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Abstract: Formulation of promising anticancer herbal drug curcumin as a nanoscale-sized curcumin
(nanocurcumin) improved its delivery to cells and organisms both in vitro and in vivo. We report
on coupling nanocurcumin with upconversion nanoparticles (UCNPs) using Poly (lactic-co-glycolic
Acid) (PLGA) to endow visualisation in the near-infrared transparency window. Nanocurcumin
was prepared by solvent-antisolvent method. NaYF4:Yb,Er (UCNP1) and NaYF4:Yb,Tm (UCNP2)
nanoparticles were synthesised by reverse microemulsion method and then functionalized it with
PLGA to form UCNP-PLGA nanocarrier followed up by loading with the solvent-antisolvent process
synthesized herbal nanocurcumin. The UCNP samples were extensively characterised with XRD, Ra-
man, FTIR, DSC, TGA, UV-VIS-NIR spectrophotometer, Upconversion spectrofluorometer, HRSEM,
EDAX and Zeta Potential analyses. UCNP1-PLGA-nanocurcumin exhibited emission at 520, 540,
660 nm and UCNP2-PLGA-nanocurmin showed emission at 480 and 800 nm spectral bands. UCNP-
PLGA-nanocurcumin incubated with rat glioblastoma cells demonstrated moderate cytotoxicity,
60–80% cell viability at 0.12–0.02 mg/mL marginally suitable for therapeutic applications. The cyto-
toxicity of UCNPs evaluated in tumour spheroids models confirmed UCNP-PLGA-nanocurcumin
therapeutic potential. As-synthesised curcumin-loaded nanocomplexes were administered in tumour-
bearing laboratory animals (Lewis lung cancer model) and showed adequate contrast to enable
in vivo and ex vivo study of UCNP-PLGA-nanocurcumin bio distribution in organs, with dominant

Nanomaterials 2021, 11, 2234. https://doi.org/10.3390/nano11092234 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-6486-8114
https://orcid.org/0000-0001-6349-2979
https://orcid.org/0000-0001-9646-1693
https://orcid.org/0000-0001-9680-1301
https://orcid.org/0000-0002-8028-0887
https://orcid.org/0000-0002-5694-3492
https://orcid.org/0000-0002-3900-2949
https://orcid.org/0000-0002-8814-6906
https://doi.org/10.3390/nano11092234
https://doi.org/10.3390/nano11092234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11092234
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11092234?type=check_update&version=4


Nanomaterials 2021, 11, 2234 2 of 25

distribution in the liver and lungs. Our studies demonstrate promise of nanocurcumin-loaded
upconversion nanoparticles for theranostics applications.

Keywords: upconversion nanoparticles; theranostics; nanocurcumin; herbal drugs; intravital imaging

1. Introduction

Cancer is a major global health issue that needs novel approaches in addition to con-
ventional surgical resection, chemotherapy, or radiotherapy [1]. Over the past decade, by
the advancement in BioNanoMedicine, nanoparticles with various natures have attracted
more attention as cancer theranostics agents that combine both visualization and therapy
modalities. Drug carriers based on nanoparticles have lower side effects compared to the
free drug, demonstrate increased tumour-specific targeting as a result of the enhanced
permeability and retention (EPR) effect, and can provide controlled drug release, which
makes the use of nanodrug delivery systems a promising approach in bionanomedicine [2].

Rare earth-doped upconversion nanoparticles (UCNPs) are a unique category of opti-
cal nanomaterials that exhibit anti-Stokes process of converting the near infrared radiation
(NIR) to visible/NIR emission [3]. UCNPs demonstrate unique optical properties, includ-
ing high penetration into biological tissues due to so called near-infrared transparency
window, high resistance to photobleaching, absence of autofluorescence, multicolour emis-
sion with a narrow line width, high luminescence lifetime, low irradiation damage, and
increased signal-to-noise ratio and photochemical stability [4]. These properties make
UCNPs an excellent platform for biovisualization. However, UCNPs could additionally be
loaded with antitumor drugs to obtain a theranostics platform with both visualization and
therapeutic properties [5].

Curcumin is a yellow coloured polyphenol compound that has many promising
biomedical properties like anti-oxidant [6], anti-fungal effect [7], anti-inflammatory, anti-
proliferative [8], antiviral [9] effects, etc. It has been reported that therapeutic efficacy of
curcumin is useful in the treatment of digestive and reproductive system cancers, haemato-
logical and brain tumours, urological cancer, breast cancer, and bone tumours [10]. The
main problem of curcumin is hydrophobicity, which leads to poor water solubility, low
absorption, quick drug metabolism, low penetration, and degradation [1,7,11–13]. The
oral bioavailability of curcumin is limited, as it gets unabsorbed due to little intestinal
absorption capability. Even the slightly absorbed part rapidly metabolized. Therefore,
rapid metabolism and excretion causes certain difficulties in using curcumin for biomedical
and clinical applications [11,14–19]. To solve the aforesaid problems, encapsulation of
the curcumin to nanoformulations is of great interest. The efficacy of curcumin nanofor-
mulations has been demonstrated earlier. Rupesh Kumar Basniwal et al. evaluated the
anticancer properties of nanocurcumin in the presence of cancer cell lines such as lung
(A549), liver (HepG2) and skin (A431) cancer cells and nanocurcumin exhibited increased
anticancer properties over the conventional curcumin formulations [20]. Here, we propose
nanocurcumin as model antitumor drug for loading into the nanocomplexes based on
UCNPs for theranostics applications.

