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Abstract

For detection of clonal outbreaks in clinical settings, we present a complete pipeline that generates a single-nucleotide poly-
morphisms-distance matrix from a set of sequencing reads. Importantly, the program is able to handle a separate mix of
both short reads from the Illumina sequencing platforms and long reads from Oxford Nanopore Technologies’ (ONT) plat-
forms as input. MINTyper performs automated reference identification, alignment, alignment trimming, optional methyla-
tion masking, and pairwise distance calculations. With this approach, we could rapidly and accurately cluster a set of DNA
sequenced isolates, with a known epidemiological relationship to confirm the clustering. Functions were built to allow for
both high-accuracy methylation-aware base-called MinION reads (hac_m Q10) and fast generated lower-quality reads (fast
Q8) to be used, also in combination with Illumina data. With fast Q8 reads a higher number of base pairs were excluded
from the calculated distance matrix, compared with the high-accuracy methylation-aware Q10 base-calling of ONT data.
Nonetheless, when using different qualities of ONT data with corresponding input parameters, the clustering of isolates
were nearly identical.
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Introduction

Until the 21st century the field of microbial diagnostics was
dominated by non-computational methods. These methods
ranged from cultivation and microscopic visualization to a wide
variety of laboratory-based assay-technologies. Shared short-
comings of these methods were long diagnostic times and/or
relatively low precision. Often the identity of a pathogenic iso-
late could not be determined with greater accuracy than the
sample’s species or genus, and it could take several days, if not

weeks, to perform additional tests [1]. The introduction of DNA
sequencing in the late 1970s by Sanger, and the subsequent
improvements of the concept in the form of second and third
generation sequencing, has allowed for better and faster analy-
sis of microbes at a phylogenetic level [2]. Illumina second gen-
eration sequencing technology have dominated the market for
the previous 10 years, as it allows for precise and cost-effective
sequencing, when a large pool of samples are sequenced to-
gether using multiplexing [3].
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Due to the requirement of sample multiplexing in order to
make Illumina platforms cost-effective in a clinical setting,
researchers are looking for more agile sequencing alternatives
with a shorter turnaround time. The ONT MinION platform
offers great potential due to the low cost of the machine, low av-
erage sequencing price per run, and short turnaround time,
thus allowing for much smaller pools of samples to be
sequenced.

One of the most significant factors that currently is prevent-
ing third-generation long-read sequencing platforms from
replacing the short-read sequencers is the increased error rate
of long-read sequencing technologies [4]. For some research
purposes, an increased error rate can be overcome, but espe-
cially when working with genetics and phylogeny, where the
difference between defining if an isolate is part of an outbreak
or not may be down to a few single-nucleotide polymorphisms
(SNPs), error-prone sequences can distort the analysis.

When screening for clonal bacterial outbreaks, a widely used
method is to perform a SNP-typing analysis [5]. Assuming that
the SNPs are the result of random point-mutations, i.e. not a re-
sult of recombination, SNP distances between isolates can be
used as measurements of relatedness.

Here, we present for the first time an automated SNP-typing
method (MINTyper), that based on long-read sequencing can in-
fer the same clonal clusters as methods based on short-read se-
quencing. The method was validated on a test set containing 12
Escherichia coli isolates separated into two subgroups: (i)
Outbreak isolates of ST410 type (n¼ 6) and (ii) non-outbreak iso-
lates of ST410 type (n¼ 6) based on their epidemiological rela-
tionship (patients travel and hospitalization data). Furthermore,
MINTyper has been designed to handle a mix of short-read and
long-read sequencing samples. This enables comparison of his-
torical data from older sequencing platforms with new data
from long read sequencing platforms.

Materials and methods
Complete pipeline

MINTyper is a complete pipeline to identify and cluster clonal
bacterial outbreak strains, including automatic identification of
a bacterial reference sequence. The pipeline is composed of five
main steps: Identification of reference sequence (if one is not
provided by the user), reference guided multiple alignment,
trimming of alignments, SNP calling and finally clustering the
sequences using Neighbor-Joining or infer phylogenetic rela-
tionships using maximum likelihood. MINTyper outputs a dis-
tance matrix in relaxed phylip format, a list of identified
template candidates, the highest scoring template sequence, a
vcf with identified variants in each genome, a Newick file of the
phylogenetic tree generated from either Neighbor-Joining or a
maximum-likelihood approach, a list describing which cluster
each isolate belongs to, and a log file. Additionally, the align-
ment data generated by KMA is also preserved in a specified
data folder. The pipeline is freely available as open-source at:
https://bitbucket.org/genomicepidemiology/mintyper.git and as
web-service at: https://cge.cbs.dtu.dk/services/MINTyper.

