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Abstract
Sheep are natural hosts of the prion disease, scrapie. They are also susceptible to experi-

mental challenge with various scrapie strains and with bovine spongiform encephalopathy

(BSE), which affects cattle and has been accidentally transmitted to a range of other spe-

cies, including man. Incidence and incubation period of clinical disease in sheep following

inoculation is controlled by the PRNP gene, which has different alleles defined on the basis

of polymorphisms, particularly at codons 136, 154 and 171, although other codons are

associated with survival time, and the exact responses of the sheep may be influenced by

other breed-related differences. Here we report the results of a long term single study of

experimental scrapie and BSE susceptibility of sheep of Cheviot, Poll Dorset and Suffolk

breeds, originating from New Zealand and of a wide range of susceptible and resistant

PRNP genotypes. Responses were compared with those of sheep from a closed Cheviot

flock of UK origin (Roslin Cheviot flock). The unusually long observation period (6–8 years

for most, but up to 12 years for others) allows us to draw robust conclusions about rates of

survival of animals previously regarded as resistant to infection, particularly PRNP heterozy-

gotes, and is the most comprehensive such study reported to date. BSE inoculation by an

intracerebral route produced disease in all genotype groups with differing incubation peri-

ods, although M112T and L141F polymorphisms seemed to give some protection. Scrapie

isolate SSBP/1, which has the shortest incubation period in sheep with at least one VRQ

PRNP allele, also produced disease following sub-cutaneous inoculation in ARQ/ARQ ani-

mals of New Zealand origin, but ARQ/ARQ sheep from the Roslin flock survived the chal-

lenge. Our results demonstrate that the links between PRNP genotype and clinical prion

disease in sheep are much less secure than previously thought, and may break down

when, for example, a different breed of sheep is moved into a new flock.
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Introduction
Classical scrapie in sheep is the prototype of the group of diseases known as transmissible
spongiform encephalopathies (TSEs) or prion diseases, which include bovine spongiform
encephalopathy (BSE) in cattle and Creutzfeld-Jakob disease (CJD) in man. These are fatal
neurodegenerative disorders, characterised by long incubation periods (months to years) and
typical histopathological changes (e.g. vacuolation, astrogliosis, neuronal loss). Studies in sheep
and mice have revealed a strong genetic component to disease susceptibility, with survival time
and incubation period principally under the control of a single gene, known as PRNP, which
encodes PrP (prion protein), a normal host glycoprotein expressed widely in nervous and
other tissues [1]. A key event in the pathogenesis of TSEs is the conformational alteration of
the host PrP (termed cellular PrP, or PrPC) to a disease-associated form (termed PrPSc), accu-
mulation of which in the central nervous system, and often also in lymphoid tissue, is followed
by the development of clinical signs[2].

Sheep are the natural hosts of a TSE (scrapie) which exists in classical and atypical forms
and has different strains that are often experimentally transmissible. Amino acid polymor-
phisms of the sheep PRNP gene have been linked to susceptibility and resistance to natural and
experimental infection with TSEs [1]. The most significant of these occur at codon 136, where
the presence of valine (V) instead of alanine (A) results in greatly enhanced susceptibility to
some strains of classical scrapie [3], and at codon 171, where the presence of arginine (R)
instead of glutamine (Q) results in disease resistance [4]. Substitution of histidine (H) for argi-
nine at codon 154 will lengthen survival and/or incubation periods in some cases [5]. A conve-
nient short-hand for the different PRNP alleles gives the single letter code for the three amino
acids at these positions e.g. ARQ. PRNP genetics is complex in sheep with many polymorphic
codons, some of which have also been shown to influence disease susceptibility or incubation
periods, such as the replacements of threonine for methionine at codon 112[6] and phenylala-
nine for leucine at codon 141 [7]. However, selective breeding programmes based on the three
codon (136, 154, 171) genotype have been used successfully to reduce the incidence of classical
scrapie at flock, breed and national levels by increasing the frequencies of resistant genotypes
[8].

Animals with genotypes VRQ/VRQ and VRQ/ARQ are generally at highest risk of develop-
ing disease whereas classical scrapie disease in ARR/ARR sheep has only been reported in five
animals out of thousands examined worldwide. PrPSc deposits in brain were found in all five
but only two animals (one natural exposure, one after experimental challenge) were reported
to have scrapie clinical signs [9, 10, 11]. ARQ/ARQ sheep are common in most breeds and rep-
resent a significant number of classical scrapie cases, but the representation of this genotype in
scrapie cases varies in different countries and a proportion of ARQ/ARQ animals may survive
scrapie in some outbreaks [1].

After more than a decade of breeding for resistance in Europe, high risk VRQ-carrying
genotypes have been significantly diminished and ARR-carrying low risk genotypes represent
now the majority, however AXQ/AXQ (X = R or H) animals still represent 10–30% of the pop-
ulations [8]. As the PRNP selection criteria are entirely empirical and not based on a funda-
mental understanding of what causes disease resistance, the question remains whether further
scrapie resistance breeding will be beneficial. The example of countries such as New Zealand
(NZ) and Australia that have sheep populations which include scrapie-susceptible PRNP geno-
types but remain entirely free of classical scrapie is likely the result of stringent disease security
measures. However genes other than PRNPmay also have a protective effect against scrapie
and may have been selected in sheep breeds in NZ and Australia. In accordance with that
observation, it has been claimed that polygenic variance was responsible for 21% of the total
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genetic variability related to susceptibility to scrapie in a Romanov flock in France, which
points to genes other than PRNP with effects on susceptibility [12]. It is possible therefore that
some of these non-PRNP genes may, in some scrapie outbreaks, override the PRNP effects and
result in either the appearance of disease in animals thought to be relatively resistant, or lack of
disease in susceptible animals. It is also possible that lengthening of incubation period, rather
than full resistance, could create a reservoir in which slower less aggressive strains might adapt
into new, faster and disease-causing strains with unknown host range.

