNKS1. TNKS1 localizes to 

centrosomes exclusively in the G1 phase of the cell cycle and PARylates CPAP (centrosomal 

P4.1-associated protein) [56] (Fig. 1A). CPAP is essential for centriole maturation in 

humans through regulation of centriole duplication and elongation [86–88]. TNKS1-

mediated PARylation targets CPAP for proteosomal degradation in G1 [56]. Overexpression 

of TNKS1 phenocopies siRNA-mediated depletion of CPAP by preventing centriole 

duplication, while TNKS1 silencing phenocopies CPAP overexpression by giving rise to 

abnormally elongated centrioles, centrosome amplification and multipolar spindles [56]. 

Therefore, TNKS1 regulates centrosome function through regulation of CPAP levels.

Moreover, TNKS1 PARylates MIKI (mitotic kinetics regulator) at the transition into mitosis 

and leads to its relocalization from the Golgi apparatus to centrosomes [57]. On 

centrosomes, PARylated MIKI anchors a scaffold protein, CG-NAP, which is part of γTuRC 

[57]. γTuRCs initiate microtubule assembly from dimers of α- and β-tubulin [45]. MIKI 

PARylation thus promotes microtubule nucleation at centrosomes and initiation of 

prometaphase [57]. MIKI depletion in human cancer cells–but not in primary cells or mice–

impairs chromosome alignment in metaphase causing metaphase arrest and apoptosis on the 
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one hand, and leads to mitotic exit without chromosome segregation yielding multinucleated 

cells on the other [57].

5 Regulation of the mitotic spindle assembly by PARPs

The mitotic spindle is a bipolar, dynamic macromolecular structure built by the self-

organized assembly of microtubules (dimers of α- and β-tubulin), microtubule-associated 

proteins and motor proteins [45]. Timely, efficient and accurate assembly of the bipolar 

mitotic spindle is a prerequisite for accurate chromosome segregation [45]. Multipolar 

spindles cause chromosome missegregation, which leads to aneuploidy [89]. Although 

centrosomes serve as main sites of microtubule nucleation (discussed in the previous 

section), microtubule nucleation is additionally mediated by chromatin or by the 

microtubules themselves [45]. Microtubule-dependent nucleation occurs within the spindle, 

whereby γTuRC initiates microtubule nucleation from pre-existing microtubules [90]. 

γTuRC is loaded onto the pre-existing microtubules by the Augmin complex, initially 

identified in Drosophila [91]. The mammalian HAUS (homologous to Augmin subunits) 

complex consists of eight subunits, of which HAUS8 binds directly to microtubules through 

Aurora A and PLK1 phosphoregulation [45]. Moreover, Augmin together with NUMA1 

(nuclear mitotic apparatus protein 1) regulates spindle polarity factors and pole clustering of 

the microtubule minus ends [92]. NUMA1 binds the microtubule minus ends and dynactin – 

a cofactor of the motor protein dynein [93]. NUMA1-mediated dynactin recruitment 

localizes dynein activity at the microtubule minus ends, which drives the clustering of 

microtubules into poles as a prerequisite for bipolar spindle organization [93].

NUMA1 recruits TNKS1 to the mitotic spindle, which in turn PARylates NUMA1 [27,60]. 

NUMA1 also binds PAR non-covalently [59]. PARP3 can also PARylate NUMA1 directly 

or by enhancing TNKS1 activity [19]. TNKS1 activity is higher in mitosis and PAR chains 

generated by TNKS1 are required for the proper assembly and function of bipolar spindles 

[27,58,59] (Fig. 1A). TNKS1 depletion results in activation of the mitotic checkpoint and 

metaphase arrest due to defective spindle assembly and loss of spindle bipolarity [27] (Fig. 