Although various synthesis methods were reported to prepare NaYF4 UCNPs, phar-
maceutically important microemulsion synthesis strategy is important for drug delivery
applications and therefore this synthesis methodology was adopted in the present work. It
is able to provide sustained drug release, improved drug solubility and enhanced drug
absorption. Specifically, the reverse microemulsion (water-in-oil, hydrophilic-lipophilic bal-
ance < 10) is an effective method to prepare hexagonal NaYF4:Yb,Er/Tm UCNPs [21–23].
Poly (lactic-co-glycolic acid) (PLGA), which is known for attractive biocompatibility, non-
toxic nature and high stability, has been proposed to enhance the surface properties of
UCNPs within nanocurcumin loading. Drug delivery of curcumin accompanied by PLGA
could increase therapeutic efficacies to promote sustained drug delivery and drug release
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targeting, minimize the non-specific consumption by undesirable tissues and to enhance
the aqueous solubility [10,24,25]. Adeeb Shehzad and co-workers reported so as curcumin
incorporated PLGA nanoparticles have exhibited increased cellular uptake, induced the
apoptosis and suppressed tumour cell proliferation and improved the bioavailability [10].

The advantage of combining UCNP and nanocurcumin is that the upconverted visible
light could excite the photosensitizer and favour fluorescence resonance energy transfer
(FRET). The UCNPs could also applicable for photodynamic therapy and photothermal
therapy of cancers. NIR excitation based cancer therapy using UCNP that lies in the
biological windows is advantageous than quantum dots and other fluorophores. The
NIR activation of UCNPs could accomplish photothermal conversion and provide deep
tissue penetration ability [3,26]. The rare-earth doped NaYF4 is attractive in biomedical
applications as it gives high upconversion quantum yield than the quantum dots by
two-photon energy transfer process from the sensitizer ion and the activator ion.

We report on synthesis and characterisation of biofunctional nanocomplexes of NaYF4:
Yb,Er and NaYF4:Yb,Tm upconversion nanoparticles surface-coated with PLGA and
nanocurcumin. The phase formation, morphology and basic upconversion emission prop-
erties of the synthesised UCNP complexes were investigated. Besides, in vitro cytotoxicity
of the biofunctional nanocomplexes was tested using rat glioblastoma cells. In vivo biodis-
tribution of these nanocomplexes was investigated in small animals.

2. Methodologies
2.1. Materials

The curcumin (C21H20O6) and Poly(D,L-lactide-co-glycolide) (Mw~30−60 kDa, lac-
tide:glycolide 50:50) were purchased from Sigma-Aldrich, Saint Louis, MO, USA. Dichlo-
romethane (CH2Cl2, SRL, Chennai, India), tetrahydrofuran (C4H8O, Alfa Aesar, Haver-
hill, MA, USA, 99.99% purity), ethanol (C2H5OH, 99.99% purity), sodium fluoride (NaF,
Chennai, India, 99%), yttrium nitrate Y(NO3)3·6H2O (Alfa Aesar, Haverhill, MA, USA,
99.99%), ytterbium nitrate (Yb(NO3)3.6H2O, Alfa Aesar, Haverhill, MA, USA, 99.99%),
erbium nitrate (Er(NO3)3·5H2O, Alfa Aesar, Haverhill, MA, USA, 99.99%), thulium nitrate
(Tm(NO3)3·6H2O, Alfa Aesar, Haverhill, MA, USA, 99.99%), isooctane (SRL, Chennai,
India 99.8%), oleic acid (OA, Sigma-Aldrich, Saint Louis, MO, USA, 90%), cetyltrimethy-
lammonium bromide (CTAB) (Sigma-Aldrich, Saint Louis, MO, USA, 95%), 1-butanol
(Vetec, Sigma-Aldrich, Saint Louis, MO, USA, ≥99.5%), and acetone (Rankem, Mumbai,
India, 99%) were used in the synthesis of UCNPs. All chemicals and solvents are in
analytical purity.

2.2. Preparation of Nanocurcumin

Nanocurcumin was synthesized using the evaporation-assisted solvent–antisolvent
method in the Optical Nanomaterials Laboratory, Department of Nuclear Physics, Univer-
sity of Madras, Chennai, India. Tetrahydrofuran (THF) was chosen as solvent and distilled
water act as antisolvent. The 0.1 g of curcumin was dissolved with 1:10 ratio of THF
and distilled water. The sample was stirred for 20 min to acquire homogeneous solution.
Subsequently, the resultant mixture was subjected to ultra-sonication (20–20,000 kHz) in the
water bath-sonication for 150 min to produce an emulsion and rapidly stirred for 30 min.
The supernatant was decanted and a thick residue was air-dried by 80 ◦C heating to about
3 h.

