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B-type procyanidins, a series of catechin oligomers, are among the most

ingested polyphenols in the human diet. Results of meta-analyses have

suggested that intake of B-type procyanidins reduces cardiovascular disease

risk. Another recent focus has been on the effects of B-type procyanidins

on central nervous system (CNS) function. Although long-term B-type

procyanidin ingestion is linked to health benefits, a single oral intake has

been reported to cause physiological alterations in circulation, metabolism,

and the CNS. Comprehensive analyses of previous reports indicate an

optimal mid-range dose for the hemodynamic effects of B-type procyanidins,

with null responses at lower or higher doses, suggesting hormesis. Indeed,

polyphenols, including B-type procyanidins, elicit hormetic responses in vitro,

but animal and clinical studies are limited. Hormesis of hemodynamic and

metabolic responses to B-type procyanidins was recently confirmed in

animal studies, however, and our work has linked these effects to the CNS.

Here, we evaluate the hormetic response elicited by B-type procyanidins,

recontextualizing the results of intervention trials. In addition, we discuss the

possibility that this hormetic response to B-type procyanidins arises via CNS

neurotransmitter receptors. We have verified the direction of future research

for B-type procyanidins in this review.

KEYWORDS

B-type procyanidin, hormesis, sympathetic nervous system (SNS), central nervous
system, hemodynamics, stress

Introduction

B-type procyanidins are characterized by a series of heteropolyflavan-3-ols, with
a single interflavan bond between carbon-4 of the B-ring and either carbon-8 or
carbon-6 of the C-ring (1–3). B-type procyanidins can be categorized by their degree
of polymerization: monomers form linkages leading to oligomers. The most common
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monomeric unit is (–)-epicatechin, and the C4–C8
bond (Figure 1A) is the most prominent. B-type
procyanidins containing 2–7 monomeric units are defined
as oligoprocyanidins which are abundant in cocoa (4–6), apples
(7, 8), grape seeds (9, 10), and red wine (11–13).

Results of meta-analyses have suggested that intake of
foods rich in B-type procyanidins is linked to reduced
risk for cardiovascular disease, including coronary heart
disease, myocardial infarction, and stroke (14–20). Randomized
controlled trials and subsequent meta-analyses have confirmed
that dark chocolate containing large amounts of B-type
procyanidins can mitigate states related to the metabolic
syndrome, including hypertension (21–23), dyslipidemia (24,
25), and glucose intolerance (25, 26). In addition, the latest large-
scale randomized trial found a 27% reduction in cardiovascular
death by ingestion of cocoa flavanol fraction, which is rich
in B-type procyanidin monomer and oligomers, for 3.6 years
(27). Recent studies have focused on the benefit of B-type
procyanidin ingestion for the central nervous system (CNS).
A few intervention trials have reported that B-type procyanidin
might be effective in improving cognitive function (28–31).

Almost all B-type procyanidins ingested in food move into
the colon, and some are degraded by the microbiome (32–
34). Consequently, changes in the gut microbiome induced by
ingestion of B-type procyanidins for a comparatively long period
may alter the composition of metabolites in the colon (32,
35–38). One hypothesis is that these colon changes associated
with gut microbiota contribute to the beneficial effects of
B-type procyanidins.

Acute physiological changes have been reported to follow
a single intake of foods rich in B-type procyanidins. These
changes are related to hemodynamics (39–43), metabolism (44,
45), the autonomic nervous system (46), and cognitive function
or cerebral blood flow (28, 47–54). These findings highlight the
need to evaluate the acute and chronic physiological effects of
B-type procyanidin ingestion.

In addition, the acute hemodynamic changes following
ingestion of B-type procyanidin, such as flow-mediated dilation
(FMD), do not show a monotonic dose response (55). Instead,
these physiological changes follow a pattern of hormesis, with
peak benefit at mid-range doses and less benefit at higher or
lower doses. Comprehensive analyses of many earlier findings
suggest that there is likely a mid-range optimal dose for the
effects of B-type procyanidins on hemodynamics.