2). TNKS1 inhibition also causes aberrant spindle formation, but without metaphase arrest 

[77]. TNKS1 depletion does not perturb NUMA1 localization at spindle poles or 

microtubule clustering at the poles, but rather affects NUMA1-dependent regulation of 

spindle polarity [27]. PARP3 depletion also results in metaphase arrest with mild spindle 

defects, including supernumerary poles and chromosome misalignment, without affecting 

NUMA1 or TNKS1 localization at the spindle poles [19]. NUMA1 is a multimeric protein 

and its PARylation and PAR-binding property may promote accurate assembly of bipolar 

spindles by crosslinking NUMA1 molecules between two spindle poles [59,94].

Furthermore, TNKS1 PARylates α-tubulin, which is recognized by the guanine nucleotide 

exchange factor ECT2 (epithelial cell transforming sequence 2 oncogene) [95]. ECT2 is 

required for control of cytokinesis and its interaction with PARylated α-tubulin is required 

for its recruitment to the spindle during metaphase as a prerequisite for functional 

cytokinesis and completion of mitosis [95,96] (Fig. 1A).
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6 Regulation of mitotic checkpoints by PARPs

Following bipolar spindle assembly, chromosomes attach to the spindle microtubules 

through kinetochores. The kinetochore is a large protein complex that connects centromeric 

DNA with spindle microtubules [43,44]. The kinetochores of sister chromatids are 

connected to microtubules that emanate from opposite spindle poles. Such chromosome bi-

orientation is essential for accurate segregation of sister chromatids to opposite spindle 

poles. The error correction (EC) pathway, governed by the chromosomal passenger complex 

and the Aurora B kinase, stabilizes interactions with microtubules that drive chromosome bi-

orientation (sensed as tension by the kinetochore-centromere system) and weakens 

erroneous interactions (sensed as lack of tension) [48]. Aurora B also promotes recruitment 

of the components of the spindle assembly checkpoint to the kinetochore [48]. The spindle 

assembly checkpoint (SAC), also called the mitotic checkpoint (MC), monitors the 

attachment of kinetochores to spindle microtubules, and prevents chromosome segregation 

in the presence of unattached or incorrectly attached chromosomes [49]. Persistent incorrect 

kinetochore-microtubule attachments may lead to chromosome missegregation resulting in 

aneuploidy [89]. Therefore, timely activation of the SAC is crucial for accurate progression 

through mitosis.

The SAC is regulated by the mitotic checkpoint complex (MCC), which consists of MAD1, 

BUBR1, BUB3 and APC/C co-activator CDC20 [49,97]. The MCC stably associates with 

APC/C and delays anaphase by preventing degradation of APC/CCdc20 metaphase 

substrates, such as cyclin B and securin [98]. Once all kinetochores are correctly attached to 

the spindle microtubules and the chromosomes are aligned in the metaphase plate, MCC-

mediated inhibition of APC/CCdc20 is released, resulting in polyubiquitination and 

degradation of securin and cyclin B [50]. Degradation of cyclin B inactivates the mitotic 

kinase CDK1 and promotes mitotic exit [50]. Degradation of securin activates separase, 

which cleaves cohesin to allow sister chromatid separation [33,50,51].

PARP1 and PARP2 accumulate on centromeric chromatin until metaphase, interact with the 

centromeric proteins CENPA, CENPB and BUB3, and dissociate in anaphase [62,99,100]. 

PARP1 was also found to interact with Aurora B and inhibit its activity upon DNA damage, 

resulting in reduced H3S10 phosphorylation [101]. The functional significance of this is, 

however, unclear. Depletion of PARP1 in mouse oocytes leads to incomplete synapsis of 

homologous chromosomes, deficient sister chromatid cohesion in metaphase II and failure to 

maintain metaphase II arrest due to mislocalization of the MCC component BUB3 [64] (Fig. 