This study therefore aimed to explore the extent of resistance and incubation period control
in sheep using well characterised methods of experimental inoculation and as wide a range of
susceptibility and resistance as possible. The outcome of experimental challenges of sheep with
TSE agents is governed to a greater or lesser extent by factors such as the agent strain type and
titre, PRNP genotype, non-PRNP genes, route of infection, sheep breed and age eg [13, 14, 15].
In this study we have used two TSE strains which target sheep of different PRNP genotypes:
BSE (which has the widest known host range of any TSE strain) and SSBP/1 (which is a well
characterised experimental scrapie source). BSE has shortest incubation periods in AXQ/AXQ
sheep [1,2, 15,16] and SSBP/1 in contrast more efficiently targets animals encoding at least one
VRQ allele [17, 18]. Representatives of two sheep populations, with different background and
selection history, were inoculated–one from the Roslin Institute Cheviot flock (originating and
maintained in the UK) and the other originating from New Zealand but also maintained in the
UK. Although similar genotype/TSE strain challenges in sheep have been reported previously,
overall numbers of animals studied are inevitably low due to the considerable cost of large ani-
mal studies and so this study adds to the accumulated data and information on disease suscep-
tibility in sheep while exposing a wide range of different PRNP genotypes to TSE challenge in a
single study. We assessed the capability of the agent to cause PrPSc accumulation in a particular
genetic background, the degree of peripheral PrPSc deposition and the incubation period before
clinical disease signs were observed. In non-clinical animals, which were observed for 6.5 years
in most cases but up to 12 years in others, survival times with or without PrPSc deposition were
also recorded. It is usual in sheep TSE studies to concentrate on the shorter incubation period
models and fully susceptible genotypes but in this study we included sheep of PRNP genotypes
expected to show little or no disease in response to challenge. In contrast to mouse models of
TSE disease, sheep can be observed for much longer incubation and survival times after chal-
lenge due to their much longer lifespan. As a result these experimental models give a more
accurate reflection of susceptibility/resistance to natural TSE strains limited only by the life
expectancy of the species.

Materials & Methods

Sheep—origin, breeds and management
An outline of the experimental design is presented in Table 1. The New Zealand sheep were of
Suffolk, Cheviot and Poll Dorset breeds which were either imported directly from New Zealand
or derived from the breeding flock established from the imported sheep (the Defra scrapie-free
flock) [18]. The sheep were housed throughout the study in a purpose-built experimental unit
at the Institute for Animal Health (IAH), Compton, with strict procedures in place to minimize
the risks of cross-contamination between groups, as previously described [17]. The whole proj-
ect (including controls, described below) was reviewed and approved by the IAH (Compton)
Animal Welfare and Ethics Committee, and the IAH (Edinburgh) Protocols and Ethics Com-
mittee and carried out under the authority of current UK Home Office licences. After challenge
with BSE or scrapie, using anaesthesia and analgesics appropriate for the species, sheep were
monitored daily, and once clinical signs consistent with TSE disease were confirmed, they were
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Table 1. Experimental design.

PRNP
genotype

TSE challenge and
route

Dose Number of sheep
challenged

Breed Number of NZ
sheep

Number of Roslin
sheep

VRQ/VRQ Cattle BSE,
intracerebral

0.5ml, 10% brain
homogenate

10 Cheviot 5 -

Poll
Dorset

5 -

VRQ/ARQ ditto ditto 10 Cheviot 5 -

Poll
Dorset

5 -

VRQ/ARR ditto ditto 11 Cheviot 5 2

Poll
Dorset

4 -

ARQ/ARQ ditto ditto 19 Cheviot 5 -

Poll
Dorset

4 -

Suffolk 10 -

ARQ/ARR ditto ditto 22 Cheviot 5 2

Poll
Dorset

6 -

Suffolk 9 -

AHQ/ARR ditto ditto 1 Cheviot - 1

ARR/ARR ditto ditto 31 Cheviot 5 12

Poll
Dorset

4 -

Suffolk 10 -

VRQ/VRQ SSBP/1, sub
cutaneous

2ml, 10% brain pool 18 Cheviot 5 8

Poll
Dorset

5 -

VRQ/ARQ ditto ditto 28 Cheviot 5 18

Poll
Dorset

5 -

VRQ/AHQ ditto ditto 7 Cheviot - 7

VRQ/ARR ditto ditto 23 Cheviot 5 14

Poll
Dorset

4 -

ARQ/ARQ ditto ditto 22 Cheviot 4 3

Poll
Dorset

5 -

Suffolk 10 -

ARQ/AHQ ditto ditto 1 Cheviot 1 7

ARQ/ARR ditto ditto 37 Cheviot 5 17

Poll
Dorset

5 -

Suffolk 10 -

AHQ/ARR ditto ditto 3 Cheviot - 3

ARR/ARR ditto ditto 27 Cheviot 6 6

Poll
Dorset

5 -

Suffolk 10 -

doi:10.1371/journal.pone.0143251.t001
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euthanized using anaesthetic overdose and according to UK Home Office approved proce-
dures. Animals developing intercurrent illness were treated by veterinary surgeons and were
euthanized as above if there was no response to treatment. Times between the dates of inocula-
tion and death are, in this paper, presented as either incubation periods (IP) or survival time
(ST) and defined as follows: incubation time for sheep positive for TSE clinical signs and posi-
tive for disease-related PrP (PrPd) detection; survival time for sheep which were negative for
either or both of TSE clinical signs and PrPd. A number of animals survived without any clini-
cal signs to the end of the experiment and were euthanized as above (between 2200 and 2500
days post-inoculation).

Sheep used for comparison of response to TSE infection were Cheviots with the same range
of PRNP genotypes from a well-studied flock previously known as the NPU Cheviots but now
renamed as the Roslin Cheviot flock which were challenged using the same routes and equiva-
lent doses of SSBP/1 and BSE as part of other studies [16,19]. These control animals are
referred to as Roslin sheep in this paper.

