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Abstract: Background: Pediatric acute appendicitis (AAP) is a common cause of abdominal
pain in children, yet accurate classification into negative, uncomplicated, and complicated
forms remains clinically challenging. Misclassification may lead to unnecessary surgeries
or delayed treatment. This study aims to evaluate and compare the diagnostic accuracy of
five machine learning models (AdaBoost, XGBoost, Stochastic Gradient Boosting, Bagged
CART, and Random Forest) for classifying pediatric AAP subtypes. Methods: In this
retrospective observational study, a dataset of 590 pediatric patients was analyzed. De-
mographic information and laboratory parameters—including C-reactive protein (CRP),
white blood cell (WBC) count, neutrophils, lymphocytes, and appendiceal diameter—were
included as features. The cohort consisted of negative (19.8%), uncomplicated (49.2%),
and complicated (31.0%) AAP cases. Five ensemble machine learning models (AdaBoost,
XGBoost, Stochastic Gradient Boosting, Bagged CART, and Random Forest) were trained on
80% of the dataset and tested on the remaining 20%. Model performance was evaluated us-
ing accuracy, sensitivity, specificity, and F1 score, with cross-validation employed to ensure
result stability. Results: Random Forest demonstrated the highest overall accuracy (90.7%),
sensitivity (100.0%), and specificity (61.5%) for distinguishing negative and uncomplicated
AAP cases. Meanwhile, XGBoost outperformed other models in identifying complicated
AAP cases, achieving an accuracy of 97.3%, sensitivity of 100.0%, and specificity of 78.3%.
The most influential biomarkers were neutrophil count, appendiceal diameter, and WBC
levels, highlighting their predictive value in AAP classification. Conclusions: ML mod-
els, particularly Random Forest and XGBoost, exhibit strong potential in aiding pediatric
AAP diagnosis. Their ability to accurately classify AAP subtypes suggests that ML-based
decision support tools can complement clinical judgment, improving diagnostic precision
and patient outcomes. Future research should focus on multi-center validation, integrating
imaging data, and enhancing model interpretability for broader clinical adoption.

Keywords: pediatric acute appendicitis; machine learning; ensemble learning; diagnostic
accuracy; predictive biomarkers

1. Introduction

Acute appendicitis (AAP) is one of the most common causes of acute abdominal pain
adult
populations [1-3]. As a frequent and significant clinical condition, AAP poses a sub-

requiring emergency surgical intervention in both pediatric and

stantial burden on healthcare systems worldwide. Despite its high prevalence, the accurate
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diagnosis of AAP remains a considerable challenge due to its variable clinical presentation,
which can mimic other abdominal pathologies. This diagnostic complexity is especially
evident in atypical cases, where symptoms such as mild abdominal discomfort or non-
specific pain may lead to diagnostic uncertainty. Additionally, overlapping symptoms
with conditions like gastroenteritis, urinary tract infections, and gynecological disorders
further complicate the clinical assessment. Delayed or missed diagnosis of AAP has been
associated with an increased risk of severe complications, including perforation, peritonitis,
abscess formation, and sepsis. Such complications have been linked to increased morbidity
and mortality, as well as longer hospital stays and higher healthcare costs. Conversely,
false-positive diagnoses may result in unnecessary appendectomies, which carry potential
surgical risks, postoperative complications, and additional healthcare expenditures [4,5].
Pediatric AAP remains one of the most frequently encountered emergencies in pediatric
surgery, with an estimated incidence of 86 to 151 cases per 100,000 children annually. It
accounts for approximately 1-10% of all pediatric abdominal surgeries and remains a
significant cause of morbidity in this population [6-10]. Early and accurate diagnosis is
crucial to prevent complications such as perforation and peritonitis.

Traditionally, the diagnosis of AAP relies on a combination of clinical examination,
laboratory biomarkers, and imaging techniques. Clinical assessment typically includes
evaluating symptoms such as right lower quadrant pain, fever, nausea, and localized
tenderness. However, these symptoms alone do not suffice for an accurate diagnosis,
as atypical presentations may include vague or diffuse abdominal pain, especially in
elderly, pediatric, and pregnant populations. Laboratory markers such as white blood
cell count (WBC), C-reactive protein (CRP), and the neutrophil-to-lymphocyte ratio (NLK)
are commonly utilized as supportive indicators of inflammation. Elevated WBC and
CRP levels, as well as increased NLR, are frequently observed in AAP patients, yet these
markers lack specificity as similar elevations can occur in other inflammatory or infectious
conditions, such as diverticulitis or pelvic inflammatory disease. Therefore, relying solely
on laboratory parameters may lead to diagnostic inaccuracies, especially in ambiguous
cases. Imaging techniques are crucial for confirming the diagnosis, particularly when
clinical and laboratory findings are inconclusive. Ultrasonography (US) is typically the
first-line imaging modality, particularly favored in pediatric and pregnant populations
due to its non-invasiveness and absence of ionizing radiation. Despite its advantages, US
is highly operator-dependent, and its accuracy may be compromised by factors such as
obesity or bowel gas. Computed tomography (CT) remains the most sensitive and specific
imaging method for diagnosing AAP in adults, providing detailed visualization of the
appendix and surrounding structures. However, concerns regarding radiation exposure
limit its routine use in younger patients and pregnant women. Magnetic resonance imaging
(MRI) offers a reliable alternative, particularly in pregnant patients, as it avoids radiation.
However, its limited availability and prolonged acquisition times often make it less practical
in acute emergency settings. Variability in imaging interpretation among practitioners
further complicates the diagnostic process, highlighting the need for standardized protocols
and training.