1A). PARP1-deficient cells escape the SAC after spindle disruption with microtubule 

depolymerizing agents (e.g., nocodazole, colcemid) [12]. PARP1 deficiency was proposed to 

weaken SAC due to cyclin B1 degradation and reduction of CDK1 kinase activity [12], 

while PARP inhibition may weaken SAC by reducing BUBR1 levels [102]. Conversely, 

PARG deficiency prolongs SAC and metaphase duration, emphasizing the importance of 

appropriate PAR levels for regulating the kinetochore function and SAC [22]. Tetraploid 

PARP-deficient cells also bypass the post-mitotic G1 checkpoint by undergoing DNA 

endoreduplication and resisting apoptotic death [12]. How exactly PAR regulates mitotic and 

post-mitotic checkpoints remains to be elucidated.
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Another mitotic checkpoint called the antephase checkpoint precedes the SAC and occurs in 

early prophase. The antephase checkpoint responds to microtubule poisons or DNA damage 

and elicits chromosome decondensation and mitotic delay [103]. The main antephase 

checkpoint protein CHFR (checkpoint with FHA and RING finger domains) is an E3 

ubiquitin ligase that ubiquitinates Aurora A and PLK1 to halt mitotic progression [104,105]. 

PAR binding stabilizes CHFR and ensures an intact antephase checkpoint [63,106] (Fig. 

1A). Mitotic stress induces PARP1 auto-PARylation, which increases its interaction with 

CHFR [61]. CHFR polyubiquitinates auto-PARylated PARP1 and targets it for degradation, 

resulting in cell cycle arrest in prophase [61]. CHFR thus regulates the antephase checkpoint 

by regulating, among others, PARP1 levels. PARP1-CHFR interaction is of clinical 

relevance, as PARP inhibitors or inhibitors of the CHFR-PARP1 interaction can sensitize 

CHFR-expressing cancer cells to microtubule poisons through attenuation of the antephase 

checkpoint [61,106].

7 Telomere regulation by PARPs

Telomeres are end points of chromosomes, which consist of short tandem repeats (TTAGGG 

in humans) and associated protective proteins called the Shelterin complex [107,108]. TRF1 

and TRF2 (telomere repeat binding factors) are the two main telomere-specific DNA-

binding proteins. TRF1 negatively regulates telomere length by inhibiting telomerase, an 

enzyme that adds the telomeric sequences at the end of the chromosomes and thereby 

prevents their shortening due to the ‘end-replication problem’ [109]. TRF2 protects 

chromosomes ends from end-to-end fusions by generating and protecting t-loops, whereby 

the telomeric 3′ overhang invades the double-stranded telomeric DNA [108,110,111] (Fig. 

1B).

TNKS1 localizes at telomeres upon binding to TRF1 [65]. TNKS1 PARylates TRF1, 

resulting in its decreased binding to telomeric DNA and ubiquitination followed by 

proteosomal degradation [65,112]. The release of PARylated TRF1 from telomeric DNA 

may open the telomeric complex and allow access to the telomerase [66]. Indeed, persistent 

TNKS1 overexpression was shown to increase telomere length, whereas TNKS1 depletion 

or inhibition results in telomere shortening [28,66,113]. TNKS1 thus seems to act as a 

positive regulator of telomere length by antagonizing TRF1 [65,66]. TNKS1 interaction with 

TRF1 is modulated by the Shelterin protein TIN2 (TRF1-interacting nuclear protein 2), 

which blocks TNKS1 from PARylating TRF1 [114]. TNKS1 stability and activity at the 

telomeres and the mitotic spindle are positively regulated by the mitotic kinase PLK1 [67]. 

PLK1 inhibition leads to telomeric fusion and reduced localization of TNKS1 at spindle 

poles [67].

Furthermore, TNKS1 negatively regulates sister telomere cohesion and thus facilitates sister 

chromatid separation during anaphase [68]. Timely resolution of sister telomere cohesion is 

regulated by (de)ubiquitination of TNKS1. TNKS1 is ubiquitinated by RNF8 (Ring finger 

protein 8) in the S/G2 phase, and deubiquitinated by ABRO1 (Abraxas brother 1) in the G1 

phase of the cell cycle [69]. TNKS1 deubiquitination prevents premature resolution of sister 

telomere cohesion, while TNKS1 ubiquitination promotes the resolution of sister telomere 

cohesion by increasing TNKS1 stability and association with telomeres [69]. Persistent 
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telomere cohesion in mitosis due to TNKS1 or RNF8 depletion results in deprotection of 

chromosome ends and end-to-end fusions between sister chromatids by non-homologous 

end-joining [29,69] (Fig. 2). Conversely, premature resolution of sister telomere cohesion in 