2.3. Preparation of Nanocurcumin Loaded UCNPs by PLGA Polymer

To prepare UCNP1-PLGA-nanocur composite, the hexagonal NaYF4: 20% Yb, 2% Er
UCNPs was synthesized by reverse microemulsion method based on the earlier reports
with a minor alteration in calcination temperature of 550 ◦C [23]. Further, the drug loading
process was done based on the molecular interaction method. A weighed amount of 80 mg
of NaYF4:Yb,Er-550 ◦C (UCNP1) nanoparticles and biocompatible polymer PLGA (50:50)
taken with an amount of 25 mg be liquefied in dichloromethane (DCM) under mild stirring.
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Then, 50 mg of nanocurcumin was added with the above polymeric solution, and the
yellowish solution was stirred vigorously. The concentration of PLGA is kept low to avoid
the upconversion emission quenching by polymer functional groups. Then, the suspension
was stirred well for 4–5 h continuously to allow the drug molecules to dissolve and be
adsorbed on the UCNPs. Later, after the homogenization, the combined DCM/organic
phases are evaporated. Further, the precipitated sample was obtained by washing with
ethanol. The supernatant was isolated by filtration from the drug loaded nanocarrier to
measure the amount of free drug. Finally, the sample was air dried overnight without
any heating to avoid degradation of the polymer. The collected yellowish orange solid of
nanocurcumin drug loaded samples were characterized. Similarly, to synthesis the UCNP2-
PLGA-nanocur composite, NaYF4:Yb,Tm was prepared by doping 2% of Tm(NO3)3·6H2O
on the contrary to 2% of Er(NO3)3·6H2O and calcined at 550 ◦C for 30 min. Then, 25 mg
of biocompatible polymer PLGA (50:50) and 80 mg of nanocurcumin was added in DCM
under stirring to conjugate the UCNPs. All the above upconversion nanomaterials were
prepared in Optical Nanomaterials Laboratory (J.S. Lab.), Department of Nuclear Physics,
University of Madras, Chennai, India,

2.4. Materials Characterizations

In order to analyse the crystal structural phase of the UCNPs and nanocurcumin
drug loaded UCNP samples, powder X-ray diffraction (XRD) study was carried out
with the BRUKER D8 ADVANCE X-ray Diffraction platform (Karlsruhe, Germany) at
Cu Kα1 X-ray wavelength of 0.15406 nm. The X-ray diffraction data was collected in the
two-theta range from 5 to 65◦ at a scanning rate 0.03 s−1. XRDA software (version 3.1,
http://ccp14.cryst.bbk.ac.uk/ccp/ccp14/ftp-mirror/xrda/pub/lpsd/, accessed on 16 Au-
gust 2021) was used for the diffraction profile fitting analysis. The surface morphology
of the UCNP, UCNP-PLGA and UCNP-PLGA-Nanocurcumin was examined by High
Resolution Scanning Electron Microscope (FEI Quanta FEG 200F, Hillsboro, OR, USA).
Image J software (https://imagej.nih.gov/ij/download.html, accessed on 16 August 2021)
was employed to calculate the particle size. Energy Dispersive X–ray spectroscopy Analy-
sis (EDAX) and elemental mapping of NaYF4:Yb,Er-PLGA-Nanocurcumin complex was
performed using the ZEISS Field Emission Scanning Electron Microscope (GeminiSEM 300,
Oberkochen, Germany), which equipped with EDX detector (ULTIM MAX Silicon Drift
Detector, OXFORD INSTRUMENTS, High Wycombe, United Kingdom), and the results are
provided in the Supplementary Information. The thermal behaviour of the raw-curcumin
and synthesized nanocurcumin was explored by Differential Thermal Analysis (DTA) and
the temperature dependent weight change property was studied by Thermogravimetric
analysis (TGA) by heating the sample from room temperature to 500 ◦C at a scanning
rate 10 ◦C min−1 using the TGA-DTA Thermal Analyser (STA 2500 Regulus Simultaneous
Thermal Analysis system, NETZSCH, Selb, Germany) under the nitrogen atmosphere, the
results are given in Supplementary Information. The chemical functional group analyses
of the samples were investigated by employing the Bruker FTIR Spectrometer ALPHA II
(Ettingen, Germany) in the infrared absorption frequency range 500–4000 cm−1. Raman
spectra of the UCNPs, UCNP-PLGA and UCNP-PLGA-Nanocurcumin samples were ex-
plored by interacting the samples with diode pumped solid state laser at 532 nm using
the Horiba Jobin Yvon XPloRA Plus Raman Microscope (Horiba Techno Service, Ltd.,
Kyoto, Japan) in the spectroscopic mode. Optical absorption of the as-received curcumin
and the solvent-antisolvent synthesized nanocurcumin was studied using the Analytik
Jena UV-VIS spectrometer (Specord 210 Plus, Jena, Germany) and the spectral results are
given in the Supplementary Information. Photoluminescence behaviour of curcumin and
nanocurcumin was studied with HORIBA FluoroMax Plus spectrofluormeter (Techno
Service Co., Ltd., Kyoto, Japan) by exciting the samples at 424 nm wavelength and the
emission results are provided in the Supplementary Information. The hand-held 200 mW
980 nm infrared diode laser pointer was employed to check upconversion emission at each
stage of sample preparation. For the detailed investigation of the upconversion emission