Recent advancements in diagnostic strategies have aimed to address these challenges
by integrating machine learning (ML) and artificial intelligence (AI) into clinical prac-
tice [11]. ML algorithms, known for their ability to process large datasets and recognize
complex patterns, have demonstrated significant potential in disease classification and
prediction [12,13]. Various studies have explored the application of ML in AAP diagnosis,
yielding promising results in enhancing diagnostic precision and minimizing unnecessary
surgical interventions. In recent years, explainable ML models incorporating ultrasound
imaging have attracted attention for their potential to improve diagnostic processes in cases
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of suspected AAP. When applied to adult cohorts, these approaches have achieved high
diagnostic accuracy in distinguishing AAP from other causes of abdominal pain. On the
other hand, two different studies focused on pediatric patients and developed explainable
ML approaches that not only predict AAP diagnosis but also management strategies and
disease severity. These studies highlight the growing importance of explainable Al in
supporting clinical decision-making processes across different age groups [14-16].

Despite these promising developments, there remains a gap in the literature regarding
the comparative performance of different ML models in pediatric AAP diagnosis [16-19].
Although individual models like XGBoost and Random Forest (RF) have demonstrated
efficacy, there is a lack of comprehensive studies comparing multiple models within the
same clinical context. Addressing this gap is crucial, as identifying the most accurate and
clinically applicable model could significantly enhance diagnostic workflows and patient
outcomes. The objective of this study is to evaluate and compare the diagnostic performance
of five ensemble ML algorithms—AdaBoost, XGBoost, Stochastic Gradient Boosting (SGB),
Bagged CART, and RF—in distinguishing between negative, uncomplicated, and compli-
cated cases of pediatric AAP. Using routinely collected clinical and laboratory biomarkers,
each model was trained and tested to assess its classification accuracy, sensitivity, specificity,
and overall clinical utility. By systematically applying and validating these ML models,
the study aims to identify the most effective computational approach to support early and
accurate diagnosis in pediatric AAP, which may assist in clinical decision-making and
potentially reduce the risk of unnecessary surgical interventions.

2. Materials and Methods
2.1. Dataset

This retrospective observational study utilized an open-access dataset originally col-
lected at the Department of Pediatric Surgery, Charité-Universitidtsmedizin Berlin. We
included patients younger than 18 years who underwent appendectomy between Decem-
ber 2006 and September 2016 [1]. The dataset comprises information on 590 pediatric
patients who underwent surgery for suspected AAP. Medical records were reviewed as
part of the dataset creation process, including demographic variables (age and gender) and
standard diagnostic parameters such as CRP levels, complete blood cell counts, ultrasound
findings (including appendiceal diameter), and postoperative histopathological results.

Inclusion criteria involved pediatric patients with complete clinical and laboratory
records and histopathologically confirmed diagnoses categorized as negative, uncompli-
cated, or complicated AAP. Exclusion criteria included missing histopathology or laboratory
data, the presence of chronic comorbidities, secondary or elective appendectomies, and
other appendix-related pathologies such as oxyuriasis and carcinoid tumors.

The dataset was curated through retrospective chart review and anonymized prior to
public release. As the primary aim of the original study was the development of diagnostic
classification models, no postoperative or long-term follow-up data were collected or
analyzed. Ethical approval was obtained in the original study. The present work adheres
to the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology)
guidelines, with explicit reporting of study design, inclusion and exclusion criteria, data
collection period, and data sources.

2.2. Machine Learning and the Models Used in the Study

ML has developed as a revolutionary technology in multiple fields, allowing com-
puters to learn from data and enhance their performance progressively [20]. The practical
applications of ML are extensive and diverse. Healthcare professionals utilize ML algo-
rithms to identify diseases, predict patient outcomes, and tailor treatment approaches.
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Research has shown the effectiveness of ML in identifying illnesses, including melanoma
and heart disease, highlighting its capacity to improve clinical decision-making [21-23].
The capacity of ML to swiftly and precisely assess extensive datasets renders it an indis-
pensable asset in these scenarios. There are many ML algorithms. This study employed
AdaBoost, XGBoost, Stochastic Gradient Boosting, Bagged CART, and RF algorithms. All
of these algorithms are leading ensemble learning techniques with unique features and
applications in ML.

In this study, the primary outcome was the diagnostic performance of five ensemble-
based ML algorithms—AdaBoost, XGBoost, Stochastic Gradient Boosting (SGB), Bagged
Classification and Regression Trees (CART), and RF—in classifying pediatric AAP cases into
negative, uncomplicated, and complicated categories. Model performance was assessed
separately for each binary classification task using standard evaluation metrics, including
accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value
(NPV), and F1 score.

As secondary outcomes, the most relevant clinical and laboratory features contributing
to model predictions were identified through variable importance analysis. Feature impor-
tance values were computed within each algorithm and normalized by assigning a score of
100 to the most influential variable, enabling relative comparisons among all predictors.
These normalized scores provided insights into which biomarkers—such as neutrophil
count, appendiceal diameter, and CRP—had the greatest impact on the classification of
AAP subtypes.

2.3. AdaBoost (Adaptive Boosting)

AdaBoost (Adaptive Boosting) is an ensemble technique that integrates several weak
classifiers to form a robust classifier. AdaBoost operates by sequentially implementing
weak classifiers on the training data, focusing on cases misclassified in previous iterations.
This iterative procedure modifies the weights of the training samples, assigning greater
significance to those that are challenging to categorize. AdaBoost has demonstrated consid-
erable efficacy across several applications, attaining high accuracy in tasks including face
detection and the classification of imbalanced datasets [24,25].

2.4. XGBoost (Extreme Gradient Boosting)

XGBoost (Extreme Gradient Boosting) is a sophisticated implementation of gradient
boosting that enhances both speed and performance. It utilizes a gradient descent approach
to reduce the loss function, rendering it very efficient for extensive datasets. XGBoost em-
ploys regularization approaches to mitigate overfitting; hence, it improves its generalization
abilities relative to conventional boosting algorithms [26].