S phase due to ABRO1 depletion leads to telomere loss and fragile telomeres [69]. PARP3 

depletion also leads to sister telomere fusions and sister telomere loss, most likely due to the 

activation of alternative NHEJ (alt-NHEJ) [19,115,116]. PARG depletion was shown to 

protect telomeres from sister telomere fusions and telomere loss [22], which is consistent 

with the positive effect of PAR (generated by TNKS1 or PARP3) on telomere integrity and 

stability.

While TNKS1 interacts with TRF1, PARP1 and PARP2 interact with TRF2 [70,117]. 

Consistent with the distinct functions of their telomeric partners TRF1 and TRF2, TNKS1 

regulates telomere length whereas PARP1 may pose a threat to the t-loop integrity [66,117]. 

T-loops contain a PARP1 activation site (a 5′ ds-ssDNA transition), which is masked by 

TRF2 [117]. In the absence of TRF2, activated PARP1 promotes t-loop cleavage and alt-

NHEJ [108]. PARP1 promotes the recruitment of Holliday junction resolvases that cleave t-

loops, resulting in telomere loss and telomere-free chromosome fusions [117,118]. In the 

absence of both TRF2 and the canonical NHEJ proteins Ku70/80, PARP1 was shown to 

initiate alt-NHEJ at telomeres, resulting in telomere fusions [119].

8 PARPs at the interface between DNA damage, mitosis and chromosomal 

instability

PARPs play an essential role in the maintenance of chromosomal stability. Chromosomal 

instability comprises numerical or structural chromosomal aberrations. Numerical 

aberrations, also called aneuploidy, denote an abnormal number of chromosomes. 

Aneuploidy may arise due to defects in the centrosome number, aberrant spindle assembly, 

defects in chromosome attachment to the spindle, dysfunctional spindle assembly 

checkpoint (SAC), impaired chromosome cohesion, telomere fusion or replication stress 

[89,120]. Structural chromosomal aberrations in the form of translocations, deletions or 

insertions arise due to DNA repair defects or due to mitotic defects in chromosome 

segregation.

A higher frequency of chromatid breaks, sister chromatid exchange, anaphase bridges, 

lagging chromosomes and micronuclei are found following PARP1, PARP2 or PARG 

depletion or inhibition, particularly in response to genotoxic stress induced with different 

DNA-damaging agents [18,72,77,102,121–128]. PARP depletion or inhibition also lead to 

aneuploidy [12,14,18,127]. Chromosomal instability due to PARP loss or inhibition might 

be caused by any or all the mitotic defects in which PARPs have been implicated (chapters 

4–7), as well as by PARP-mediated regulation of DNA replication and DNA damage 

response. In fact, recent work has shown that merely inhibiting PARP1/2 in mitosis does not 

yield mitotic phenotypes and that mitotic phenotypes arise due to PARP1/2 inhibition during 

DNA replication in S phase [74,76]. This was shown for various cell lines, including 

cervical cell lines (HeLa, C-33), breast cancer (MDA-MB-468, BT-549), osteosarcoma 

(U2OS), neuroblastoma (Kelly, LAN-5, SHEP Tet21/N) and glioblastoma (U87MG) [74–
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76,102]. Why does PARP1/2 inhibition during DNA replication result in mitotic 

phenotypes? I will address this by considering PARP functions during DNA replication and 

replication stress, and by linking the reported mitotic outcomes of replication stress and 

DNA damage with mitotic phenotypes arising from PARP depletion or inhibition.

PARP1 and PARG have important functions during DNA replication and DNA repair. 

PARP1 was shown to mediate replication fork reversal in response to replication stress [10]. 