Data

The data used to test the performance of MINTyper originates
from 12 E. coli isolates that has been sequenced by Statens
Serum Institut (SSI) in Denmark. The 12 isolates had previously
been studied using Illumina sequencing to perform Multi-Locus

Sequence Typing (MLST) and core-genome MLST (cgMLST)
analysis [6]. It was found that all of the isolates were of the se-
quence type 410 (ST410) [6]. Six isolates (Ec01–Ec06) were all of
the same bacterial clone (cgMLST type CT587) from patients
who had been hospitalized in Denmark concurrently at the
same ward and thus were part of the same outbreak. The
remaining six isolates (Ec07–Ec12) were acquired from patients,
who had never been hospitalized with any of the 11 other
patients in this study. Rather, these six patients had previously
been hospitalized outside of Denmark and after returning to
Denmark for further treatment had been found to be colonized
or infected with isolates belonging to six non-related cgMLST
types. This knowledge of the phylogenetic relationship of the
isolates will be used to benchmark the quality of the final dis-
tance matrix calculated by MINTyper.

Each bacterial isolate was sequenced using both Illumina’s
MiSeq sequencer and Oxford Nanopore’s MinION MK1B se-
quencer. For Illumina sequencing, the DNA was extracted using
the QIAGEN DNeasy Blood & Tissue kit and the library was pre-
pared with the Nextera XT kit. Afterward, sequencing adaptors
were removed and reads end-trimmed to quality Q� 20 using
Trimmomatic v0.36 [7]. For ONT sequencing, the DNA was
extracted with the Beckman Coulter GenFind v2 kit with a
DynaMag-2 magnet. The library was prepared with the 1-D liga-
tion barcoding protocol followed by sequencing with a R9.4.1
flow cell. Base-calling, demultiplexing, and conversion to fastq
format from the raw fast5 reads were done using Albacore
v2.3.4. Sequencing adapters were removed with Porechop v0.2.3
[8]. Finally, quality filtering to Q� 8 was done using NanoFilt [9].
For the high-accuracy Q10 ONT reads, the base-calling was per-
formed with Guppy 3.6.0 with high-accuracy methylation-aware
configuration.

Identification of reference sequence

The Center for Genomic Epidemiology provides a variety of se-
quence databases that are pre-indexed for use with KMA align-
ment and are automatically updated weekly by pulling changes
from NCBI Resource Coordinators [10]. From these, a database
containing a total of 20 377 complete bacterial chromosomal
reference sequences, excluding plasmid sequences, was down-
loaded from: http://www.cbs.dtu.dk/public/CGE/databases/
KmerFinder/version/20201028/bacteria.tar.gz. This database
was searched using KMA v1.3.8 [11] with the “-Sparse” option,
which identifies the reference in the database with the largest
k-mer overlap to a set of query sequences.

Reference-guided multiple alignment

Reads were aligned to the reference using KMA v1.3.8 [11], with
the preset option “-mint2” for the Illumina sequences and “-
mint3” for the ONT sequences. In addition to aligning the reads,
KMA produces a consensus sequence for each sample, where
single positions are signified with upper-case bases at signifi-
cant positions and lower-case bases at positions that did not
fulfill the SNP-calling criteria. These criteria are for the “-mint2”
preset option: reads are mapped unambiguously and positions
have a depth of at least 10, at least 90% support, and are signifi-
cantly over represented using a McNemar test with an a of 0.05.
Whereas for the “-mint3” preset option these criteria are: reads
are mapped unambiguously and positions have a depth of at
least 10, at least 70% support, and are significantly over repre-
sented using a McNemar test with an a of 0.05. These options
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have been verified in an earlier study by Forth et al. [12], reveal-
ing high quality consensus sequences from Nanopore data [12].