http://ccp14.cryst.bbk.ac.uk/ccp/ccp14/ftp-mirror/xrda/pub/lpsd/
http://ccp14.cryst.bbk.ac.uk/ccp/ccp14/ftp-mirror/xrda/pub/lpsd/
https://imagej.nih.gov/ij/download.html
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characteristics of the UCNP, UCNP-PLGA and UCNP-PLGA nanocomplexes, we employed
the sophisticated Quanta Master 51 spectrofluorometer (Photon Technology International
Inc., Birmingham, NJ, USA) and 980 nm laser excitation source (Spectra Physics, Model
3900S, Milpitas, CA, USA). The down converting NIR fluorescence was recorded by In-
GaAs detector (Teledyne Judson Technologies, 062-8451, Montgomeryville, PA, USA). Zeta
potential of the UCNP, UCNP-PLGA and UCNP-PLGA-Nanocurcumin was measured
the HORIBA Nanoparticle Analyzer (nanoPARTICA SZ-100, Horiba, Ltd., Kyoto, Japan),
and the results are available in the “Supplementary Information”. The ChemSpider free
online chemical structure database (https://www.chemspider.com/StructureSearch.aspx,
accessed on 16 August 2021) was employed to draw the chemical structure of THF, PLGA
and curcumin.

2.5. Biomedical Investigation
2.5.1. Cell Culture

Rat glioma C6 cells were cultivated in Dulbecco’s Modified Eagle Medium (DMEM). To
make the complete medium, it was supplemented with 10% foetal bovine serum (FBS), 2 µM
L-glutamine, and a combination of streptomycin (100µg/mL) and penicillin (100 U/mL)
antibiotics. Cells were grown at 37 ◦C in a 5% CO2 humidified atmosphere and passaged
every 2–3 days at 80–90% confluence. Passaging was performed with 0.25% Trypsin–EDTA
solution, and the subcultivation ratio was 1:3 to 1:6 according to ATCC recommendations.

2.5.2. Cytotoxicity in Monolayer Culture (MTT Assay)

Rat C6 glioma cells (5 × 103) were placed on a 96-well flat bottom plate and in-
cubated for a night at 37 ◦C in a 5% CO2 humidified atmosphere. UCNPs were sus-
pended in full DMEM just prior to the experiment and added to the cells to the final
concentrations of 0.02–0.8 mg/mL for 48 h. After that, MTT (3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide) solution (0.5 mg/mL) was added to the cells for 3 h.
Then, MTT solution was removed and replaced with 100 µL of DMSO. The absorbance
of the dissolved formazan was measured with a microplate reader (Multiscan, Thermo
FS, Massachusetts, United States of America) at a wavelength of 570 nm according to
the manufacturer’s protocol. All measurements were performed in three independent
replicates, and the final data were indicated as average ± SD, and the absorbance of the
non-treated (control) cells was taken as 100%.

2.5.3. Cytotoxicity in Tumor Spheroids (MTS Assay)

Tumour spheroids were obtained using liquid overlay technique as per the previous
report [27]. For this, we resuspended 1.5% wt of agarose in PBS (pH 7.4) and heated the
mixture in water bath for 15 min that resulted in agarose melting and sterilization. After
that, we placed 100 µL of agarose solution to a flat-bottom 96-well plate under sterile
conditions. Then, plates with agarose were cooled down to room temperature for 15 min,
which led to agarose solidification and non-adhesive surface formation. We seeded rat
C6 glioma cells onto obtained agarose-coated plates (10,000 cells/well in 100 µL of full
DMEM) and incubated for 72 h in standard culture conditions to generate spheroids. After
that, UCNPs suspensions in full DMEM were added to spheroids to the final concentration
of 0.12–0.8 mg/mL for 48 h. The cytotoxicity was evaluated using colorimetric MTS assay.
For this, we added 10 µL of MTS reagent per well and incubated for 3 h at 37 ◦C, and the
soluble formazan was measured at 490 nm with a microplate reader (Multiscan, Thermo
FS, Massachusetts, United States of America) according to the manufacturer’s protocol.