2.5. SGB (Stochastic Gradient Boosting)

SGB is a form of gradient boosting that incorporates randomness into the model
training procedure. Randomly selecting a data subset for each iteration mitigates the danger
of overfitting and enhances the model’s robustness. This stochastic method facilitates
expedited training durations and may enhance generalization on unfamiliar material [26].

2.6. Bagged CART (Bagged Classification and Regression Trees)

Bagged CART (Bagged Classification and Regression Trees) is an ensemble technique
that uses bootstrap aggregating (bagging) to enhance the stability and precision of decision
trees. This method involves training several decision trees on various data subsets, with
their predictions averaged for regression or subjected to voting for classification to generate
a final output. Bagging diminishes variance and alleviates overfitting, rendering it a reliable
option for numerous classification and regression problems [26].
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2.7. Random Forest (RF)

RF is an enhancement of the bagging method that constructs numerous decision
trees and consolidates their results. In contrast to Bagged CART, RF incorporates extra
randomization by choosing a random subset of characteristics for each split in the decision
trees. This feature selection technique increases variety within the trees, resulting in
enhanced accuracy and resilience against overfitting [26]. In conclusion, the ensemble
learning models utilized in this study—AdaBoost, XGBoost, Stochastic Gradient Boosting
(SGB), Bagged CART, and RF—are designed to improve predictive accuracy and model
stability by combining multiple base learners.

AdaBoost works by sequentially training weak classifiers, typically decision stumps,
and adjusting the weights of misclassified instances in each iteration to focus on the most
challenging cases. XGBoost and Stochastic Gradient Boosting (SGB) both build trees sequen-
tially, with each new tree trained to correct the residual errors of the previous ensemble.
They use gradient descent optimization to minimize a loss function, allowing them to model
complex, non-linear relationships. XGBoost adds regularization to prevent overfitting and
is highly efficient in handling sparse data. Bagged CART generates multiple versions
of a decision tree using bootstrap sampling and aggregates their predictions (typically
by majority voting for classification) to reduce variance and enhance generalization. RF
extends bagging by adding random feature selection at each split in the decision tree, which
increases model diversity and further reduces overfitting.

Overall, these models function by combining the strengths of individual learners—
either sequentially (boosting) or in parallel (bagging)—to build more accurate and gen-
eralizable classifiers. Their collective ability to handle high-dimensional data, capture
complex feature interactions, and reduce variance or bias makes them particularly suitable
for clinical classification tasks such as differentiating AAP subtypes.

2.8. Modeling Phase

We divided the data set into 80% training data and 20% test data for the mentioned
models. This study employed the n-fold cross-validation technique, a resampling method,
to ascertain the model’s validity. The n-fold cross-validation technique involves dividing
the dataset into n subsets and then applying the model to each subset. In the next step, we
allocate one component from the total of n components for testing and use the remaining
n — 1 components for training. We assess the cross-validation approach in the last stage by
computing the mean of the values obtained from the models. We assessed the modeling
performance using various metrics such as accuracy (ACC), balanced accuracy (b-ACC),
sensitivity (SE), specificity (SP), PPV, NPV, and F1 score. Finally, the modeling yielded
variable importance values, allowing us to identify the variables that have the greatest
influence on the target. Variable importance scores were normalized such that the most
influential feature in each model was scaled to 100, and all other features were assigned
values relative to this maximum.

2.9. Study Protocol and Ethics Committee Approval

This observational study involving human participants utilized an open-access dataset
and was conducted in full compliance with both institutional and national ethical standards,
including the principles of the 1964 Declaration of Helsinki and its subsequent revisions or
equivalent ethical guidelines. Ethical approval was obtained from the Inonu University
Institutional Review Board (IRB) for non-interventional clinical research (Approval No:
2025/7441). The methodological rigor and risk of bias were assessed using the STROBE
(Strengthening the Reporting of Observational Studies in Epidemiology) statement [27].
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2.10. Biostatistical Analyses

We used IBM SPSS Statistics for Windows, version 25.0 (IBM Corporation, Armonk,
NY, USA), for statistical analysis. We summarized the data in the study using the median
(95% confidence interval) and count (percentage). Normality was checked with Kolmogorov
Smirnov. We used the Mann-Whitney U test to compare the groups. In statistical analyses,
p < 0.05 was considered significant.

3. Results

The study analyzed data from 590 pediatric patients who underwent surgery with
a diagnosis of AAP. Table 1 presents the distribution of the patients” gender and their
classification into respective groups. Table 1 shows that 80.2% of the patients received
an AAP diagnosis, while 19.8% received a negative diagnosis. Among the AAP cases,
subgroup analysis revealed that 31.0% of patients had a complicated AAP, whereas 49.2%
had an uncomplicated AAP. As previously noted, the negative AAP rate was 19.8%. Gender
distribution analysis indicated that males comprised 54.9% of the cohort, while females
accounted for 45.1%.

Table 1. Qualitative variables of entire study population.

Variables (Median (95% CI)) Categories Results [n (%)]
AAP 473 (80.2)
Main groups .
Negative AAP 117 (19.8)
Complicated AAP 183 (31.0)
Subgroups Uncomplicated AAP 290 (49.2)
Negative AAP 117 (19.8)
Male 324 (54.9)
Gender Female 266 (45.1)

AAP: Acute appendicitis, CI: Confidence interval.