PARP1/2-inhibited or -depleted cells show faster replication and accumulation of DNA 

damage in S phase cells [15,16,73,79,128]. PARP1 also protects stalled replication forks 

from excessive degradation by MRE11 and promotes fork restart [7,129]. Moreover, PAR is 

required for the intra S-phase checkpoint by promoting fork retention and activation of 

CHK1 (checkpoint kinase 1) upon replication stress [130]. PAR levels need to be regulated 

by PARG during DNA replication, as PARG deficiency or inhibition reduces cell 

proliferation rate due to the slowing down of replication forks and accumulation of abnormal 

DNA replication intermediates [23,25]. PARG is also necessary for recovery from prolonged 

replication stress [24].

Stalled replication forks may undergo fork reversal or require homologous recombination for 

lesion bypass. HR is also required for the repair of DSBs that occur due to fork collapse. HR 

repairs DSBs by using a sister chromatid as a template, resulting in sister chromatid 

exchange (SCE). A higher frequency of SCE was observed due to PARP1/2 depletion or 

inhibition, especially after DNA damage, indicating that PARP1/2 maintain replication fork 

integrity and protect replication forks from DSBs [18,121–125]. Deficiency in HR proteins, 

as in the case of genetic mutations in BRCA1/2, leads to accumulation of unrepaired DSBs 

or incorrectly repaired DSBs, and was shown to sensitize cells to PARP1/2 inhibitors 

[78,126,131–133] (see also Targeting mitotic cells in cancer therapy with PARP inhibitors).

In the absence of HR, NHEJ or alternative NHEJ (alt-NHEJ, also called microhomology-

mediated end-joining or MMEJ) can repair DSBs, but often with errors that result in 

chromatid fusions [126,134,135]. Fusion of two broken sister chromatids, two broken 

chromosomes or telomere fusion by end joining pathways during interphase can generate 

dicentric chromosomes visible as radial chromosome formations in metaphase and as 

anaphase DNA bridges (also called chromatin bridges) [80] (Fig. 2). Although anaphase 

DNA bridges are particularly pronounced in homologous recombination-deficient cancer 

cells, they also occur in wild-type cells exposed to replication stress [76,136]. PARP1/2 

inhibition in HR-deficient cells during S phase increases the frequency of radial 

chromosomes and anaphase DNA bridges by compromising replication fork stability and 

amassing lesions that cannot be repaired by HR and are therefore incorrectly repaired by 

NHEJ [76,126].

Abnormal replication intermediates are generated in response to replication stress by 

genomic regions called common fragile sites (CFS). CFS remain underreplicated at the 

G2/M transition [137]. Under-replicated CFS undergo unscheduled DNA synthesis at G2/M, 

and give rise to DNA damage in prometaphase, ultrafine anaphase DNA bridges and 53BP1-

positive nuclear bodies in G1 cells [120,138–142]. Ultrafine anaphase DNA bridges 

originate from under-replicated CFSs that remain connected through thin threads of DNA 
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bound by FANCD2 (Fanconi anemia complementation group D2), BLM (Bloom syndrome 

protein) helicase, PICH (Plk1-interacting checkpoint helicase), the BTRR complex 

(TOPOIIIa, RMI1 and RMI2), RIF1 (Rap1-interacting factor 1 homolog) and MUS81-

EME1 endonuclease [81,143] (Fig. 2). Resolution of replication intermediates in mitosis 

through cleavage by MUS81-EME1 nuclease favours the formation of DNA breaks, which 

allows faithful segregation of sister chromatids [144–146]. Replication stress-induced DNA 

breaks in mitosis may thus originate from cleaved unresolved replication intermediates and 

may be necessary to forestall missegregation caused by ultrafine anaphase DNA bridges. 