2.5.4. Intracellular Accumulation (Anti-Stokes Photoluminescence Microscopy and
Confocal Fluorescence Microscopy)

Rat glioma C6 cells (5 × 104) were seeded on an 8-well glass chamber slide and
incubated overnight. Then, UCNPs were suspended in full DMEM to 0.05 mg/mL and
added to the cells for 1 h. After that, the cells were thoroughly rinsed three times with

https://www.chemspider.com/StructureSearch.aspx
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sterile PBS (pH 7.4) and finally fixed using 4% formaldehyde solution. For fluorescence
microscopy, the cell nuclei were additionally stained with doxorubicin (100 µM, 10 min).
The excitation wavelength for nanocurcumin was 488 nm, and the emission signal was
collected in 500–600 nm.

2.5.5. Live-Dead Assay on Tumour Spheroids (Confocal Microscopy)

Tumour spheroids were generated as it was described above. Then, the spheroids
were incubated with 0.4 mg/mL NaYF4:Yb,Er-PLGA-nanocur and NaYF4:Yb, Tm-PLGA-
nanocur for 48 h. Spheroids were stained with Calcein AM (50 µM) and Propidium Iodide
(25 µM) for 30 min at 37 ◦C in a 5% CO2 humidified atmosphere. Stained spheroids were
rinsed with PBS (pH 7.4), mounted on a glass slide, and analysed using Leica TSP SPE
confocal microscope.

2.5.6. Accumulation in Tumour Spheroids (Confocal Microscopy)

Tumour spheroids were generated as it was described above. Then, the spheroids were
incubated with 0.4 mg/mL NaYF4:Yb,Er-PLGA-nanocur and NaYF4:Yb,Tm-PLGA-nanocur
for 2 h and 48 h. Then, spheroids were washed with PBS (pH 7.4), mounted on a glass
slide, and analysed using Leica TSP SPE confocal microscope. The excitation wavelength
for nanocurcumin was 488 nm, and the emission signal was collected in 500–600 nm.

2.5.7. Animal Experiments

The experimental animals (female BDF1 mice) were kept under controlled environ-
mental conditions, in particular constant temperature, humidity, and a 12 h dark–light
cycle. They were allowed free access to water and mouse chow. All animal experiments
were performed in accordance with European and Russian national guidelines for animal
experimentation, and animal experiments were approved by the local animal and ethics
review committee of the FSBSI “N.N. Blokhin Russian Cancer Research Center”.

2.5.8. Biodistribution In Vivo

The experiments were carried out on female BDF1 mice (C57Bl/6 × DBA2). Before
the UCNPs administration, mice were pre-anesthetized with a combination Zoletil 100
(2.5 mg/kg tiletamine hydrochloride and 2.5 mg/kg zolazepam hydrochloride) (Virbac,
Caro, France) and Rometar (xylazine hydrochloride 0.2 mg/kg) (SPOFA, Markova, Czech
Republic) intraperitoneally, 150 µL/mouse. The drug was administered intravenously
through the retro-orbital sinus at a dose of 0.75 mg/mouse (30 mg/kg). Mice were sacrificed
by instantaneous dislocation of the cervical vertebrae in the cranio-cervical direction 4 h and
24 h after intravenous administration. Post-mortem parenchymal organs were exterminated
and images were obtained.

2.5.9. Lewis Lung Cancer Mouse Model

Lewis lung cancer (LLC) model BDF1 (C57Bl/6 × DBA2) mice was proposed to
evaluate the UCNPs accumulation in tumours in vivo. For this, LLC was extracted from
BDF1 mice (day 11 after grafting) and subcutaneously inoculated into experimental mice
(0.3 mL LLC in DMEM suspension 1:10). After two weeks, the UCNP suspension (0.75 mg
in 150 µL) was injected into the mice peritumorally. Images were obtained from the
DVS-02 imaging system 24 h after administration.

3. Results and Discussion
3.1. Nanocurcumin-Loaded UCNPs Preparation

Figure 1a,b depicts the schematic synthesis of UCNP1-PLGA-nanocurcumin and
UCNP2-PLGA-nanocurmin. The loading of nanocurcumin into UCNP involved three
stages. Firstly, nanocurcumin was prepared by using the solvent-evaporation assisted
solvent-antisolvent method using THF and distilled water. It showed absorbance at 425 nm
and emission at 560 nm (Figure S1a,b; detailed discussion is given in the supplementary
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information). The sample was collected after solvent evaporation by sonication and air-
dried at 80 ◦C to remove water moiety, which is confirmed through the TGA and DTA
results shown in Figure S2a,b. In the second step, NaYF4:Yb,Er (UCNP1) and NaYF4:Yb,Tm
(UCNP2) nanoparticles were synthesized utilizing the reverse micro-emulsion process with
strategy of surfactant/water/oil phase solvents. It yielded spherical nanospheres suitable
to load the nanocurcumin. Finally, UCNP1-PLGA-nanocur and UCNP2-PLGA-nanocur
composites were prepared by facile molecular interaction approach. The PLGA was used to
encapsulate the nanocurcumin into UCNPs to improve the surface properties by interacting
with the carboxylic groups of the polymer [20,28].

Figure 1. Formation mechanism of (a) UCNP1-PLGA-nanocur, (b) UCNP2-PLGA- nanocur.