Table 2 provides a detailed overview of the demographic characteristics and bio-
chemical blood parameters of the patients. The median age of the patients was
11 years, with a confidence interval level (95% CI) ranging from 11 to 12 years. Eval-
uation of laboratory findings yielded the following median values: CRP at 12.5 mg/L
(95% CI: 9.7-15.5), platelets at 272 x 10°/L (95% CI: 265-279), WBC at 13.4 x 10°/L
(95% CI: 13.1-14.1), neutrophils at 10.7 x 10° /L (95% CI: 10.4-11.2), immature granulocytes
at0.04 x 10%/L (95% CI: 0.04-0.05), lymphocytes at 1.62 x 10°/L (95% CI: 1.52-1.68), mono-
cytes at 0.92 x 10° /L (95% CI: 0.88-0.96), eosinophils at 0.04 x 10° /L (95% CI: 0.04-0.06),
and basophils at 0.03 x 10°/L (95% CI: 0.03-0.04). Additionally, we measured the median
diameter of the appendix vermiformis at 9 mm (95% CI: 9-10 mm).

Table 3 presents the demographic, clinical, and laboratory data for the negative AAP
group and the uncomplicated AAP group. In comparisons between negative and uncom-
plicated AAP groups, the uncomplicated group exhibited significantly higher values for
age, CRP, WBC, neutrophils, immature granulocytes, monocytes, and appendix diameter.
In contrast, lymphocytes and eosinophils were significantly elevated in the negative group.
No statistically significant differences were found in platelet and basophil counts.
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Table 2. Quantitative variables of entire study population.
Variables (Median (95% CI)) Results
Age (years) 11 (11-12)
CRP (mg/L) 12.5 (9.7-15.5)
Platelets (x10° /L) 272 (265-279)
WBC (x10°/L) 13.4 (13.1-14.1)
Neutrophils (x10% /L) 10.7 (10.4-11.2)
Immature granulocytes (x 10°/L) 0.04 (0.04-0.05)
Lymphocytes (x 10°/L) 1.62 (1.52-1.68)
Monocytes (X 10°/1) 0.92 (0.88-0.96)
Eosinophils (x10? /L) 0.04 (0.04-0.06)
Basophils (x 107 /L) 0.03 (0.03-0.04)
Appendix diameter (mm) 9 (9-10)

CRP: C-reactive protein, WBC: White blood cell count, CI: Confidence interval.

Table 3. Negative versus uncomplicated AAP.
Variables (Median (95% CI)) Negative App Uncomplicated p
Age 13 (13-15) 11 (11-12) <0.001
CRP 3 (2.5-5.5) 7.9 (6.3-9.7) <0.001
Platelets 263 (245-281) 274 (264-283) 0.156
WBC 9.1 (8.6-10.5) 13.5(13.2-14.3) <0.001
Neutrophils 5.8 (5.1-6.6) 10.7 (10.3-11.5) <0.001
Immature granulocytes 0.02 (0.02-0.03) 0.05 (0.05-0.06) <0.001
Lymphocytes 2.07 (1.94-2.29) 1.66 (1.55-1.77) <0.001
Monocytes 0.73 (0.65-0.79) 0.90 (0.84-0.97) <0.001
Eosinophils 0.10 (0.08-0.16) 0.05 (0.04-0.07) <0.001
Basophils 0.03 (0.03-0.04) 0.03 (0.03-0.04) 0.717
Appendix diameter (mm) 7 (7-8) 9 (9-10) <0.001

CRP: C-reactive protein, WBC: White blood cell count, CI: Confidence interval.

Table 4 indicates the modeling results for negative and uncomplicated AAP groups with

the five ML algorithms mentioned. For distinguishing negative vs. uncomplicated AAP, RF

achieved the highest overall performance, with 90.7% accuracy and perfect sensitivity.

Table 4. Modeling results for negative versus uncomplicated AAP.

AdaBoost XGBoost SGB  Bagged CART Random Forest
Accuracy 85.2 87.0 85.2 88.9 90.7
iilcﬁi‘i‘; 71.9 75.7 79.7 82.2 80.8
Sensitivity 97.6 97.6 90.2 95.1 100.0
Specificity 462 53.8 69.2 69.2 615
PPV 85.1 87.0 90.2 90.7 89.1
NPV 85.7 875 69.2 81.8 100.0
F1 Score 90.9 92.0 90.2 92.9 94.3

SGB: Stochastic Gradient Boosting, PPV: positive predictive value; NPV: negative predictive value.
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Table 5 evaluates the results of variables” importance levels in distinguishing negative
and uncomplicated AAP groups for RF, the algorithm with the highest model performance.
Figure 1 also presents it graphically. Table 5 clearly identifies neutrophils as the most
significant factor, with a variable importance value of 100. Appendix diameter, with a
value of 94.668, closely follows the neutrophilia, while WBC, with a value of 92.1, is also
considered an important variable. The values of CRP, at 69.654, and those of lymphocytes
and platelets, at 69.593, indicate a moderate level of importance. Monocytes contribute
at a similar level with values of 69.184, and immature granulocytes with values of 67.364.
The variables with lower importance values are eosinophils (59.088), age (53.51), platelets
(51.716), and basophils (26.395). As a result, neutrophils, appendix diameter, and WBC
stand out as the most important determinants in distinguishing negative and uncomplicated
AAP. In particular, inflammatory markers and appendix diameter play a critical role in
terms of differential diagnosis.

Negative vs Uncomplicated AAp
120
100 100
100 )
90.7 90.7 i
82.2
80
69.2
60
40
20
0
Accuracy Balanced Sensitivity Specificity PPV NPV F1 Score
Accuracy
m AdaBoost XGBoost mSGB mBagged CART mRandom Forest

Figure 1. Comparison of negative and uncomplicated AAP groups based on five ML models. SGB:
Stochastic Gradient Boosting.