Trimming of alignments

Trimming multiple alignments have proven useful when deter-
mining the phylogeny between closely related sequences.
Highly divergent areas are removed in order to select the con-
served blocks determining the clonal relationship between the
isolates [13, 14]. This ensures a phylogeny based on vertical evo-
lution rather than horizontal evolution, where entire blocks of
sequences are inherited in a single evolutionary event. In addi-
tion, this eliminates genomic regions with low sequencing qual-
ity. For outbreak investigation, it is important to ensure a high
specificity over sensitivity in order to distinguish whether a
strain is part of an outbreak or not. Therefore, core-genome
SNPs are identified after trimming of alignments [15, 16].
CCPhylo v0.2.2 was developed to trim the alignments across all
isolates to only include positions that were significant accord-
ing to the SNP calling criteria. Additionally, SNPs located within
a proximity of 10 bases of each other were trimmed away, to re-

duce the effect of hyper-variable regions leading to sub-optimal
alignments and remove regions that likely originated from hori-
zontal evolution [13, 14, 17, 18]. Additionally, DCM-methylation
motifs (CCWGG) were trimmed away from the fast Q8 ONT data,
which was base-called with Albacore, as these motifs constitute
as much as 95% of discrepancies between Illumina and ONT
data according to Grieg et al. [19]. The masking of DNA motifs
provides an additional filtering option in comparison to other
alignment trimmers, whereas the remaining options are either
similar or identical to other tools, such as Gubbins [20].

Clustering and phylogenetic analysis

CCPhylo v0.2.2 was used to identify SNP differences between
the isolates, and perform a subsequent hierarchical clustering
using the Neighbor-Joining algorithm [21]. As an alternative to
Neighbor-Joining, maximum-likelihood trees were generated
using IQtree v2.0.3 [22] with parameters: “-seqtype DNA -seed
256” and FastTree v2.1.11 (compiled with double precision) [23]
with the parameters: “-gtr –nt.”

Performance evaluation and comparison

MINTyper was evaluated on the data set containing 12 E. coli,
where Illumina and ONT sequenced data were treated as sepa-
rate samples to test the cross-platform performance of
MINTyper. MINTyper was compared with MASH v2.2 [24] and
CSIPhylogeny v1.4 [18] to evaluate the performance of
MINTyper compared with other methods. The CPU-time and
peak memory were measured for MASH, CSIPhylogeny, and the
individual parts of the MINTyper pipeline using GNU time v1.7.
Where CSIPhylogeny represents a traditional approach of phy-
logenetic analysis, based on alignment with BWA-MEM [25],
SNP-calling with samtools [26] and BEDTools [27], and phyloge-
netic inference with FastTree [23]. The robustness of the meth-
ods was further validated on three separate data sets with
annotated outbreaks from three separate species, 70
Acinetobacter baumannii [28], 17 Citrobacter freundii [29], and 10
Klebsiella pneumoniae [28], which were all sequenced on the
Illumina platform.

Results and discussion
Automated reference detection

The best matching reference for the dataset of 12 ST410 E. coli
was automatically identified by MINTyper as “E. coli strain
AMA1167 chromosome, complete genome”, both when search-
ing the Illumina and ONT data as a combined dataset and indi-
vidually. This result was anticipated, as this reference sequence
is the published complete genome from the same Danish out-
break that six of the input samples belong to Overballe-Petersen
et al. [30].

Trimming of alignments

The resulting output from running the MINTyper pipeline with
the 12 ST410 E. coli isolates was a distance matrix and a Newick
file for each of the three runs: One using fast Q8 ONT data with
no trimming, one using fast Q8 ONT data with a minimum prox-
imity of 10 bases between SNPs and DCM masking, and one us-
ing hac_m Q10 ONT data along with a minimum proximity of 10
between SNPs and no DCM masking. The DSNP between the
Illumina reads and the ONT MinION reads can be seen in
Table 1.

The results of Table 1 show that 11 out of 12 isolates had
completely identical consensus sequences after DCM masking
and alignment trimming was used with fast base-called Q8
data. Where Ec09_ST410_CT527 had a single SNP discrepancy.

As expected, the hac_m Q10 data no longer had most of the
SNPs caused by the DCM sites. However, Ec07_ST410_CT512,
Ec09_ST410_CT527, Ec11_ST410_CT527, and Ec12_ST410_CT278
had one to three SNP discrepancies each.