3.2. HRSEM Analysis

Figure 2a–j shows the HRSEM images of nanocurcumin (a,b), UCNP1(c,d), UCNP1-
PLGA nanocur (e,f), UCNP2 (g,h) and UCNP2- PLGA-nanocur (i,j). Figure 2a,b represents
the morphological behaviour of nanocurcumin and the particle size is 150–200 nm. Reverse
microemulsion synthesized UCNP1 (Figure 2c,d) and UCNP2 (Figure 2g,h) are formed
as spherical nanoclusters in size ~200–300 nm. Figure 2e,f shows the surface morphol-
ogy of nanocurcumin-loaded UCNP1-PLGA, which shows nanospheres in size ~300 nm.
Figure 2i,j shows that UCNP2-PLGA-nanocur with the size of ~350 nm. SEM-EDAX analy-
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sis was performed for finding the chemical species present in the UCNP1-PLGA-nanocur
composite. The EDAX spectrum shown in Figure S3a–c explores the existence of Yb and
Er dopant ions and host material elements Na, Y and F in the UCNP1-PLGA-nanocur
composite. The detailed analysis on the EDAX spectrum is included in the supplementary
information. Figure S4 displays the elemental mapping and distribution of the Na, Y, F,
Yb, Er, C, and O. The upconversion nanoparticles are considered as attractive drug carriers
because of their remarkable benefits of increased tumour-specific targeting ability and
minimal side effects along with superior drug loading capability [29]. It is reported that
the sphericity plays a major role in drug releasing properties [28,30] and particle size is an
essential criterion in drug delivery [2]. The large-sized PLGA copolymer functionalized
UCNP could effectively encapsulate the drug and increase drug loading [31]. The large
and porous structured UCNP could promote drug loading ability [29,32]. To analyse the
stability of UCNP and nanocurcumin, their zeta potential was measured by dynamic light
scattering method and the results are given Figure S5 and Table S1.

3.3. X-ray Diffraction Analysis

At each stage of the preparation process, for the structural phase determination of
UCNPs and drug encapsulated UCNPs, the X-ray powder diffraction was employed.
Figure 3a reveals the XRD patterns of nanocurcumin, UCNP1 and UCNP1-PLGA-nanocur,
respectively. Figure 3b displays the XRD spectrum of UCNP2 and UCNP2-PLGA-nanocur,
respectively. The diffraction patterns of the synthesized nanocurcumin exhibits five distinc-
tive peaks at 12.21, 17.13, 24.59, 25.58 and 26.23◦ in the two-theta range of 10 to 30◦. The
result is consistent with the JCPDS: 09-0816 as can be verified in Figure 3a. It implies the syn-
thesized nanocurcumin is formed in crystalline form [33]. The diffraction peaks of reverse
micro-emulsion synthesized UCNP1 and UCNP2 are matches well the JCPDS:16-0334 of
hexagonal β-NaYF4. The hexagonal phase UCNP1 and UCNP2 are crystalline with the
space group of p63/m [5]. The diffraction peaks of the UCNP1-PLGA-nanocur and UCNP2-
PLGA-nanocur broaden with a decrement in their peak intensity compared to UCNP1 and
UCNP2, and it can be identified at 29 and 30◦ corresponding to the (110) and (101) planes.
The broad peak indicates the incorporation of nanocurcumin with UCNPs. It is also noticed
that in the XRD pattern of UCNP1-PLGA-nanocur and UCNP2-PLGA-nanocur, the intense
and sharp characteristic diffraction peaks related to nanocurcumin did not appear from
5 to 30◦. The absence of nanocurcumin peaks is due to the dominated hexagonal structure
of UCNPs in the UCNP1-PLGA-nanocur and UCNP2-PLGA-nanocur samples [14]. Even
after the addition of PLGA and nanocurcumin drug loading, the hexagonal UCNP is stable.
This is advantageous for biomedical applications. The lattice parameters and cell volume is
given in Table 1, The diffraction pattern of nanocurcumin and PLGA encapsulated UCNPs
nanoparticles is slightly broadened compared to UCNP1 and UCNP2 owing to the polymer.
This result is comparable with the XRD pattern of PLGA 50:50 nanoparticles reported by
Mahajan et al. [34].

3.4. FTIR Absorption Spectroscopy

The FTIR spectra of nanocurcumin, NaYF4:Yb,Er (UCNP) and UCNP-PLGA-nanocur
samples are displayed in Figure 4. The nanocurcumin shows a weak peak at 717 cm−1

allocated for the C−H vibrations of the aromatic ring [14]. The other peaks at 816 cm−1

and 857 cm−1 correspond to the C-H bending [33]. The peak at 958 cm−1 is allotted for the
benzoate trans-C−H vibration [14]. The other peak at 1020 cm−1 may be attributed for
C−O−C groups [33] and peak at 1149 cm−1 is assigned to the functional group of C−H
stretching [11]. Then peak at 1277 cm−1 represent the C−O stretching group and the peak
at 1429 cm−1 corresponds to phenolic C−O stretching [35].The absorption peak seen at
1497 cm−1 is assigned to the C=O and C=C vibrations [36]. The strong absorption peak that
arises from 1598 cm−1 can be denoted for the symmetric stretching vibrations about the
aromatic ring (C=C ring) [17]. Another absorption peak noticed at 1632 cm−1 might be due
to the (C=C) stretching [11]. The peak located around ~3505–3510 cm−1 expresses that there
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is presence of OH stretching in the glucose moiety in the nanocurcumin. The presences of
all the characteristics peaks of nanocurcumin in the FTIR spectrum suggest that there is
no chemical alteration or notable degradation of the drug during the solvent-antisolvent
process [14,16,33,36].