Table 6 presents the demographic, clinical, and laboratory data for the negative AAP
group and the complicated AAP group. In comparisons between negative and complicated
AAP groups, the complicated group exhibited significantly higher values for age, CRP,
platelets, WBC, neutrophils, immature granulocytes, monocytes, and appendix diameter.
Conversely, lymphocytes, eosinophils, and basophils were elevated in the negative group.

According to Table 7, XGBoost demonstrated the highest performance among all five
ML algorithms in classifying negative and complicated AAP groups. The model achieved
97.3% accuracy, 100% sensitivity, 100% NPV, and a 93.5% F1 score. These results indicate
that XGBoost provides excellent predictive capability for both positive and negative cases,
making it the most reliable model for distinguishing between negative and complicated
AAP cases. Table 8 evaluates the results, showing the importance levels of the variables in
distinguishing negative and complicated AAP groups for XGBoost, the algorithm with the
highest model performance. Figure 2 graphically presents it.
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Table 5. Variables” importance for negative versus uncomplicated AAP.
Variables Variable Importance
Neutrophils 100
Appendix diameter (mm) 94.668
WBC 92.1
CRP 69.654
Lymphocytes 69.593
Monocytes 69.184
Immature granulocytes 67.364
Eosinophils 59.088
Age 53.51
Platelets 51.716
Basophils 26.395

CRP: C-reactive protein, WBC: White blood cell count.

Table 6. Negative versus complicated AAP.
Variables (Median (95% CI)) Negative App Complicated 2
Age 13 (13-15) 10 (10-11) <0.001
CRP 3(2.5-5.5) 42.6 (35.2-58) <0.001
Platelets 263 (245-281) 278 (265-295) 0.038
WBC 9.1 (8.6-10.5) 15.3 (14.7-16.5) <0.001
Neutrophils 5.8 (5.1-6.6) 12.8 (12.0-13.7) <0.001
Immature granulocytes 0.02 (0.02-0.03) 0.05 (0.05-0.06) <0.001
Lymphocytes 2.07 (1.94-2.29) 1.25 (1.14-1.4) <0.001
Monocytes 0.73 (0.65-0.79) 1.1 (1.02-1.18) <0.001
Eosinophils 0.10 (0.08-0.16) 0.010 (0.01-0.02) <0.001
Basophils 0.03 (0.03-0.04) 0.02 (0.02-0.03) 0.009
Appendix diameter (mm) 7 (7-8) 10 (10-11) <0.001

CRP: C-reactive protein, WBC: White blood cell count, CI: Confidence interval.

Table 7. Modeling results for negative versus complicated AAP.

AdaBoost XGBoost SGB  Bagged CART Random Forest

Accuracy 84.7 97.3 89.2 91.5 89.8
Balanced Accuracy 83.6 89.1 86.4 91.5 88.5
Sensitivity 88.9 100.0 95.8 91.7 94.4
Specificity 78.3 78.3 76.9 91.3 82.6
PPV 86.5 87.8 88.5 94.3 89.5
NPV 81.8 100.0 90.9 87.5 90.5
F1 Score 87.7 93.5 92.0 93.0 91.9

SGB: Stochastic Gradient Boosting, PPV: positive predictive value; NPV: negative predictive value.
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Table 8. Variables” importance for negative versus complicated AAP.

Variables Variable Importance
Appendix diameter (mm) 100
CRP 71.5
WBC 56.0
Neutrophils 444
Monocytes 359
Platelets 7.3
Eosinophils 7.3
Lymphocytes 6.9
Basophils 4.3
Immature granulocytes 3.5

CRP: C-reactive protein, WBC: White blood cell count.

Negative vs Complicated AAp

120

100 94.3
80
60
40
20
0

Accuracy Balanced Sensitivity Specificity
Accuracy
m AdaBoost XGBoost ®mSGB mBagged CART

100
93.5
F1 Score
® Random Forest

Figure 2. Comparison of negative and complicated AAP groups based on five ML models. SGB:

Stochastic Gradient Boosting.

Table 8 reveals that appendix diameter has the highest significance at 100%, indicating

its crucial role in differentiating between negative and complicated AAP groups. CRP,

at 71.5%, is a significant variable, suggesting that elevated

levels of inflammation are

indicative of complicated AAP. WBC (56.0%) and neutrophils (44.4%) are also significant
parameters that effectively determine inflammation and complications. Other biochemical

parameters had lower significance and were less decisive compared to appendix diameter

and CRP.

Table 9 presents the demographic, clinical, and laboratory data for the uncompli-

cated AAP and complicated AAP groups. In comparisons between the two groups, the

complicated AAP group exhibited significantly higher values

for CRP, WBC, neutrophils,

immature granulocytes, monocytes, and appendiceal diameter, as well as age. In con-

trast, the uncomplicated AAP group showed significantly higher levels of lymphocytes,

eosinophils, and basophils. These findings suggest that inflammatory markers and im-

mune cell profiles may play a critical role in differentiating between uncomplicated and

complicated AAP cases.
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Table 9. Uncomplicated versus complicated AAP.

Variables (Median (95% CI)) Uncomplicated Complicated P
Age 11 (11-12) 10 (10-11) 0.003
CRP 7.9 (6.3-9.7) 42.6 (35.2-58) <0.001
Platelets 274 (264-283) 278 (265-295) 0.277
WBC 13.5(13.2-14.3) 15.3 (14.7-16.5) <0.001
Neutrophils 10.7 (10.3-11.5) 12.8 (12.0-13.7) <0.001
Immature granulocytes 0.05 (0.05-0.06) 0.05 (0.05-0.06) 0.002
Lymphocytes 1.66 (1.55-1.77) 1.25(1.14-1.4) <0.001
Monocytes 0.9 (0.84-0.97) 1.1 (1.02-1.18) <0.001
Eosinophils 0.05 (0.04-0.07) 0.01 (0.01-0.02) <0.001
Basophils 0.03 (0.03-0.04) 0.02 (0.02-0.03) 0.005
Appendix diameter (mm) 9 (9-10) 10 (10-11) <0.001

CRP: C-reactive protein, WBC: White blood cell count, CI: Confidence interval.