Distance matrices after alignment trimming with the prox-
imity: 0, 10, 20, 50, and 100 between called SNPs have been in-
cluded in Supplementary File S1 for the combination of Illumina
with ONT fast Q8 or ONT hac_m Q10, respectively.

Clustering and phylogenetic analysis

The three multiple alignments corresponding to the parameter
setting described in Table 1 were clustered using Neighbor-Joining,

Table 1: overview of the number of SNPs differences between the
consensus sequences generated by sequencing the same isolate on
an Illumina platform and ONT MinION platform without trimming
alignments and DCM methylation masking on fast Q8 data, align-
ment trimming, and DCM methylation masking on fast Q8 data and
alignment trimming but not DCM methylation masking on hac_m
Q10 data

Isolate name DSNP Q8 DSNP Q8 with masking DSNP Q10

Ec01_ST410_CT587 28 0 0
Ec02_ST410_CT587 28 0 0
Ec03_ST410_CT587 28 0 0
Ec04_ST410_CT587 28 0 0
Ec05_ST410_CT587 28 0 0
Ec06_ST410_CT587 28 0 0
Ec07_ST410_CT527 30 0 3
Ec08_ST410_CT611 28 0 0
Ec09_ST410_CT512 29 1 1
Ec10_ST410_CT596 28 0 0
Ec11_ST410_CT523 29 0 3
Ec12_ST410_CT278 34 0 2

Alignment trimming was performed with a minimum distance of 10 between

accepted SNPs.
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and were visualized using FigTree v1.4.4. Without alignment trim-
ming, it is clear that the systematic errors from the different tech-
nologies are stronger than the true relationships between the
samples (see Fig. 1). Trimming the alignments of Illumina and fast
Q8 ONT data, with a minimum distance between accepted SNPs of
10, and masking out DCM methylation-sites revealed the true clus-
tering (see Fig. 2). Each isolate, groups together between sequenc-
ing technologies, and the six outbreak strains (Ec01–Ec06) are
clustered together differentiating them from the remaining iso-
lates (Ec07–Ec12) of the same ST type. This coincide with previous
studies and the epidemiological data that concluded that the iso-
lates Ec01–Ec06 are from the same outbreak, whereas the isolates
Ec07–Ec12 were acquired from different sources in different foreign
countries [6]. Likewise, the clustering of Illumina and hac_m Q10
ONT data revealed the same clustering, where alignment trimming
was performed with a minimum length of 10 between called SNPs

(see Fig. 3). The Newick files from the trees in Figs 1–3 can be seen
in Supplementary File S2. The same topology was achieved using
IQtree and FastTree on the three combinations of Illumina, fast
base-called ONT Q8, and hac_m ONT Q10 data (see Supplementary
File S3). This suggests that the alignments and trimming of align-
ments determine the clustering and phylogeny to a larger degree
than the methods of clustering and phylogeny themselves. This
coincides with the assumptions made by most maximum-likeli-
hood methods, which trust the alignments and are not built to dif-
ferentiate between long closely related sequences, such as this
study contains [22, 23]. For distantly related sequences, the maxi-
mum-likelihood methods will produce more precise results,
whereas the MINTyper pipeline will fail mostly due to the refer-
ence guided multiple alignment that does not account for large
rearrangements of the genome.

Loss of data

When performing either SNP or methylation-motif masking, a
certain part of the data is excluded from the analysis. Since the
errors in the ONT MinION sequences are derived at the se-
quencing/base-calling stage, the best option to make a good
clustering/phylogenetic analysis is to only look at the correctly
sequenced parts of the isolates. In this study, we masked both
insignificant base-calls (lower-case base-call letters), DCM
motifs, and SNPs in proximity of 10 bases of each other. When
using MINTyper with no motif or proximity masking on fast Q8
MinION data, a total of 4183458/4767526 (87.7%) reference-ge-
nome bases were included in the distance matrix. When mask-
ing the DCM motifs and performing proximity masking on fast
Q8 MinION data, a total of 3835782/4767526 (80.5%) bases were
included in the distance matrix.