Polyphenols, including B-type procyanidins, elicit hormetic
responses in cell culture (56–59). Cellular proliferation occurs
at relatively low concentrations, but cytotoxicity is detected
at high concentrations (60). In vivo animal and human dose-
response findings for B-type procyanidins are relatively limited.
Recently, however, results from animal studies confirmed that
hemodynamics and metabolism show a hormetic dose-response
to B-type procyanidin, and we found that these changes

arise through sympathetic nerve activation, driven by CNS
activation. Here, we review data from human intervention
trials supporting a hormesis pattern of response to B-type
procyanidins. Furthermore, we discuss the possibility that
B-type procyanidins elicit this response via neurotransmitter
receptors expressed in the CNS.

Hormesis

Bioactive compounds are expected to yield a monotonic
dose-dependent response in terms of efficacy or toxicity
(Figure 1B). In some cases, however, the pattern is characterized
by an inverted U-shaped dose-response (Figure 1C). This
pattern of hormesis can also reflect an adaptive response. For
example, exposure to low amounts of a substance or stressor
can induce resistance to higher doses of the same trigger. This
exposure to mild levels of harmful factors can precondition a cell
or an organism, inducing activation of stress resistance pathways
and expanding maintenance and repair capacities (61, 62).

As an example, a moderate exercise program yields various
benefits, such as decreased risk of cardiovascular disease,
stronger bones and skeletal muscle, and longevity. An overly
intense exercise program, however, can lead to harmful effects
(63), so that the response to exercise “dose” shows a hormetic
pattern. Exercise-related enhancement of cognition and mood
also shows a hormetic response (64) that is reported to relate
closely to adult hippocampal neurogenesis (65). Furthermore,
moderate physical activity is generally accepted to be associated
with cardiovascular (66–68) and metabolic benefits through
sympathetic nervous system (SNS) (69–71). Recent evidence
also links CNS plasticity to the effects of moderate exercise on
SNS activity (72).

Polyphenols elicit a hormetic response in cell culture
(73); curcumin (74), resveratrol (75) and B-type procyanidins
(76). The hormesis effect of other polyphenols also has been
confirmed in vitro, and these activities are considered to
arise from modulation of a number of redox-based signaling
pathways. Abundant evidence thus supports a hormesis effect of
polyphenols in in vitro studies, but limited data illustrate these
effects in vivo.

Hormetic response to B-type
procyanidin in intervention and animal
studies

As mentioned above, repeated ingestion of B-type
procyanidins is reported to reduce the risk of cardiovascular
diseases. Besides numerous intervention trials have been
examined following the single ingestion of foods rich in B-type
procyanidins. Regarding hemodynamics, a single ingestion
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FIGURE 1

Chemical structure of B-type procyanidin (C4–C8) bond, (A), and dose-response curves: (B) monotonic and (C) hormesis.

was associated with increased FMD at about 2 h following
ingestion (23). These results indicated that a single treatment
of B-type procyanidin might improve vascular endothelial
cell function. Sun et al. assessed the dose-response pattern of
human endothelial function to B-type procyanidin in cocoa
(55). They concluded that cocoa flavanols could significantly
improve endothelial function, with an optimal dose of about
710 mg. They also observed a non-linear association (inverted
U-shape) between cocoa flavanols and FMD. There were no
notable adverse effects in the intervention studies using 1.4
times (1,008 mg) or 1.76 times (1,248 mg) the effective dose
(710 mg) shown by Sun et al. (55). Since these intervention
studies used cocoa drinks or chocolate as the test food, it was
limited intake amount. Therefore, the toxicity of type B-type
procyanidins may not detect.

In addition, results of a recent intervention trial indicate
that repeated supplements of B-type procyanidins are associated
with improvement on memory tasks that depend on dentate
gyrus functions (52). Intervention trials have been conducted in
young adults, examining the effects on a memory task of a single
ingestion of cocoa flavanols at doses from 172 to 994 mg (77). In
almost all cases, cocoa flavanols were associated with enhanced
working memory or mood and reduced fatigue, but evidence of
dose-response in CNS studies is limited.