Mitotic cells are hypersensitive to DNA damage as DNA damage response in mitotic cells is 

only partially activated; DNA damage is sensed, ATM kinase is activated and γH2AX foci 

are formed, but signalling downstream of γH2AX is impaired in a CDK or PLK1-dependent 

manner [81,147–149]. Partial activation of DNA damage response is thought to mark DNA 

damage sites for subsequent repair in G1, where replication stress-induced DNA lesions 

accumulate within 53BP1-positive nuclear bodies [138,139,150]. Ultrafine anaphase DNA 

bridges and 53BP1-positive nuclear bodies in G1 were observed upon PARP1 depletion or 

PARP1/2 inhibition [72,79]. Moreover, inhibition of the checkpoint kinase ATR exacerbates 

PARP1/2 inhibition by allowing mitotic entry in the presence of unrepaired DNA damage 

from interphase, leading to accumulation of 53BP1-positive nuclear bodies in G1 [79].

Replication stress may also cause weakening of sister chromatid cohesion in interphase and 

result in premature loss of cohesion (‘cohesion fatigue’) and chromosome alignment 

problems in metaphase [74]. PARP1/2 inhibition during S-phase replication was similarly 

shown to cause cohesion weakening and premature loss of cohesion visualized as chromatid 

scattering in metaphase cells [74] (Fig. 2). Premature loss of cohesion and chromatid 

scattering are more pronounced in cells with higher basal levels of replication stress and 

higher PARP1/2 protein levels [74].

Another feature of replication stress is micronuclei that can be observed in daughter cells 

following cytokinesis (Fig. 2). Micronuclei contain acentric chromosomes, chromatid 

fragments or lagging chromosomes that have their own nuclear envelope [151]. Acentric 

chromosomes and chromatid fragments are caused by unrepaired or incorrectly repaired 

DNA lesions, as explained above. Lagging chromosomes are caused by mitotic errors in 

kinetochore attachment to the spindle, whereby a single kinetochore from one chromosome 

is attached to microtubules from more than one spindle pole (merotelic attachment), 

resulting in lagging chromosomes that are simultaneously pulled towards opposite poles 

[152]. Merotelic attachment may also be induced by DNA damage signalling through 

Aurora A and PLK1, which, by increasing the stability of kinetochore-microtubule 

attachments, may increase the probability of erroneous attachments [153]. During anaphase, 

acentric chromosomes, chromatid fragments and whole lagging chromosomes all appear as 

‘lagging’ due to the inability to segregate accurately. Chromosomes within micronuclei 

undergo reduced and asynchronous DNA replication resulting in DNA damage and 

chromosome fragmentation, known as chromothripsis [154]. Lagging chromosomes and 

micronuclei are elevated upon PARP1/2 depletion or inhibition, in accordance with the 

accumulation of unrepaired or inappropriately repaired DNA lesions during S phase that are 

transmitted to mitosis [102,121,123,127,128].
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DNA damage and unresolved replication intermediates trigger S-phase checkpoint activation 

as judged by CHK1 phosphorylation in PARP inhibitor-treated cells [15,75,155]. However, 

despite checkpoint activation, these cells progress into mitosis. Minor DNA damage in 

mitosis allows progression to G1 when DNA damage is repaired [156]. If DNA damage 

occurs in early (but not late) prophase, cells undergo chromosome decondensation and 

return to interphase [157]. Extensive DNA damage in mitosis causes metaphase arrest due to 

defective kinetochore attachment and activation of the SAC [156]. Metaphase arrest due to 

DNA damage leads to mitotic catastrophe, whereby cells die by apoptosis or slip out of 

mitosis through multinucleation or macronucleation due to chromosome missegregation, as 

well as micronucleation that results from lagging or acentric chromosomes [158]. PARP1- or 

PARP2-depleted cells proliferate normally, whereas PARP1/2 inhibitor-treated cells die by 

mitotic catastrophe [15,72–76,79,102].