Small parts of this study, with very limited PRNP genotype information, have been pub-
lished previously [16,17,20] and this is indicated in the text where appropriate.

PRNP genotyping
This study was set up based on PRNP genotypes at codons 136, 154 and 171, their polymor-
phisms being A136V, R154H and Q171R. At the end of the study three-codon genotypes of
selected animals were confirmed by re-sequencing of the PRNP coding region which allowed
us also to determine the genotypes for codons 112 and 141 with polymorphisms M112T and
L141F. PCR amplification and sequencing were performed as described previously [15]. Based
on these polymorphisms, six allelic variants were present in this study: M112V136L141R154Q171

(here: VRQ), MALHQ (here: AHQ), MALRR (here: ARR) MALRQ (here: ALRQ or ARQ),
MAFRQ (here: AFRQ or ARQ), TALRQ (here: TARQ or ARQ).

Experimental infection with TSEs, tissue collection and analysis
In breeds carrying the PRNP VRQ allele, such as Cheviot and Poll Dorset, scrapie occurs pre-
dominantly in VRQ/VRQ and VRQ/ARQ genotypes and is rare in ARQ/ARQ animals. Groups
of five Cheviot and five Poll Dorset sheep with PRNP genotypes VRQ/VRQ, VRQ/ARQ, VRQ/
ARR, ARQ/ARQ, ARQ/ARR and ARR/ARR were each challenged with BSE or scrapie. In Suf-
folk sheep, the VRQ allele is very rare, and natural scrapie occurs in the ARQ/ARQ genotype.
In Suffolks, therefore ten sheep with PRNP genotypes ARQ/ARQ, ARQ/ARR and ARR/ARR
were each challenged with BSE and scrapie. In some cases, group sizes were reduced by inter-
current deaths. Responses of the different breeds to TSE challenge were very similar so geno-
type groups were pooled to simplify data tables. In a few cases we have commented on a
possible breed effect influencing results however these were not major and were the only nota-
ble instances throughout.

BSE challenges were by intracerebral inoculation of 0.5ml 10% BSE-infected cattle brain
homogenate (i.e. equivalent to 0.05g BSE-infected brain), as previously described [16]. The
BSE-infected cattle brains used for preparation of the inocula were obtained from the TSE
Archive (now the APHA Biological Archive), and two different brains were used to prepare the
inocula used for sheep challenges, hereafter referred to as BSE-I and BSE-II. Roslin sheep were
inoculated with both BSE-I and BSE-II in different groups whereas New Zealand sheep all
received BSE-II. Both BSE inocula were titrated by intracerebral inoculation in RIII mice and
showed similar titres of 103.2 ID50/g.
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Scrapie challenges were by subcutaneous inoculation of 2ml 10% SSBP/1 sheep brain
homogenate (i.e. equivalent to 0.2g scrapie-infected brain) [17], with New Zealand sheep being
inoculated with the same batch of inoculum that had been used for previous challenges in the
Roslin Flock animals. SSBP/1 transmits very poorly to RIII mice so cannot be titrated to com-
pare directly with the BSE inoculum, however we have titrated SSBP/1 in tg338 mice at 107.4

ID50/g. The titration figures for BSE and SSBP/1 in the two completely different mouse lines
are both very high titre despite the apparent four-log difference as tg338 mice are much more
sensitive to SSBP/1 than RIII mice are to BSE.

Following euthanasia, a detailed necropsy was carried out for every sheep in the study, dur-
ing which a range of tissues was collected including brain, spleen, tonsil, mesenteric lymph
node. Samples used in this study were fixed in neutral buffered formalin for histopathology or
frozen at -80C for biochemical analysis or bioassay. Immunohistochemical (IHC) staining for
PrPd deposition in the different sheep tissues was carried out using antibodies BG4, R145 and/
or P4 as previously described [21]. Detailed IHC analysis for this project is considerable and as
such is outwith the scope of this genetics paper so will be published elsewhere. However details
of the methods and scoring systems for positive staining of sheep brain and lymphoid tissues
can be found in our previous publications for SSBP/1 [17] and BSE [22,23]. For the purposes of
this paper, we have provided a simple positive/negative score in which detection of any dis-
ease-related PrP resulted in a positive score for the relevant animal.

Results

Association of PRNP genotype with sheep responses to intracerebral
challenge with BSE
In New Zealand sheep, intracerebral inoculation of BSE-II inoculum resulted in infection and
clinical disease in all six PRNP genotypes (based on codons 136, 154, 171), although with differ-
ing incubation periods and attack rates, as shown in Table 2. Two additional polymorphisms at
codons 112 and 141 were identified after the experiment was initiated.

The shortest incubation periods were found in the ARQ/ARQ group of sheep
(mean ± SD = 558 ± 47 days post infection) and the attack rate was 90%. The two sheep in this
group that did not develop clinical signs were found to carry the methionine to threonine
mutation at PRNP codon 112 (M112T); one was MARQ/TARQ and the other TARQ/TARQ.
Although numbers are too small for statistical analysis, the survival of 2414 days post infection
(dpi) for both of the T112 carriers makes them very different from the MARQ/MARQ sheep,
which have a 100% attack rate and incubation periods of ~500–600 days. The MARQ/TARQ
sheep was found to have weak staining for PrPd in the brain when it was culled at 2414 dpi.

In ARQ/ARQ sheep homozygous for leucine at codon 141 (ALRQ/ALRQ: n = 12) the mean
incubation period (537 ± 33 days) was shorter than in sheep homozygous for phenylalanine
(AFRQ/AFRQ; n = 5) at 608 ± 38 days, and this difference was statistically significant
(p<0.01). However, it should be noted that the 5 AFRQ/AFRQ sheep were of the Cheviot
breed, while the ALRQ/ALRQ sheep were Poll Dorset and Suffolk. Among the latter, Poll Dor-
set sheep had the shortest incubation periods (data not shown).