These results, taken together, suggest that a hormetic
physiological response following a single intake of B-type
procyanidins is likely. Studies of other polyphenols, such
as curcumin and resveratrol, are too limited to allow for
interpretations regarding dose response (78).

Repeated oral gavage with 10 mg/kg body weight (bw)
of cocoa flavanol in rats resulted in significantly decreased
blood pressure and markedly increased aortic endothelial nitric
oxide synthase expression (eNOS), indicating this dose as
optimal (79). On the other hand, a single oral administration
of 10 mg/kg cocoa flavanol, resulted in a transient increase
in mean blood pressure (BP) and heart rate (HR), along
with a marked increase in blood flow in the cremaster
muscle arteriole soon after treatment. A significant increase
in eNOS phosphorylation was also observed in aorta dissected
60 min after this treatment. Similar but weaker alterations were
observed at a dose of 1 mg/kg cocoa flavanol but 100 mg/kg
cocoa flavanol did not trigger any changes in hemodynamics or
eNOS phosphorylation.

We also compared B-type procyanidins such as the
monomer [(-)-epicatechin; EC], dimer (procyanidin B2; B2),
trimer (procyanidin C1; C1), and tetramer (cinnamtannin A2;
A2) on hemodynamics (80). At a dose of 10 µg/kg, A2 and B2
were associated with a marked increase in cremasteric arteriole
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blood flow, C1 was linked to a slight increase, and EC did not
trigger any change. Based on these findings, a relative efficacy
of B-type procyanidins on hemodynamics was suggested as
follows: A2 > B2 > > C1 > > > EC (Figure 2). A dose-response
study of A2 showed increased blood flow with a single dose
of 10 µg/kg, but not with a dose of 100 µg/kg. In our dose-
response study for A2 induction of thermogenic uncoupling
protein (UCP)-1 expression in brown adipose tissue (BAT), we
found that a single oral dose at 1 µg/kg was associated with
significantly increased UCP-1 mRNA expression (Figure 2), but
more than 1 µg/kg A2 (10 to 1,000 µg/kg) did not show any
change (81).

Taken together, the results of animal studies of cocoa
flavanol or the B-type procyanidins are consistent with those
of intervention studies following a single intake of food rich
in B-type procyanidin. The implication is that this polyphenol
elicits an inverted U-shaped dose-response.

Target organ of B-type procyanidins
from the perspective of bioavailability

B-type procyanidins show poor bioavailability, and intact
forms in foods are hardly present in the blood (82). For

FIGURE 2

Scheme of sympathetic nerve activation by oral administration
of B-type procyanidins, consequently activation of the central
nervous system and peripheral organs.

this reason, how these polyphenols exert beneficial effects
remains unclear. Recent studies suggest that the physiological
changes following repeated B-type procyanidins ingestion
may be related to alterations in gut microflora and/or
their metabolites, but the mechanism for changes arising
immediately after a single dose is unclear. Considering that
most B-type procyanidins are present in the feces, the
target organ of them is the gastrointestinal tract, including
the oral cavity.

Single doses of B-type procyanidins do not draw a
monotonic dose-response, and benefits are seen at the mid-
range doses but not at lower or higher doses. Among various
pharmacological agents, those that support social interactions
or memory are reported to show biphasic reactions (83)
and enhance memory (84). A single oral ingestion of cocoa
flavanol has been also reported to improve cognition and
mood in intervention studies. As noted, the primary target
organ of B-type procyanidins appears to be the digestive
tract, but activation of the CNS may be crucial to the
mechanism of action.