Table 10 shows that XGBoost achieved the best performance in distinguishing uncom-
plicated and complicated AAP cases, with 80% accuracy, 78.1% balanced accuracy, and a
72.3% F1 score. The model also demonstrated strong predictive ability with 70.8% sensitiv-
ity, 85.4% specificity, 73.9% PPV, and 83.3% NPV, making it the most effective algorithm for
this classification task.

Table 10. Modeling results for uncomplicated versus complicated AAP.

AdaBoost

XGBoost

SGB

Bagged CART

Random Forest

Accuracy

70.8 (67.0-74.3)

80.0 (76.6-83.0)

75.4 (71.8-78.7)

75.4 (71.8-78.7)

75.4 (71.8-78.7)

Balanced Accuracy

66.5 (63.9-69.0)

78.1 (75.8-80.4)

74.4 (71.9-76.9)

71.0 (68.6-73.4)

71.8 (69.4-74.3)

Sensitivity 50.0 (46.0-54.0) 70.8 (67.0-74.3) 70.8 (67.0-74.3) 54.2 (50.2-58.2) 58.3 (54.3-62.2)
Specificity 82.9 (79.7-85.7) 85.4 (82.3-88.0) 78.0 (74.5-81.2) 87.8 (84.9-90.2) 85.4 (82.3-88.0)
PPV 63.2 (59.2-67.0) 73.9 (70.2-77.3) 65.4 (61.5-69.1) 72.2 (68.5-75.7) 70.0 (66.2-73.6)
NPV 73.9 (70.2-77.3) 83.3 (80.1-86.1) 82.1 (78.8-85.0) 76.6 (73.0-79.8) 77.8 (74.3-81.0)
F1 Score 55.8 (51.8-59.8) 72.3 (68.6-75.8) 68.0 (64.1-71.6) 61.9 (57.9-65.7) 63.6 (59.6-67.4)

SGB: Stochastic Gradient Boosting, PPV: positive predictive value; NPV: negative predictive value.

Table 11 evaluates the results, showing the importance of variables in distinguishing
complicated and uncomplicated AAP groups for XGBoost, the algorithm with the highest
model performance. Figure 3 graphically presents it. According to the table, CRP stands
out as the variable with the highest significance at 100%, indicating that inflammation levels
play a crucial role in distinguishing between complicated and uncomplicated AAP groups.
Eosinophils (42.8%) and monocytes (19.1%) are among the lower but significant variables,
while age (14.0%) and WBC (13.8%) also contribute to determining some differences. These
results indicate that CRP is the most critical parameter, with other biochemical variables
playing an important role, albeit proportionally much less.
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Table 11. Variables” importance for uncomplicated versus complicated AAP.

Variables Variable Importance
CRP 100
Eosinophils 42.8

Monocytes 19.1
Age 14.0

WBC 13.8
CRP: C-reactive protein, WBC: White blood cell count.

Uncomplicated vs Complicated AAp

9
PPV

m AdaBoost XGBoost ESGB mBagged CART #®Random Forest

100

87.8
90 83.3

||| 72.3
NPV

F1 Score

3
<

(=N}
=]

w
(=]

4

80 78.1
73
“‘ | |
0 | ““ I‘l‘ |

Accuracy Balanced Sensitivity Specificity
Accuracy

(=]

[%%)
(=3

D>
<

=

Figure 3. Comparison of uncomplicated and complicated AAP groups based on five ML models.
SGB: Stochastic Gradient Boosting.

4. Discussion

Given the diagnostic complexity and the clinical burden of pediatric AAP, along with
the risk of serious complications arising from delayed or inaccurate diagnosis, there is an
urgent need for improved and timely diagnostic strategies—particularly in pediatric popu-
lations. Early and accurate diagnosis is crucial to prevent complications such as perforation
and peritonitis. This underscores the necessity of advancing diagnostic methodologies,
particularly through the integration of ML models into clinical workflows to enhance
decision-making and efficiency. The evolving role of Al and ML in healthcare has opened
new frontiers in diagnostic precision. This study assessed five ML models—AdaBoost,
XGBoost, SGB, Bagged CART, and RF—within the context of pediatric AAP. Notably, the
RF model exhibited superior performance in distinguishing negative and uncomplicated
AAP cases, achieving an accuracy of 90.7%, sensitivity of 100.0%, and specificity of 61.5%.
Meanwhile, XGBoost emerged as the most reliable model for classifying complicated AAP
cases, with an accuracy of 97.3%, sensitivity of 100.0%, and specificity of 78.3%. These find-
ings underscore the advantages of ensemble learning techniques, which combine multiple
weak classifiers to enhance overall predictive accuracy and refine patient stratification. Im-
portantly, key hematological and clinical biomarkers, such as neutrophil count, appendiceal
diameter, and WBC count, played a crucial role in predictive accuracy.
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Our findings align with and extend the prior literature on ML-driven diagnostic tools
in pediatric AAP. Marcinkevics et al. [16] emphasized the potential of ML models in im-
proving diagnostic accuracy using ultrasound images, showing that deep learning-based
segmentation could enhance radiological assessment. Meanwhile, Reismann et al. [1]
highlighted the viability of Al-based classification approaches in pediatric AAP diagnosis,
but their study was limited to a narrower dataset and lacked a comparative evaluation of
different ML models. Unlike these studies, our research provides a direct comparative anal-
ysis of multiple ML algorithms applied to a large dataset, allowing a more comprehensive
assessment of model performance in real-world clinical scenarios. Most existing studies
emphasize single-model implementation, limiting their ability to capture the compara-
tive strengths and weaknesses of various ML approaches. In contrast, our study directly
evaluates multiple ML algorithms, offering a broader perspective on their diagnostic capa-
bilities. A comparative approach is essential for identifying the strengths and weaknesses
of different models in real-world clinical applications, as no single algorithm performs
optimally across all diagnostic tasks. By evaluating multiple models, we provide insights
into which algorithms are most suitable for specific patient subgroups and clinical scenarios,
ultimately advancing the precision and reliability of ML-based decision support tools in
pediatric AAP diagnosis. This approach strengthens the growing evidence that ML-based
decision support tools could refine clinical workflows, minimize misdiagnoses, and reduce
unnecessary surgical interventions. Nevertheless, while ML models can augment clinical
decision-making, it is crucial to recognize that their efficacy is contingent upon data quality,
patient demographics, and model optimization.