Surprisingly, VRQ/VRQ sheep were also highly susceptible to BSE, with an attack rate of
100% and a mean incubation period of 1099 ± 44 days. The attack rate in VRQ/ARQ sheep
was also 100%, but they fell into two distinct groups with regard to length of incubation period,
according to the codon 141 amino acid on the ARQ allele. The first group of seven VLRQ/
ALRQ sheep had incubation periods intermediate between those of ARQ and VRQ homozy-
gotes (mean ± SD = 875 ± 77 days), and the remaining three VLRQ/AFRQ sheep had incuba-
tion periods that were more than 2.5 years longer (2017 ± 56 days; p<0.001).
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Sheep carrying the ARR PRNP allele (homozygotes or heterozygotes) were susceptible to
intracerebral challenge with BSE, but had lower attack rates and longer, more variable incuba-
tion periods than the other genotype groups. In the ARR/ARR group, 10 out of 19 sheep (52%)
developed clinical signs, with incubation periods ranging from 1008 to 2299 days
(mean ± SD = 1486 ± 398 days). Four out of nine VRQ/ARR sheep (44%) and four out of 20
ARQ/ARR sheep (20%) developed clinical signs with mean incubation periods of 1846 ± 72
days and 2024 ± 110 days, respectively. When the remaining sheep in these two groups were
culled in the absence of clinical signs at>2000 dpi, 4 out of a total of 10 ARQ/ARR sheep and
1 out of a total of 3 VRQ/ARR sheep showed evidence of low level PrPSc accumulation in the
brain.

Four sheep carrying the ARR allele (one each of ALRR/ALRR, ALRQ/ALRR, AFRQ/ALRR,
and VLRQ/ALRR genotypes) were showing signs of ataxia (incoordination) and were origi-
nally scored as clinically positive, but TSE infection could not be confirmed by detection of
PrPd by IHC following necropsy. Brain homogenate from one of the AFRQ/ALRR animal,
which developed ataxia and was culled at 1483 dpi, was inoculated into RIII mice, but there
was no evidence of infectivity, as the mice did not develop clinical signs of TSEs and survived
>600 days post infection. In contrast, brain homogenate from a positive control sheep (AFRQ/
AFRQ, BSE incubation period 671dpi) produced the characteristic BSE incubation period
(mean ± SD = 348 ± 22 dpi) and pathology in RIII mice (data not shown), and therefore it is
likely that the four ataxic animals were clinically misclassified.

The results of two experiments involving intracerebral inoculation of Cheviot sheep from
the Roslin Flock with cattle BSE are summarized in Table 3. Overall, the results from intracere-
bral BSE challenges in the RSF flock are broadly similar to those seen in New Zealand sheep in

Table 2. Outcome of intracerebral challenges with cattle BSE in New Zealand sheep.

PRNP
genotype

Codon 141
subgroup

Codon 112
subgroup

Number
challenged

Clinically positive and
IHC positivea

Clinically negative and
IHC positivea

Clinically negative and IHC negativea

Number Mean
incubation
period in
days (±SD)

Number Mean
survival time
post
infection in
days (±SD)

Number
surviving <2000
days post
infection (range
of survival
times)b

Number surviving
>2000 days post
infection (range of
survival times in
days)c

ARQ/ARQ LL MM 12 12 537 (±33) 0 NA 0 0

LL MT 1 0 NA 1 2414 0 0

LL TT 1 0 NA 0 NA 0 1 (2414)

FF MM 5 5 608 (±38) 0 NA 0 0

VRQ/VRQ LL MM 10 10 1099 (±44) 0 NA 0 0

VRQ/ARQ LL MM 7 7 875 (±77) 0 NA 0 0

LF MM 3 3 2017 (±56) 0 NA 0 0

ARR/ARR LL MM 19 10 1486 (±398) 0 NA 3 (822–1930) 6 (2224–2418)

VRQ/ARR LL MM 9 4 1846 (±72) 1 2228 2 (106,1906) 2 (2228,2360)

ARQ/ARR LL MM 15 4 2024 (±110) 4 2320 (±109) 3 (938–1744) 4 (2151–2312)

LF MM 5 0 NA 0 NA 3 (661–1428) 2 (2395,2396)

a Immunohistochemistry results for PrPd detection in brain sections.
b These animals were culled before the end of the experiment due to intercurrent disease or welfare concerns.
c These animals were culled at the end of the experiment.

NA not applicable

doi:10.1371/journal.pone.0143251.t002
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terms of incubation periods, but most of the group sizes are too small for comparison of attack
rates. Interestingly, all of the ARR/ARR RSF Cheviot sheep (n = 6) inoculated with BSE-II suc-
cumbed to infection, although those inoculated with BSE-I had a lower attack rate (50%). The
New Zealand ARR/ARR Cheviots (n = 5) had a 100% attack rate, while the attack rates in New
Zealand ARR/ARR Poll Dorset and Suffolk sheep were lower (25% and 40% respectively), all
with the same BSE-II inoculum. The reasons for the differences are not clear.

Association of PRNP genotype with incubation periods and attack rates
following subcutaneous challenge with SSBP/1
The response to subcutaneous challenge with SSBP/1 in New Zealand sheep was very different
to that observed following BSE challenge, as shown in Table 4. The shortest incubation periods
and 100% attack rates were recorded for sheep carrying the VRQ allele (homozygous or hetero-
zygous). For VRQ/VRQ sheep, the mean incubation period was 150 ± 15 days (n = 10), while
for VRQ/ARR sheep it was 233 ± 38 days (n = 9). In VRQ/ARQ sheep, the incubation periods
again appear to vary according to codon 141 genotype, with VLRQ/ALRQ animals having
shorter incubation periods (mean ± SD = 192 ± 21 days; n = 6) than VLRQ/AFRQ animals
(271 ± 37 days; n = 4). However, the VLRQ/ALRQ sheep were mostly Poll Dorsets, while the
VLRQ/AFRQ sheep were Cheviots, and it is therefore difficult to distinguish the effect of 141
codon polymorphism from possible breed effects. The survival curves and overall incubation
periods for the VRQ/ARQ and VRQ/ARR groups were very similar and in the latter, the short-
est incubation periods were also found in Poll Dorsets (data not shown).