Naturally, loosing data will lead to a less sensitive result,
where true differences are at risk of being masked out.
However, as was shown in Figs 1–3, we can produce more accu-
rate results when trimming the alignments, even when it
means loosing bases amounting to 8.3% of the included core-ge-
nome positions. Thus, in the case of SNP typing closely related
isolates, it is more important to have a high quality of data
rather than a high coverage of the core genome.
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Figure 1: clustering of sequences from Illumina (denoted int) and fast base-

called Q8 ONT sequences (denoted Q8) of 12 E. coli, based on core genome SNPs

without alignment trimming. Isolates Ec01–Ec06 are from an outbreak in

Denmark, while Ec07–Ec12 originate from different foreign countries.
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Figure 2: clustering of sequences from Illumina (denoted int) and fast base-

called Q8 ONT sequences (denoted Q8) of 12 E. coli, based on core genome SNPs.

SNPs were trimmed away if they were within a proximity of 10, together with

masking of DCM methylation-sites. Isolates Ec01–Ec06 are from an outbreak in

Denmark and Ec07–Ec12 originate from different foreign countries.
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Figure 3: clustering of sequences from Illumina (denoted int) and high-accuracy

methylation-aware (hac_m) base-called Q10 ONT sequences (denoted Q10) of 12

E. coli, based on core genome SNPs. SNPs were trimmed away if they were within

a proximity of 10. Isolates Ec01–Ec06 are from an outbreak in Denmark and

Ec07–Ec12 originate from different foreign countries.

4 | Hallgren et al.

https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpab008#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpab008#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpab008#supplementary-data


If we only employ masking of SNPs within a proximity of 10
and use the methylation-aware high-accuracy Q10 MinION
data, we are able to include 4267999/4767526 (89.5%) bases in
the analysis. As demonstrated in Fig. 3, the structural errors
found in Fig. 1 no longer appear, and a greater fraction of base
pairs is included in the analysis.

Performance evaluation and comparison

To evaluate the performance of MINTypers ability to resolve
outbreaks, we challenged MASH and CSIPhylogeny with the
same combinations of Illumina and ONT data as MINTyper.
MASH was tested with the sketch sizes: 1024, 1048576, and
4194304 in combination with a minimum threshold of k-mer
count of: 1, 2, 8, 16, and 32. For all combinations of sketch size
and minimum k-mer count, MASH were not able to cluster the
outbreak sequences (Ec01–Ec06) together, but clustered mostly
based on sequencing technology (see Supplementary Files S4
and S5). CSIPhylogeny crashed when analyzing both combina-
tions of the ONT data after 4 h with a peak memory of 256 GB.
The crash was due to a malformed bam file, due to a flaw in the
bam-format that cannot handle alignment cigars longer than
65535 operations.

In addition to the test above, MINTyper was tested with a
Nanopore-only assembly as reference, using Unicycler v0.4.8-
beta (minimap2 v2.17-r941, miniasm v0.3-v179, Racon 1.3.1)
with default options [31–34], and concurrent polishing using
Medaka v1.2.1 (minimap2 v2.17-r941, samtools v1.10) with op-
tion “-m r941_min_high_g360” [26, 32], thus skipping the auto-
matic reference identification. Using the Nanopore-only
assembly as reference revealed the same clusters as with the
Illumina-Nanopore hybrid assembly of the “E. coli strain
AMA1167 chromosome, complete genome” reference.
Nanopore-only assembly, distance matrices, and Neighbor-
Joining trees have been included in Supplementary Files S6–S8,
respectively. The computational requirements, in terms of CPU
hours and peak memory, of the different methods are shown in
Table 2. All parts of the MINTyper pipeline can run multi-
threaded, except for the automatic reference identification. This
can drastically lower the wall-time compared with the CPU
time. The automatic reference identification accounted for 3.3–
7.6% of the total run time of MINTyper, and was the component
responsible for the peak memory, except when FastTree was
used to construct the trees. The alignments accounted for most
of the CPU time used by MINTyper, where the Illumina samples
had an average run time of 1.1 CPU-min, the fast base-called
ONT Q8 used 7.9 CPU-min, and the hac_m ONT Q10 used 5.3
CPU-min on average.

Both CSIPhylogeny, MASH, and MINTyper correctly clustered
the A. baumannii data set, while CSIPhylogeny and MINTyper
correctly clustered the C. freundii and K. pneumoniae data sets as
well (see Supplementary Files S9–S11).