Figure 2. HRSEM images of nanocurcumin (a,b), UCNP1 (c,d), UCNP1-PLGA-nanocur (e,f), UCNP2
(g,h), and UCNP2-PLGA-nanocur (i,j).
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Table 1. The lattice parameters of UCNP and the UCNP-PLGA-nanocurcumin complexes.

Sample Crystal Structure Lattice Parameters (Å) Volume (Å3)

UCNP1 hexagonal NaYF4 a = 5.9404; c = 3.5063 107.508

UCNP1-PLGA-nanocur hexagonal NaYF4 a = 6.015; c = 3.5120 110.041

UCNP2 hexagonal NaYF4 a = 5.9806; c = 3.5113 108.764

UCNP2-PLGAnanocur hexagonal NaYF4 a = 6.0495; c = 3.5144 111.383

JCPDS No.16-0334 hexagonal NaYF4 a = 5.96; c = 3.51 107.974
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NaYF4:Yb,Er (UCNP) exhibits a strong absorption peak around 550 cm−1 and small
absorption peak at 605 cm−1 which corresponds to stretching vibrations of metal fluo-
rides. An absorption peak observed at 3250 cm−1 represent the stretching vibration of
the amine groups (–NH2) of CTAB (capping ligand) surfactant prepared by the reverse
micro-emulsion method. Hence, the contribution of the amine surfactant moieties improves
the biocompatibility and the hydrophilic property of the drug carrier [5].

Whereas, the FTIR spectrum of UCNP-PLGA-nanocur exhibits the existence of func-
tional groups present in the nanocurcumin and UCNPs. Among these, the characteristic
functional groups of nanocurcumin at 717, 861, and 1280 cm−1 could be identified from the
drug incorporated sample. Particularly, the absorption peaks for the nanocurcumin around
861 and 1280 cm−1 experienced a mild shift to 857 and 1277 cm−1 in the drug loaded
sample due to nano-encapsulation and indicates successful drug loading. Similarly, the
identified metal fluoride functional group of UCNPs at 550 cm−1 also involved with slight
shift to 561 cm−1 owing to the interaction between drug and UCNPs. In addition, C−O−
stretch of C−O−H groups rose in 1083 cm−1 and also the absorption peak occurring at
1459 denoted for the C−O−H in plane bending of carboxylic acid (−COOH) [31]. It is to be
noted that the new strong absorption peak arises from ~1753 cm−1, which might signify the
characteristic C=O stretching of acid group due to the interaction of PLGA polymer [25,30].
The small absorption peaks at 1164 and 1280 cm−1 indicate the C−O stretching. The other
absorption peaks found at 1390 and 1459 cm−1 are assigned to O−H bending vibrations
and C-H bending, C=C stretching vibrations for the aromatic ring independently. It affirms
that the nanocurcumin efficiently loaded with UCNPs via PLGA ligands attached on the
surface of the nanocarrier. The PLGA functionalization with carboxylic groups could
improve the binding affinity between the nanocurcumin drug and the UCNP nanocarrier,
which will be useful for drug delivery applications [5].

3.5. Raman Spectroscopy

Figure 5a,b shows the Raman spectra recorded for nanocurcumin, UCNP1, UCNP1-
PLGA-nanocur and UCNP2, UCNP2-PLGA-nanocur. The Raman vibrational modes of
the nanocurcumin are located from 950 cm−1 to 1700 cm−1 as shown in Figure 5a, and the
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results were in concurrence to the reported data [37]. The Raman spectra for the UCNP1 and
UCNP2 materials display five main peaks originating from 200–650 cm-1 along with the
two dominant peaks around 245–300 cm−1, which are the characteristic peaks of NaYF4
host lattice. Raman peaks located from the scale of 400 to 700 cm−1 might be denoted for
the vibrational frequencies of Na-F. High phonon vibration modes above 1000 cm−1 are
weakly present and almost absent in the UCNP1 and UCNP2 [38,39].
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In the case of UCNP1-PLGA-nanocur and UCNP2-PLGA-nanocur, the spectrum
displays Raman peaks corresponding to both nanocurcumin and UCNPs, which is an
indication of drug loading. No Raman peak is observed above 1000 cm−1 in the UCNP1 and
UCNP2. However, the inset of Figure 5a reveals UCNP1-PLGA-nanocur shows Raman
modes (1000–1600 cm−1) due to the drug loading of nanocurcumin with the UCNPs. In
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addition, the major functional groups of UCNPs that lies from 200–800 cm−1 remains
unaffected by the incorporation of nanocurcumin except a slight decrement in intensity.
Similar results are obtained for UCNP2-PLGA-nanocur displayed in Figure 5b. The Raman
spectral result indicates the nanocurcumin and UCNP nanocarrier is conjugated by the
PLGA polymer in the UCNP1-PLGA-nanocur and UCNP2-PLGA-nanocur composites,
which could be useful for biomedical applications.