New Zealand sheep with PRNP genotype ARQ/ARQ were also susceptible to SSBP/1,
although they had much longer and more variable incubation periods than those observed in
animals carrying the VRQ allele. In the ALRQ/ALRQ (n = 14) subgroup, all except one animal
developed clinical signs of scrapie and were confirmed positive by IHC, giving an attack rate of
86% but with very variable incubation periods, ranging from 878 to 1526 days (mean ± SD =
1140 ± 226 days). In the AFRQ/AFRQ subgroup (n = 4) sheep (all Cheviots), incubation peri-
ods were more consistent (mean ± SD = 1241 ± 53 days). Three out of nineteen sheep in the
ARQ/ARQ challenge group were clinically negative, and PrPd staining was not detected in any
of the tissues (brain or lymphoid) examined. Two of these negative sheep were culled because

Table 3. Outcome of intracerebral challenges with cattle BSE in the Roslin Flock.

Cattle
brain
isolate

PRNP
genotypea

Number
challenged

Clinically positive and IHC
positiveb

Clinically negative and IHC negativeb

Number Incubation period
in days (mean ±SD)

Number surviving <2000 days
post infection (range of survival
times in days)

Number surviving >2000 days
post infection (range of survival
times in days)

BSE-I VRQ/ARR 2 1 1874 0 1 (2379)

ARQ/ARR 2 2 1886, 1923 0 0

AHQ/ARR 1 1 2353 0 0

ARR/ARRc 6 3 1582 ±110 1 (1523d) 2 (2204 d,e, 2242)

BSE-II ARR/ARRc 6 6 1712 ±375 0 0

a All animals had codon 141 LL genotype.
b Immunohistochemistry results for PrPd detection in brain sections.
c Previously published data.
d Intercurrent deaths.
e Tissues unavailable for analysis

doi:10.1371/journal.pone.0143251.t003
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of intercurrent illness at 335 days (codon 112 and 141 subtypes not determined) and 802 days
(112MM, 141LL) post infection, respectively. The third sheep remained healthy until the end
of the experiment (2780 days), and was 112MT and 141LL. An additional single sheep origi-
nally assigned to the ARQ/ARQ challenge group was found when genotypes were confirmed at
the end of the study to be AFRQ/ALHQ. This animal also survived until the end of the experi-
ment (2249 days).

In contrast to the results of the intracerebral BSE challenge, New Zealand sheep with ARQ/
ARR and ARR/ARR genotypes appeared completely resistant to sub-cutaneous infection with
SSBP/1. There were no clinical signs of scrapie recorded in either group and IHC performed on
brain and lymphoid tissues from all sheep that survived longer than 2000 days (15 ARQ/ARR
and 17 ARR/ARR) failed to find any evidence of subclinical infection.

The results of subcutaneous challenges with SSBP/1 in the Roslin Flock are summarized in
Table 5. As observed in the New Zealand sheep, animals carrying the VRQ PRNP allele were
fully susceptible to infection, with 100% attack rates, while ARQ/AHQ, ARQ/ARR, AHQ/ARR
and ARR/ARR animals were resistant. However, in contrast to the New Zealand sheep, Roslin
sheep with ARQ/ARQ genotypes were also resistant to infection with SSBP/1, as are Roslin
ARQ/AHQ genotypes.

There were also differences in the mean incubation periods recorded for the Roslin and
New Zealand sheep groups carrying the VRQ allele, which became more pronounced when
New Zealand Cheviot and Poll Dorset sheep were compared separately. When the mean incu-
bation periods for VRQ/VRQ, VRQ/ALRQ and VRQ/ARR are compared between the Cheviots
from both the Roslin Flock and New Zealand sheep, the latter had on average 17% shorter
incubation periods. More surprising is the difference in the increase of the mean incubation

Table 4. Outcome of subcutaneous challenges with SSBP/1 in New Zealand sheep.

PRNP
genotype

Codon 141
subgroup

Codon 112
subgroup

Number
challenged

Clinically positive and IHC
positive

Clinically negative and IHC negative

Number Mean incubation
period in days post
infection (± SD)

Number surviving <2000
days post infection

(range of survival times
in days)a

Number surviving >2000
days post infection

(range of survival times
in days)b

VRQ/VRQ LL MM 10 10 150 ± 15 0 0

VRQ/ARQ LL MM 6 6 192 ± 21 0 0

LF MM 4 4 271 ± 37 0 0

VRQ/ARR LL MM 9 9 233 ± 38 0 0

ARQ/ARQ LL MM 13 12 1140 ± 226 1 (802) 0

LL MT 1 0 NA 0 1 (2780)

FF MM 4 4 1241 ± 53 0 0

n.d. n.d. 1 0 NA 1 (335) 0

ARQ/AHQ LF MM 1 0 NA 0 1 (2249)

ARQ/ARR LL MM 15 0 NA 3 (811–1730) 12 (2242–2779)

LF MM 4 0 NA 1 (518) 3 (2776–2777)

n.d. n.d. 1 0 NA 1 (222) 0

ARR/ARR LL MM 21 0 NA 4 (22–1729) 17 (2248–2779)

a These animals were culled before the end of the experiment due to intercurrent disease or welfare concerns.
b These animals were culled at the end of the experiment.

NA, not applicable

n.d., not determined

doi:10.1371/journal.pone.0143251.t004
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period from a VRQ/VRQ to VRQ/ARR, in other words the resistance effect of the ARR allele.
Whereas in the Roslin Cheviots the increase was 190%, in NZ Cheviots this increase was only
77% and in the Poll Dorset it was only 28%. As the AHQ allele is relatively common in the
Roslin sheep, an additional group of sheep with the VRQ/AHQ genotype were challenged in
these experiments, and had incubation periods comparable to those recorded for VRQ/ARR
sheep (361 ± 65 days; n = 7).