The reason behind the stronger phenotype of PARP1/2 inhibition compared to protein 

depletion is the entrapment of PARP on DNA by PARP inhibitors, which destabilizes 

replication fork progression [78]. Replication phenotypes of PARP inhibition can be 

attributed to both inactivation of PARP catalytic activity and its entrapment on DNA, 

whereas mitotic phenotypes seem to be generally caused by PARP entrapment. If both PARP 

depletion and PARP inhibition cause a specific phenotype and if PARP depletion cannot 

(completely) rescue PARP inhibition phenotypes, the phenotype is likely caused by PARP 

inactivation or by both PARP inactivation and PARP entrapment. Conversely, if PARP 

depletion can rescue PARP inhibition phenotypes, the phenotype is due to PARP 

entrapment. Based on this reasoning, PARP1 depletion increases replication fork speed and 

impairs replication fork reversal and replication fork restart following replication stress 

[7,10,15], indicating that PARP1 activity is required for maintaining the stability and 

integrity of replication forks under normal conditions and after replication stress. However, 

PARP1/2 depletion does not induce and can rescue mitotic phenotypes of metaphase 

chromatid scattering or anaphase DNA bridges induced by PARP inhibitors, suggesting that 

entrapment of PARP-DNA complexes by PARP1/2 inhibitors causes mitotic defects by 

compromising replication fork stability [74,76,78,159]. PARP1/2 inhibitors therefore exert 

cytotoxicity by relying on mitotic dysfunctions such as metaphase arrest, premature loss of 

cohesion and anaphase DNA bridges to elicit mitotic catastrophe [74,76].

Contrary to PARP1/2, both PARG depletion and inhibition result in severe mitotic 

phenotypes in cells exposed to DNA damage (ionizing radiation), which are more 

pronounced compared to PARP1/2 inhibition [22,77]. PARG activity thus seems to be 

important not only during DNA replication but also mitosis, where PARG-mediated removal 

of PAR synthesized by TNKS1 may be required for accurate mitotic spindle assembly 

[27,77] (see Regulation of the mitotic spindle assembly by PARPs).

9 Targeting mitotic cells in cancer therapy with PARP inhibitors

Cancer cells proliferate faster and have a higher mitotic index compared to normal cells. 

Cancer cells spend longer time in mitosis due to extra centrosomes and extra chromosomes, 

which delay satisfaction of the mitotic checkpoint [160]. Furthermore, mitotic cells are 

hypersensitive to DNA damage; activation of DNA damage response during mitosis may 
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result in missegregation, thus propagating genomic instability of cancer cells [149,153]. 

Targeting mitosis is therefore a promising avenue in cancer therapy [161].

To date, different models of targeting mitosis in anticancer therapy have been described. 

Inhibitors targeting mitotic entry, mitotic spindle, spindle assembly checkpoint and mitotic 

exit have been undergoing clinical trials [162]. The TNKS1 inhibitor XAV-939 combined 

with an inhibitor of the mitotic kinase PLK1 was shown to induce cell death of triple-

negative breast cancer cells (TNBC) [163]. TNKS1 depletion also shows synthetic lethality 

with BRCA1/2 depletion by exacerbating centrosome amplification [164]. Furthermore, 

TNKS1 inhibitors have shown synergistic effects with telomerase inhibitors based on the 

importance of TNKS1 in regulating telomerase access to telomeres [21,66].

Rather than inhibiting specific components of the mitotic machinery, PARP1/2 inhibitors 

cause death by mitotic failure due to replication stress and DNA damage in S phase [74–76]. 

PARG inhibitors may also have the same mechanism of cytotoxicity, considering the 

replication phenotypes and mitotic defects caused by PARG depletion or inhibition [22–

25,77]. Genomic instability caused by intrinsic deficiencies in DNA repair pathways or 

higher levels of replication stress was shown to sensitize cells to PARP1/2 and PARG 

inhibitors [25,78,126,131–133,165]. As the first example of synthetic lethality due to PARP 

inhibition, homologous recombination-deficient cells mutated in BRCA1/2 were shown to 

be specifically killed by PARP inhibitors [132,133]. Since these breakthrough studies, 

deficiency of different proteins required for recovery from replication stress and DNA repair 

was shown to sensitize the cells to PARP inhibitors resulting in chromosomal instability, cell 

cycle arrest and cell death [78,131–133,166–169]. Among HR proteins that show synthetic 

lethality with PARP1/2 inhibitors, BRCA1/2, PALB2, ABRAXAS and BARD1 have also 

shown synthetic lethal interactions with PARG inhibitors [25,165].