Conclusion

After performing separate experiments of MINTyper’s ability to
cluster a set of 12 E. coli isolates with known relationships, it
was found that ONT MinION long reads produced accurate clus-
tering of the outbreak isolates with few discrepancies between
sequencing technologies. This was achieved by employing KMA
alignment, alignment trimming, and DCM-methylation motif-
masking. It was detected that in all 12 isolates the same system-
atic errors occurred in the MinION fast Q8 data. By masking the
DCM motifs and trimming SNPs in close proximity all of these

errors could be removed in 11 out of 12 samples, with only one
SNP discrepancy in the remaining isolate. Running the analysis
using methylation-aware high-accuracy Q10 MinION data, in-
stead of fast Q8 data, lead to one to three SNP discrepancies in
four samples.

Even though the trimming of alignments and the methyla-
tion-motif masking of fast Q8 ONT data resulted in a 8.3% data
reduction, compared with no alignment trimming of the same
data, the clonal clustering improved. When using ONT data of
a higher quality, less alignment trimming were needed, and
thus the methylation-motif masking could be excluded from
the analysis. However, generating MinION data of a quality
greater than fast Q8 can be extremely time consuming, and
thus simply masking out error-generating motifs can be an ef-
fective tool when an urgent clustering is needed. Until the se-
quencing technology improves to allow for consistent, quick,
and precise sequencing and base-calling, MINTyper’s approach
to apply long-read sequencing-data of lesser quality in out-
break detection has proven itself useful in the field of genomic
epidemiology.

Supplementary data

Supplementary data are available at Biology Methods and
Protocols online.

Table 2: computational requirements of tested methods against 12 E.
coli isolates sequenced on Illumina and ONT MinIon with fast base-
called Q8 and high-accuracy methylation-aware Q10 base-calling data

Method Correct
clustering

CPU time
(h:mm:ss)

Peak
memory

Illumina and fast base-called Q8 ONT data
MINTypernj No 1:56:06 10.7 GB
MINTyper1, nj Yes 1:56:08 10.7 GB
MINTyperiq No 2:14:46 10.7 GB
MINTyper1, iq Yes 1:57:58 10.7 GB
MINTyperft No 3:47:52 24.9 GB
MINTyper1, ft Yes 3:34:46 23.9 GB
MINTyper3, nj, * Yes 1:54:56 1.5 GB
MASH5, nj No 0:20:14–0:48:32 2.8 MB–2.3 GB
MASH6, nj No 0:24:06–4:12:51 0.3–11.6 GB
MASH7, nj No 0:44:26–5:03:50 1.3–29.6 GB

Illumina and high-accuracy Q10 ONT data
MINTyper2, nj Yes 1:23:01 10.1 GB
MINTyper2, iq Yes 1:27:47 10.1 GB
MINTyper2, ft Yes 2:54:16 24.1 GB
MINTyper4, nj, * Yes 1:27:48 1.8 GB
MASH5, nj No 0:17:45–0:33:43 3.0 MB–1.2 GB
MASH6, nj No 0:22:16–2:40:07 0.3–5.9 GB
MASH7, nj No 0:41:15–3:28:45 1.3–16.3 GB

1: Alignment trimming; core-genome SNPs with a minimum distance of 10

between called SNPs and DCM-methylation masking, 3: Alignment trimming;

core-genome SNPs with a minimum distance of 10 between SNPs and DCM-

methylation masking, 4: Alignment trimming; core-genome SNPs with a mini-

mum distance of 10 between SNPs, 5: Sketch size of 1024 with minimum k-mer

occurrence thresholds varying from [1–32], 6: Sketch size of 1048576 with mini-

mum k-mer occurrence thresholds varying from [1–32], 7: Sketch size of 4194304

with minimum k-mer occurrence thresholds varying from [1–32], nj: Neighbor-

Joining tree-construction, iq: IQtree was used for tree-construction, ft: FastTree

was used for tree-construction, *Ec01 from the ONT data was assembled with

Unicycler, polished with Medaka, and used as reference.
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Data availability

The source code for MINTyper is available at: https://bitbucket.org/
genomicepidemiology/mintyper.git. A web-server service of
MINTyper is available at:https://cge.cbs.dtu.dk/services/MINTyper/.
The data set used in this article was uploaded to ENA project acces-
sion no. PRJEB38543.
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