Sympathetic nerve activation by B-type
procyanidins

A single oral optimal dose of cocoa flavanol triggers an
increase in blood flow in the cremaster arteriole soon after
treatment in rats (85). Such a rapid response likely does
not depend on absorption or distribution in the blood. The
SNS is a well-known regulator of hemodynamic reflection,
exerting its influence through adrenergic receptors (AdR)
expressed in the myocardium, vascular smooth muscle, and
vasomotor center in the medulla oblongata (86). Activation
of myocardial β1 AdR, which are expressed predominantly
in cardiac tissue, causes increased cardiac output and HR.
Activation of the α1 AdR in vascular smooth muscle contracts
blood vessels, leading to elevated BP (Figure 3) (87). For
this reason, we used adrenaline blockers to examine whether
the SNS is involved in the hemodynamic changes induced by
B-type procyanidins. We found that a transient increase in
HR caused by an optimal dose of cocoa flavanol could be
markedly decreased by co-treatment with a β1 AdR blocker
in rats. In addition, co-treatment with an α1 blocker inhibited
the transient elevation in BP that a single oral dose of cocoa
flavanol induced.

Sympathetic nervous system also regulates non-shivering
thermogenesis through β3 AdR in BAT via UCP-1 (88).
We have found that UCP-1 mRNA upregulation in BAT
after an optimal dose of cocoa flavanol is markedly
attenuated by co-administration of β3 blocker. These
results implicate the SNS in the acute hemodynamic
and metabolic changes following a single oral dose of
B-type procyanidins.
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FIGURE 3

Scheme of the relationship between adrenergic receptors in the circulation system. β1 adrenergic receptors contracts the myocardium and
increased cardiac output and heart rate. α1 adrenergic receptor in vascular smooth muscle contracts blood vessels, leading to elevated blood
pressure. While β2 receptor relaxes vascular smooth muscle as a competitive effect against α1 adrenergic receptors. In the vasomotor center,
presynaptic neurons release noradrenaline (NA) into the synaptic cleft upon stimulation. Noradrenaline binds the activating receptors of the
postsynaptic neuron. NA also binds inhibitory autoreceptors of the presynaptic neurons, consequently, inhibited NA release from postsynaptic
neurons.

In hormesis, effects at high doses can be less than effects
at optimal doses. We evaluated the hormetic pattern of
response to B-type procyanidins in vivo and found that a
single oral administration of 10-fold the optimal dose of
cocoa flavanol in rats yielded no transient hemodynamic
alterations (79). In addition, as noted, an optimal dose of
cocoa flavanol increased UCP-1 mRNA expression in BAT,
but this change was markedly dampened at doses 10-fold
the optimal level (89). Based on our findings linking the
hemodynamic and thermogenic effects of B-type procyanidins
to SNS activation, we focused on why optimal dose elicit these
effects but not high doses.

Blood pressure and heart rate are regulated competitively
by inhibitory and activating AdR. Activation of the β2
receptor relaxes vascular smooth muscle as a competitive
effect against the vasoconstrictive action of α1 AdR and
thus decreases BP (Figure 3) (87). In our co-administration
study with a high dose of B-type procyanidins and α1
blocker in rats, although, we found no changes in BP (79).
Besides, inhibitory α2 AdR, which are expressed in the
preganglionic sympathetic fibers and vasomotor center in the
CNS, down-regulate the SNS. Yohimbine is an α2 blocker
that is reported to be more effective in CNS than SNS. Given
this pattern, we conducted a co-administration study with
a high dose of cocoa flavanol (100 mg/kg) and yohimbine.
A single high dose of cocoa flavanol alone elicited no change

in BP, but BP increased markedly and transiently by co-
administered with yohimbine. Similar results were observed co-
administration of B-type procyanidin tetramer A2 (100 µg/kg)
and yohimbine (80).

As mentioned above, whereas a single oral dose of 1 µg/kg
of A2 significantly increased UCP-1 mRNA expression in BAT,
doses from 10 to 1,000 µg/kg A2 did not (81). In contrast, co-
administration of a high dose (100 µg/kg) of A2 and yohimbine
markedly increased UCP-1 mRNA expression. A recent report
suggested that the premotor neurons controlling thermogenic
effector activation lie primarily within the medullary rostral
raphe pallidus (90). Non-shivering thermogenesis through
the β3 receptor is inhibited by α2AR activation in this
region (91).