Association of PRNP genotype with PrPd deposition in lymphoid tissues
of NZ sheep
A number of lymphoid tissues were collected from each sheep at post mortem, and for a pro-
portion of animals from each genotype group these tissues were examined by IHC to determine
the extent of PrPd deposition. The details of the IHC will be published elsewhere. However the
simple positive/negative results for both intracerebral BSE- and sub-cutaneous SSBP/1-chal-
lenged New Zealand sheep are summarized in Table 6, along with the corresponding IHC
results for brain sections. Examples of positive and negative staining in brain and lymphoid tis-
sues, are illustrated in Fig 1. Among the animals for which both brain and lymphoid tissues
were examined, there were none that showed PrPd deposition in lymphoid tissues alone i.e. in
the absence of positive staining in the brain. In BSE-challenged sheep, out of eight clinically
affected ARQ/ARQ sheep (both 141LL and 141FF) examined, all had PrPd deposits in the three
lymphoid tissues examined (spleen, mesenteric lymph node, tonsil). Sheep of other PRNP
genotypes showed more restricted distribution of PrPd in lymphoid tissues following BSE
infection. As Table 6 shows, between 50% and 70% of the tested lymphoid tissues from VRQ/
VRQ sheep were positive however, as not all sheep were the same, this actually equated to nine
out of ten animals having at least one positive lymphoid tissue. Similarly with VRQ/ARQ
sheep, four out of ten animals had at least one positive lymphoid tissue. There was no evidence

Table 5. Outcome of subcutaneous challenges with SSBP/1 in the Roslin Flock.

PRNP
genotype

Codon 141
subgroup

Number
challenged

Clinically positive and IHC
positive

Clinically negative and IHC negative

Number Mean incubation
period in days post
infection (± SD)

Number surviving <2000
days post infection (range of

survival times in days)a

Number surviving >2000 days
post infection (range of
survival times in days)b

VRQ/VRQ LL 8 8 170 (± 27) 0 0

VRQ/ARQ n.d. 10 10 273 (± 37) 0 0

LF 6 6 230 (± 40) 0 0

LL 2 2 291, 351 0 0

VRQ/AHQ LL 7 7 361 (± 65) 0 0

VRQ/ARR LL 14 14 323 (± 34) 0 0

ARQ/ARQ n.d. 3 0 NA 1 (1860) 2 (2331, 2532)

ARQ/AHQ LL/n.d. 7 0 NA 3 (1242–1994) 4 (2284–2813)

ARQ/ARR LL/LF/n.d. 17 0 NA 7 (567–1601) 10 (2107–4256)

AHQ/ARR LL 3 0 NA 1 (1693) 2 (2284,2813)

ARR/ARR LL 6 0 NA 1 (568) 5 (2284–2937)

a These animals were culled before the end of the experiment due to intercurrent disease or welfare concerns.
b These animals were culled at the end of the experiment.

NA, not applicable

n.d., not determined

doi:10.1371/journal.pone.0143251.t005
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of PrPd deposition in lymphoid tissues from clinically or sub-clinically BSE-infected sheep in
the VRQ/ARR, ARQ/ARR or ARR/ARR groups apart from one single sheep of ARQ/ARR
genotype which was positive in spleen. In SSBP/1-challenged sheep, VRQ/VRQ sheep showed
consistent PrPd deposition in all lymphoid tissues examined, while VRQ/ARR sheep had a
much more restricted distribution, with six out of nine infected sheep showing positive results
in usually only one lymphoid tissue (most commonly tonsil). In SSBP/1-infected VRQ/ARQ
and ARQ/ARQ sheep, PrPd was also detected in almost all lymphoid tissues examined, with
only one animal in each group (VLRQ/AFRQ and ALRQ/ALRQ respectively) negative in one
of the three tissues.

Discussion
The outcome of experimental TSE infection in a permissive host (e.g. sheep, mice), in terms of
attack rate (defined in this study as the proportion of inoculated individuals that developed
clinical signs confirmed by detection of PrPSc post mortem), incubation period and neuroana-
tomical distribution of brain lesions, is influenced by many different factors. The best under-
stood of these include age at inoculation and PRNP genotype, as well as the dominant strain of
agent within the inoculum, and experimental factors such as the route of inoculation and infec-
tious dose administered. The results of our experiment illustrate this, as inoculating groups
containing two very different populations of Cheviots of similar age, breed and PRNP genotype
with two TSE sources (BSE and SSBP/1) by different routes produced markedly different out-
comes, almost certainly related to the source, or strain, of the inoculum.

In this, and previous studies, we have used immunohistochemical detection of disease-
related PrP as a means to confirm, or rule out, that an animal was clinically affected by scrapie
or BSE and it should be borne in mind that our negative animals could be subclinically infected
and harbour levels of prion protein below the limits of the method to detect. However our
results do provide information allowing comparison of the relative susceptibility of sheep of
different PRNP genotypes to infection. In a previous study [24], the shortest incubation periods
following experimental infection of sheep with scrapie were recorded when the PRNP genotype

Table 6. The distribution of PrPd in lymphoid tissues of BSE- and SSBP/1-infected New Zealand sheep.

PRNP
genotype*

No. clinical cases/no.
inoculated with BSE
(intracerebral)

BSE: no. positive tissues/no.
tissues examined

No. clinical cases/no.
inoculated with SSBP/1 (sub-
cutaneous)

SSBP/1: no. positive tissues/
no. tissues examined

Brain Tonsil MLN Spleen Brain Tonsil MLN Spleen

VLRQ/VLRQ 10/10 10/10 6/10 5/10 7/10 10/10 10/10 10/10 10/
10

10/10

VLRQ/ALRQ 7/7 7/7 1/7 1/6 1/7 6/6 6/6 6/6 6/6 6/6

VLRQ/AFRQ 3/3 3/3 1/3 1/3 1/3 4/4 4/4 4/4 3/4 3/4

ALRQ/ALRQ 12/12 12/12 4/4 4/4 4/4 12/14 12/14 11/14 11/
13

12/14

AFRQ/AFRQ 5/5 5/5 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4

VLRQ/ALRR 4/9 5/9 0/7 0/7 0/7 9/9 9/9 3/9 1/9 2/9

ALRQ/ALRR 4/15 8/15 0/10 0/12 0/12 0/15 0/15 0/15 0/15 0/15

AFRQ/ALRR 0/5 0/5 0/1 0/1 0/1 0/4 0/4 0/4 0/4 0/4

ALRR/ALRR 10/19 10/19 0/14 0/14 0/14 0/20 0/20 0/20 0/20 0/20

* The results for animals that had polymorphisms at codons 112 (112MT and 112TT) or 154 (154RH) were excluded from this table as none had positive

staining in lymphoid tissues.