PARP expression levels were found to positively correlate with the cytotoxic effects of 

PARP inhibition in agreement with PARP entrapment on DNA being the main cause of 

cytotoxicity [74,75,78,159]. PARP1 levels are increased in different cancer types, which 

may sensitize them to PARP inhibitors [170–173]. In addition to fostering PARP 

entrapment-induced cytoxocity, PARP1 overexpression may also deregulate the antephase 

checkpoint and allow mitotic entry in the presence of mitotic stress [61]. TNKS1 expression 

levels are also increased in different tumour types, but this has a counter effect on cancer 

therapy as it confers resistance to telomerase inhibitors [21,113].

Combination therapy is often used in cancer treatment and is beneficial also in the case of 

PARP and PARG inhibitors. Given that PARP/PARG inhibitors compromise replication fork 

stability and impair DNA repair, DNA-damaging agents (e.g., ionizing radiation, 

camptothecin, temozolomide) as well as inhibitors of proteins involved in replication stress 

response, DNA damage response and cell cycle checkpoints (e.g., ATR, CHK1, WEE1 

inhibitors) have shown synergistic effects with PARP1/2 or PARG inhibitors in killing 

cancer cells [77,79,155,166,174–177]. Combination treatment with PARP1/2 and ATR 

inhibitors results in accumulation of DNA damage in mitosis, yielding severe mitotic defects 

in the form of lagging chromosomes, anaphase bridges and micronuclei, and resulting in 

53BP1 nuclear bodies in G1 phase or death by mitotic catastrophe [79,155]. Rather than 
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directly inhibiting DDR and checkpoint proteins, the BET domain inhibitor JQ1 synergizes 

with PARP1/2 inhibitors by reducing the expression levels of DDR factors BRCA1, RAD51 

and TOPBP1, as well as the G2/M checkpoint regulator WEE1 [178,179]. As a result, 

unrepaired DNA damage is carried over into mitosis causing mitotic catastrophe [178]. 

Finally, PARP1/2 inhibitors have shown stronger anticancer effects when combined with 

TNKS1 inhibitors through targeting at once DNA replication, telomere stability and mitotic 

progression [113,166].

Overall, combination therapy with PARP1/2 inhibitors capitalizes on compromised 

replication fork stability, which is exacerbated in the case of (i) genetic mutations in DNA 

repair pathways that rescue stalled or collapsed forks, (ii) increased DNA damage burden 

through combination with DNA-damaging agents, and (iii) inhibitors of cell cycle 

checkpoints that allow compromised cells to progress to mitosis. In light of numerous 

connections between genomic instability acquired during S phase and chromosomal 

instability ensuing from mitotic progression, it is critical to analyse in detail mitotic 

phenotypes linked with the administration of PARP and other inhibitors that compromise 

genomic stability.
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Fig. 1. 
Regulation of mitotic functions and telomeres by PARPs and PARG. A) Mitotic stages. B) 

Telomere and the Shelterin complex. PARP/PARG functions are indicated in bubbles and 

known substrates are indicated in brackets within the bubbles and as blobs within 

schematics. The schematics are based on Cheeseman and Desai, 2008 and de Lange, 2018 

[44,108].
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Fig. 2. 
Mitotic phenotypes resulting from depletion or inhibition of PARPs or PARG. Schematics of 

the phenotypes observed in (A) metaphase and (B) anaphase, and the corresponding 

microscopy pictures are shown. Chromosomes are shown in blue. On the example of a 

multipolar spindle, tubulin is shown in red. Telomere fusion upon PARP3 depletion is 

visualized by FISH using PNA probe for telomeres (red); the microscopy pictures were 

kindly provided by Françoise Dantzer [19]. Ultrafine anaphase DNA bridges in PARP1-
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depleted or inhibited cells are visualized with anti-PICH staining in green; the microscopy 

pictures were kindly provided by Simon Gemble and Mounira AmorGuéret [72].
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