Recent systematic reviews have consistently demonstrated the effectiveness of ML in
the diagnosis of AAP, particularly through the use of laboratory markers such as CRP, WBC,
and neutrophil count [28,29]. While Lam et al. [29] systematically reviewed various Al mod-
els, including logistic regression, random forests, and neural networks, their study mainly
summarized existing models without providing a direct head-to-head comparison of multi-
ple ensemble algorithms. In contrast, our study offers a comparative evaluation of several
ensemble-based machine learning algorithms, demonstrating their superior performance in
classifying AAP subtypes. This positions our research beyond previous work by not only
confirming the importance of inflammatory biomarkers but also validating their predictive
value across various advanced ML techniques. Meanwhile, Bianchi et al. [30] reviewed the
application of Al techniques in the diagnosis and management of AAP, including studies
that integrated machine learning with imaging modalities such as ultrasound and CT,
highlighting their potential to improve diagnostic accuracy. Hsieh et al. [31] compared tra-
ditional scoring systems such as the Alvarado Score with multiple machine learning-based
models, including random forest, support vector machines, artificial neural networks, and
logistic regression, demonstrating that ML algorithms, particularly ensemble methods like
random forest, achieved superior diagnostic performance (AUC = 0.98 for RF vs. 0.77 for Al-
varado). Their findings highlight the potential value of advanced machine learning models
over conventional scoring systems in improving the accuracy of AAP diagnosis. However,
their study focused primarily on single learner models, random forest and did not incor-
porate ensemble learning techniques, which have been shown to provide higher accuracy
and robustnes. Our findings extend this understanding by demonstrating that ensemble
methods such as RF and XGBoost outperform traditional approaches, further solidifying
the role of ML in pediatric AAP diagnosis. Chekmeyan et al. [32] discussed challenges in
the clinical integration of ML models, stressing the need for improved interpretability and
physician acceptance—issues that align with our own observations about the real-world
applicability of ML in pediatric AAP. The present study can be compared with the recent
work by Males et al. [19], who developed an explainable ML model to reduce the rate
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of negative appendectomies in pediatric patients with a high pre-test probability of AAP.
Their model, based on XGBoost and SHAP, focused on binary classification and decision
support in patients already classified as likely to have AAP, aiming to reduce unnecessary
surgeries. In contrast, our study addressed the broader challenge of differentiating between
negative, uncomplicated, and complicated AAP cases at the time of presentation, using
five ensemble learning algorithms and clinical/laboratory variables without incorporating
imaging data. While Male et al. [19] prioritized interpretability and clinical trust in high-risk
decision-making, our work focused on performance benchmarking across ensemble models
and identifying key predictive biomarkers through feature importance analysis. Notably,
both studies emphasize the utility of ML in pediatric AAP management and support its
integration into clinical workflows. However, our multiclass approach offers additional
value in stratifying disease severity, which may inform not only the decision to operate but
also the urgency and modality of treatment.

Bianchi et al. [30] emphasized that integrating imaging data with ML models enhances
the reliability of diagnostic predictions, favoring hybrid models that combine clinical and
radiological features. In contrast to Bianchi et al. [30], our research relies exclusively on
readily accessible, cost-effective clinical and hematological biomarkers—such as CRP, WBC,
and neutrophil count—without incorporating any imaging data. Despite this, our models
achieved comparable or superior diagnostic performance, particularly with ensemble meth-
ods like RF and XGBoost. This distinction underscores the novelty and practical significance
of our work. It demonstrates that high diagnostic accuracy in pediatric AAP classification
can be achieved without the reliance on imaging, which is often operator-dependent, expen-
sive, or unavailable in low-resource settings. By showing that biochemical markers alone
are sufficient for effective ML-based diagnosis, our study not only supports but extends
the existing literature by providing a cost-efficient and scalable diagnostic alternative. This
contribution is especially relevant in emergency and rural clinical environments, where
rapid and reliable diagnosis without advanced imaging can significantly impact patient
outcomes and healthcare resource allocation. Hsieh et al. [31] demonstrated that machine
learning models achieved superior diagnostic performance compared to traditional clinical
scoring systems, with random forest emerging as the most accurate and reliable model in
distinguishing patients with and without AAP. Finally, Chekmeyan et al. [32] suggested
that while ML models show promise, real-world application remains limited by the need
for model transparency and clinician trust in Al-driven decision-making.

This study offers several distinctive contributions. First, by comparing five ML mod-
els, we provide a more granular understanding of algorithmic efficacy in pediatric AAP
diagnosis. Second, the study benefits from a substantial dataset comprising 590 pediatric
patients, enhancing generalizability. Third, our integration of hematological and biochemi-
cal parameters—such as CRP, WBC, and neutrophil count—demonstrates the potential of
ML models in leveraging routinely available laboratory markers for enhanced diagnostic
accuracy. Finally, the implementation of cross-validation techniques ensures the reliabil-
ity and robustness of our findings, distinguishing this study from prior work that lacks
rigorous validation frameworks.