MLN = mesenteric lymph node

doi:10.1371/journal.pone.0143251.t006
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Fig 1. Detection of disease-related PrPSc in IHC of brain and lymphoid tissues of TSE inoculated sheep. IHC carried out using anti-PrP antibody BG4.
(A), (B) and (C) positive staining in tissues from three sheep clinically affected following intracerebral inoculation with BSE. (A) ALRQ/ALRQ thalamus (x10);
(B) AFRQ/AFRQmedulla (x10); (C) ALRQ/ALRQmesenteric lymph node (x10). (D), (E) and (F) positive staining in tissues from three sheep clinically
affected following sub-cutaneous inoculation with SSBP/1 scrapie. (D) VLRQ/VLRQ frontal cortex (x4); (E) VLRQ/ALRQ basal ganglia (x20); (F) VLRQ/
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of the source inoculum was matched to that of the sheep being challenged (e.g. when VRQ/
VRQ sheep were inoculated with brain homogenate from VRQ/VRQ, rather than ARQ/ARQ,
scrapie cases), and similar results have been reported by others [25]. Similarly, in our experi-
ments, when New Zealand sheep were inoculated with SSBP/1 inoculum (derived from scra-
pie-affected sheep carrying the VRQ allele), the shortest incubation periods were found in
sheep with VRQ/VRQ, VRQ/ARQ and VRQ/ARR genotypes, and incubation periods in ARQ/
ARQ sheep were much longer. On the other hand, in New Zealand sheep inoculated with BSE
inoculum (derived from cattle brains, in which the PRNP sequence is closest to the sheep ARQ
allele) the shortest incubation periods were recorded in ARQ/ARQ genotypes, with longer
incubation periods in sheep carrying the VRQ allele. In terms of the prion hypothesis, strain
characteristics have been said to be related to the dominant conformation adopted by the mis-
folded PrPSc protein from a range of possible conformers [26]. In this hypothesis, maintenance
and propagation of the dominant conformer on sub-passage in another host is favoured in part
by matching of the PrP primary protein sequence in donor and recipient; where there is a mis-
match, another conformer present at lower levels may be selected, resulting in longer incuba-
tion periods and/or incomplete attack rates, and sometimes a change in strain characteristics
[27].

The other interesting difference between the BSE and scrapie inocula is the response of
sheep that carry the ARR PRNP allele as homozygous or heterozygous genotypes. These are
considered to be highly resistant to classical scrapie because of their under-representation
among natural scrapie cases [1]. Breeding strategies to reduce the incidence of scrapie have
resulted in larger numbers of such sheep[8] however they are known to be affected by atypical
scrapie [28] and are clearly not incapable of supporting a TSE infection. In our BSE-inoculated
ARR/ARR New Zealand sheep, 52% of animals developed clinical signs (with longer and much
more variable incubation periods than those of ARQ/ARQ and VRQ/VRQ genotypes), and
had detectable PrPd deposition in the brain, but not lymphoid tissues following necropsy. In
contrast, none of the ARR/ARR New Zealand sheep inoculated with SSBP/1 showed clinical
signs or evidence of PrPd deposition in brain and lymphoid tissues. Similarly, five ARR/ARR
Sarda sheep inoculated intracerebrally with cattle BSE developed clinical signs with incubation
periods ranging from 1495 to 1751 days post infection [29] and ARR/ARR sheep inoculated
with cattle BSE by peripheral routes (oral, intrasplenic, intraperitoneal) appeared to sustain the
infection, although none developed clinical disease [30, 31]. One reason for the difference in
results between the responses of ARR/ARR animals to BSE and scrapie animals could be the
route of infection, since intracerebral inoculation of TSE agents is generally regarded as the
most efficient method of transmission. However, intracerebral challenges of ARR/ARR sheep
with scrapie from ARQ/ARQ or VRQ/VRQ sources have been negative [1, 16, 32] or at best
highly inefficient [11]. Taking these results together, it would appear that ARR/ARR genotype
sheep are unusually susceptible to BSE infection compared to common classical scrapie isolates
and should BSE ever recur these sheep might be vulnerable to infection.

When our New Zealand sheep heterozygous for the ARR PRNP allele were inoculated with
SSBP/1, ARQ/ARR animals appeared to be totally resistant to infection, while in VRQ/ARR
sheep it produced a 100% attack rate, with incubation periods that were not significantly differ-
ent from VRQ/ARQ sheep. These results agree with those obtained from previous subcutane-
ous challenges of Roslin Cheviot sheep with SSBP/1 (Table 5). In another study of oral
challenges of sheep with scrapie there were similar findings, with incubation periods

AFRQ prescapular lymph node. (G) negative staining in tonsil of non-clinical AFRQ/ALRR BSE inoculated sheep. (H) negative staining in basal ganglia of
non-clinical SSBP/1 ALRR/ALRR inoculated sheep.

doi:10.1371/journal.pone.0143251.g001
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lengthening in the order VRQ/VRQ (198 ± 4 days)< VRQ/ARQ < VRQ/ARR< ARQ/ARQ
(540 ± 3 days) [33]. However, that study also found that ARQ/ARR sheep were partially sus-
ceptible to this challenge, with a 64% attack rate and a mean incubation period of 2252 days (±
122 days SD). However the latter study used an inoculum made from pooled brains of 17 sheep
of five different breeds and a range of PRNP genotypes, including ARQ/ARQ, making it more
likely that it contained a broader range of strains than SSBP/1, which was isolated from, and
has been repeatedly passaged in, sheep carrying the VRQ PRNP allele. In addition, the oral
scrapie challenges [33] were performed in lambs less than three weeks old, when susceptibility
to oral TSE infection is significantly greater than in older animals, such as those used in our
experiments [15].