α2 AdR are present on noradrenergic terminals in the
peripheral nervous system and the CNS (92). α2 adrenergic
autoreceptors lie in the presynaptic membrane of adrenergic
neurons, inhibiting exocytosis of their neurotransmitters
(mostly noradrenaline) as part of a negative feedback loop
(93, 94) (Figure 3). Feedback inhibition of noradrenaline
release from sympathetic nerves by α2-autoreceptors limits its
exocytosis and protects heart under normal conditions (95). The
reduced hemodynamic and metabolic output at a high dose of
B-type procyanidins observed in our previous studies may cause
activation of autoreceptor α2. Thus, SNS deactivation may be
induced by a high dose of B-type procyanidins.
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Stress and hormetic response to
B-type procyanidins

The relationship between stress and hormetic responses is
well known. Various factors induce the stress response, which
involves rapid activation of the sympathetic–adreno–medullar
(SAM) axis and the hypothalamus–pituitary–adrenal (HPA)
axis (96). In the SAM, rapid physiological adaptation mediated
mainly by noradrenaline results in transient responses, such as
alertness, and appraisal of the situation, enabling a strategic
decision. Sympathetic modulations induced by stressors rely
on direct projections from the paraventricular nucleus of the
hypothalamus (PVN), locus coeruleus, and rostral ventrolateral
medulla to pre-ganglionic sympathetic neurons present in the
dorsal intermediolateral cellular column of the spinal cord (97).
As a result, noradrenaline is secreted from sympathetic nerve
terminals, leading to activation of signaling pathways that evoke
changes in blood vessels, glands, visceral organs, and smooth
muscle. Considering the previous results following a single oral
administration of B-type procyanidins, these changes may be
induced by activation of the SNS.

The PVN, which also has a role in eliciting activation of
the HPA, synthesizes oxytocin, vasopressin, and corticotropin-
releasing hormone (CRH), depending on the target (98).
CRH excreted from the PVN to the anterior pituitary
induces release of adrenocorticotropic hormone, which
drives the responses associated with release of cortisol
(corticosterone in rodents) from the adrenal gland in the
hours following stress. When blood cortisol exceeds a certain
level, it exerts negative feedback on the hypothalamic release
of CRH and the pituitary release of adrenocorticotropic
hormone (99). Activation of these pathways results in adaptive
conditions that mediate long-term memories of the experience.
Therefore, HPA activation induced by optimal stress has
a strong positive effect on memory, cognition, and stress
resilience (100).

If the outcome following a single dose of B-type
procyanidins arises as stress response, HPA activation is
expected to occur at the same time as sympathetic hyperactivity.
Therefore, we examined the activation of HPA following a
single dose of B-type procyanidins. In mouse PVN, the optimal
dose of cocoa flavanol (10 mg/kg bw) markedly upregulated
CRH mRNA, as detected by in situ hybridization, 240 min
after administration. A dose of 50 mg/kg cocoa flavanol also
showed similar alterations 60 min after administration, with a
significant elevation in plasma corticosterone (101). In addition,
CRH mRNA in mouse PVN was increased significantly 60 min
after administration of an optimal dose of A2 (10 µg/kg),
and a similar change only 15 min after administration of a
10-fold oral dose of A2 (102). Few reports have described
the relationship between stress intensity and the duration of
response, but our results suggested that the reaction is faster
with exposure to more severe stress. Taken together, these

findings indicate that stimulation with an oral dose of B-type
procyanidin might be a stressor for mammals, resulting in SNS
activation (Figure 2).

Conclusion

Various stressors such as radiation, reactive oxygen species,
calorie restriction, temperature, chemicals, and exercise elicit
hormetic responses (103). Hormesis and the underlying
biochemical pathways induced by the stressors confer protection
against a range of pathological or aging processes (62). In
this review, we especially focused on the hormetic alterations
induced by B-type procyanidins, which are electrophilic
compounds that easily cause redox reactions. The relationship
between CNS activation and the chemical characteristics of
B-type procyanidins remains unclear and requires further
clarification. B-type procyanidins or related compounds may
contribute to the beneficial effects of eating fruits and vegetables
through hormetic responses induced by neuromodulation.
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