4.1. Challenges and Limitations

Despite its strengths, this study has inherent limitations that impact the interpretation
and applicability of its findings. The single-center nature of the dataset may restrict the
generalizability of the results, limiting their applicability to broader populations with
varying demographic or clinical characteristics. Additionally, the lack of imaging-based
parameters, such as ultrasound or CT findings, constrains the model’s ability to fully mimic
real-world clinical decision-making, where such tools are integral.
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Although the sample size may appear relatively limited, this study utilized a fully
curated and anonymized open-access dataset made publicly available by the Department
of Pediatric Surgery, Charité-Universitdtsmedizin Berlin. The dataset comprises pediatric
patients who underwent appendectomy between December 2006 and September 2016
and represents the finalized and complete version released by the data custodians. No
additional patient data beyond 2016—particularly for the years 2017 to 2024—were included
in the open-access release and, therefore, were not accessible for analysis. As a result, the
study period and sample size were inherently limited by the structure and temporal scope
of the publicly accessible dataset, which included only cases recorded between 2006 and
2016. Despite this limitation, the dataset remains one of the largest and most detailed
open-access resources for pediatric AAP, allowing for rigorous ML analysis supported by
cross-validation to reduce overfitting and improve generalizability.

The absence of comprehensive hyperparameter tuning could also mean that the models
have not achieved their optimal performance, potentially affecting their predictive accuracy
in different clinical settings. Moreover, the retrospective design and exclusion of incomplete
records introduce a degree of selection bias, which may limit the representativeness of the
study population.

It is also important to acknowledge the potential for class imbalance, particularly in
the distribution of negative, uncomplicated, and complicated AAP cases, which may affect
model calibration and contribute to biased predictions toward majority classes.

Furthermore, while ML models demonstrate promising diagnostic performance, their
seamless integration into clinical workflows remains a significant challenge. Factors such
as the limited interpretability of complex algorithms, variability in physician trust toward
automated systems, and the absence of standardized regulatory frameworks continue
to hinder their real-world adoption. These issues are further compounded by potential
concerns regarding accountability in decision-making, medicolegal implications, and the
risk of automation bias in critical care settings. Without transparent and explainable models
that can align with clinicians” diagnostic reasoning, the acceptance and reliability of such
tools remain uncertain.

Moreover, the implementation of ML-based tools in diverse clinical environments
requires extensive external validation and prospective evaluation. To move from theoretical
accuracy to practical utility, future studies should prioritize multi-center data acquisition,
incorporate radiological and imaging-based features, and establish protocols for clinical
interpretability and feedback. Addressing these barriers will be crucial not only for enhanc-
ing model robustness and fairness but also for building the institutional and regulatory
trust necessary for successful clinical deployment.

4.2. Future Directions: Bridging the Gap Between Al and Clinical Implementation

Future studies should prioritize multi-center validation to improve the external gener-
alizability of these models. Such an approach would enable testing across diverse patient
populations and clinical settings, ensuring robustness and minimizing bias. For instance,
the FDA'’s framework for Al-driven medical tools requires ongoing validation and real-
world performance monitoring, which can slow down clinical adoption. Similarly, the
European Medicines Agency (EMA) has strict guidelines on Al transparency and bias
mitigation, making compliance a significant hurdle for developers. Multi-center validation
would help address the limitations associated with single-institution studies by incorporat-
ing a broader range of patient demographics, clinical presentations, and healthcare settings.
This approach would enhance the generalizability of the models and ensure their robustness
across different populations, ultimately facilitating their integration into real-world clinical
practice. Incorporating imaging data, deep learning architectures, and more sophisticated
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feature engineering strategies may further enhance diagnostic accuracy. Additionally, opti-
mizing ML models through hyperparameter tuning and ensemble learning could improve
robustness. One key challenge in clinical adoption is the ‘black-box’ nature of ML models,
which can make clinicians hesitant to trust Al-driven diagnoses. Explainable AI (XAI)
techniques, such as SHAP (Shapley Additive Explanations) or LIME (Local Interpretable
Model-Agnostic Explanations), have been proposed to enhance transparency, yet their
integration into clinical workflows remains limited. Finally, developing real-time clinical
decision support systems that integrate ML models into emergency settings remains an
important next step toward practical implementation.

5. Conclusions

ML has emerged as a powerful adjunct in the diagnosis of pediatric AAP. However,
the successful clinical adoption of ML models faces several barriers. Regulatory challenges,
including approval processes and standardization across different healthcare systems, must
be addressed to ensure safe and consistent implementation. To facilitate clinical adoption,
structured training programs that enhance Al literacy and model interpretation are essen-
tial. These initiatives should equip clinicians with the knowledge needed to confidently
integrate ML-driven decision support tools into their practice. Without sufficient training,
even highly accurate ML models may fail to gain widespread clinical adoption. Addition-
ally, clinician training is a crucial factor, as healthcare providers need to understand and
trust ML-driven decision support tools to incorporate them into routine practice. Further
research should explore strategies to improve model interpretability and establish guide-
lines for integrating ML models seamlessly into clinical workflows. Our findings reinforce
the potential of ML models—particularly RF and XGBoost—in improving diagnostic pre-
cision and minimizing unnecessary surgical interventions. However, successful clinical
translation requires continued research, external validation, and thoughtful integration into
clinical practice. By addressing these challenges, ML-based diagnostic tools may ultimately
enhance patient care, streamline decision-making, and support more efficient resource
allocation in emergency settings.
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