Natural scrapie has only rarely been reported in VRQ/ARR sheep and the reasons for the
high attack rate and relatively short incubation periods in VRQ/ARR sheep infected experi-
mentally are unclear. However it is possible that natural infection mechanisms for the initial
uptake and/or replication of the scrapie agent from another animal or contaminated environ-
ment are relatively inefficient in VRQ/ARR sheep, and that experimental infection with brain
homogenate (from VRQ-carrying scrapie cases) is able to by-pass this barrier in some way.
The results may also be dose-related as experimental inoculation would be expected to deliver
a large dose of infection compared to that picked up naturally.

In BSE-inoculated New Zealand sheep, a proportion of animals in the VRQ/ARR (44%) and
ARQ/ARR (20%) PRNP genotypes groups also developed clinical disease. Although there was a
clear tendency towards longer incubation periods in the ARR heterozygous animals compared
to homozygotes, the great variability in the latter group resulted in a certain amount of overlap.
However a number of infected sheep (PrPd positive) were identified among ARR heterozygotes
culled at the end of the experiment suggesting that clinical disease might have developed
should the animals have lived longer. These observations are similar to the observation of over-
dominance of PRNP alleles in mice challenged by certain scrapie strains[34] and are consistent
with the hypothesis that the two PRNP alleles do not act independently in the control of patho-
genesis in the heterozygote sheep.

Another possible example of over-dominance in our experiments was associated with het-
erozygosity at PRNP codon 141 in VRQ/ARQ sheep. While VLRQ/ALRQ sheep inoculated
with BSE had incubation periods intermediate between those of ALRQ/ALRQ or AFRQ/AFRQ
and VLRQ/VLRQ sheep, the very long incubation periods in VLRQ/AFRQ sheep were similar
to those seen in ARR heterozygous animals. As in mice, this effect was strain dependent, since
codon 141 heterozygosity was not associated with a similar dramatic effect on incubation peri-
ods in VRQ/ARQ sheep inoculated with SSBP/1. Although the incubation periods in VLRQ/
AFRQ sheep inoculated with SSBP/1 were on average about 80 days longer than in VLRQ/
ALRQ sheep, and the difference was statistically significant, this could simply be a breed differ-
ence since all the sheep carrying the 141F polymorphism were Cheviots. We noted very few
other effects which could be related to breed. As we have reported previously in different stud-
ies [15, 35], AFRQ/AFRQ sheep intracerebrally inoculated with BSE had longer incubation
periods (608 ± 38 days) than ALRQ/ALRQ sheep (537 ± 33 days). In sheep inoculated with
SSBP/1, incubation periods were also longer on average in AFRQ/AFRQ sheep compared to
ALRQ/ALRQ sheep, but the difference was not statistically significant because of the very large
variability of incubation periods in the latter group. These results are similar to those of others
[24], who found that the 141F polymorphism was associated with prolonged incubation peri-
ods in ALRQ/AFRQ, but not in VLRQ/AFRQ, sheep challenged orally or subcutaneously with
two sources of classical scrapie.

Three of the New Zealand sheep used in these experiments were also found to carry the M!
T polymorphism at codon 112; two of these (MARQ/TARQ and TARQ/TARQ, respectively)
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were challenged with BSE, and the other (MARQ/TARQ) with SSBP/1. The polymorphism
appeared to have a protective effect, with all three sheep remaining healthy for prolonged periods
(3–5 years) after the last similarly challenged MARQ/MARQ sheep had developed clinical signs
and been culled. However, weak positive staining for PrPd was found in the brain, but not lym-
phoid tissues, of one of the BSE-challenged sheep (112MT) after post mortem, indicating that it
may have been infected. The protective effect of the T112 polymorphism has been previously
reported in sheep experimentally infected with scrapie and BSE[24, 36,37, 38, 39], although in
scrapie-infected 112MT sheep it appeared to result in prolonged incubation periods rather than
complete protection from infection.

Comparison of the results of SSBP/1 and BSE challenges in New Zealand sheep with previ-
ous similar challenges of Roslin sheep did not reveal any major differences in susceptibility,
apart from in the ARQ/ARQ PRNP genotype when inoculated with SSBP/1. While all New
Zealand sheep with this genotype (apart from one animal which carried the M112T polymor-
phism) became infected and developed clinical disease, three ARQ/ARQ Roslin sheep showed
no evidence of infection when culled at time points after infection that were at least 334 days
beyond the longest incubation period recorded in their New Zealand counterparts. This result
suggests that, although polymorphisms within the protein-coding region of the PRNP gene
may be the most important factor that determines susceptibility to TSE infection and disease,
there are additional host genetic factors that modulate the response. These could arise from
polymorphisms within non-coding regions of the PRNP gene, or in other parts of the genome.
In cattle, an insertion/deletion polymorphism within the promoter region of the PRNP gene
has been associated with susceptibility to BSE [40] and polymorphisms in promoter and 3’
untranslated region (UTR) of PRNP in sheep have been predicted to have effects on PrPC

expression [39, 41].
In this study we have confirmed the complex links and associations between PRNP genotype

and TSE susceptibility in sheep and extended the understanding of TSE strain/genotype/breed
combinations. Although general rules have been, and continue to be, applied to sheep breeding
in order to reduce incidence of scrapie, it can be seen clearly that these rules are less secure
than has previously been believed, especially if sheep, particularly with heterozygote PRNP
genotypes, are exposed to novel TSE strains or if different breeds of animals are brought into a
flock.
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