3.6. NIR to Visible Upconversion Emission Characteristics of NaYF4:Yb,Er/Tm

Figure 6a–e shows the NIR to visible upconversion emission and NIR to NIR down
conversion emission spectra of NaYF4:Yb,Er/Tm UCNPs, PLGA-UCNPs and nanocur-
cumin incorporated PLGA-UCNPs. Figure 6a exhibits the upconversion luminescence
(UCL) spectra of hexagonal UCNP1, UCNP1-PLGA and UCNP1-PLGA-nanocur under
980 nm excitation. It exhibits emission at 410, 520, 540, and 660 nm, which correspond
to transitions arising out of 2H9/2, 2H11/2, 4F7/2, 4S3/2 excited levels towards the 4I15/2
ground level of Er3+ ion [40,41]. Hexagonal UCNP1 displays the upconverted intense green
and red emission. Xilin Bai et al. demonstrated that strong green emission of UCNPs shows
great bioimaging ability and reported the UC red emission is useful for cell therapy [42].
The UCNP1-PLGA provides similar UC emission characteristics, but it shows less intense
emission due to the carboxylic functional groups of PLGA [43], which could improve
the drug internalization capacity. Nevertheless, the UC emission in PLGA-UCNP could
be sufficient enough for bioimaging. A decrement in the UC emission is noticed in the
UCNP1-PLGA-nanocur composite due to the presence of organic moiety [44]. However,
UC emission of UCNP1-PLGA-nanocur shown in Figure 6a indicate it has considerable
spectral intensity of ~2.5 × 105 cps for green emission and ~3 × 105 cps for red emission,
which may be suitable for cancer imaging and treatment under the action of NIR laser radi-
ation. The upconverted yellow emission was observed from the UCNP1-PLGA-nanocur
(inset of Figure 6a) under the influence of 200 mw 980 nm NIR diode laser pointer. The UC
yellow emission in UCNP1-PLGA-nanocur is for the combination of green and intense red
emissions. It implies the nanocurcumin is encapsulated over the UCNPs through PLGA
conjugation [30,45] and UC emission in the nanocurcumin drug loaded PLGA-UCNP
could play a certain role in cancer bioimaging and therapeutics. Figure 6b shows the
NIR-to-NIR down conversion fluorescence emission at 1400–1800 nm for the UCNP1 and
UCNP1-PLGA nanoparticles.

Figure 6c displays the upconversion luminescence emission spectra of UCNP2, UCNP2-
PLGA, and UCNP2-PLGA-nanocur composite. All the three samples exhibit weak emis-
sion at 480 nm and intense NIR emission at 800 nm, which are, respectively, assigned
to 1G4 → 3H6 and 3H4 → 3H6 transitions of Tm3+ ion [40,41]. The reduction in the peak
intensity after PLGA conjugation and nanocurcumin loading are owing to the polymer
moiety. The UCNP2-PLGA-nanocur exhibiting blue emission and intense NIR to NIR
upconversion emission is a novel result for biological applications. As NIR emission of
Tm3+ falls interior in the biological window 700–900 nm, it could lead to low scattering
and high penetration in bio tissues.

3.7. NIR to NIR Downconversion Emission Characteristics

Figure 6b shows the NIR-to-NIR down conversion fluorescence spectra of UCNP1 and
UCNP1-PLGA nanoparticles taken in the range of 1400–1800 nm. The emission spectra
around 1550 nm is for the 4I13/2 → 4I15/2 energy level transition in Er3+ ions. Figure 6d
shows the NIR-to-NIR down conversion fluorescence spectra of UCNP2, UCNP2-PLGA
and UCNP2-PLGA-nanocur from 1100–1300 nm. The infrared emission spectrum centred
at 1225 nm corresponds to 3H5 → 3H6 transition of Tm3+ ion. Figure 6e reveals the down-
conversion fluorescence spectra of UCNP2, UCNP2-PLGA and UCNP2-PLGA-nanocur
from 1600–2000 nm. The infrared emission spectrum centred at 1800 nm corresponds to
3F4 → 3H6 transition of Tm3+ ion.
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Figure 6. (a) UCL spectra of UCNP1, UCNP1-PLGA and UCNP1-PLGA-nanocur, (b) fluorescence
spectra of UCNP1, UCNP1-PLGA, (c) UCL spectra of UCNP2, UCNP2-PLGA and UCNP2-PLGA-
nanocur (d,e) fluorescence spectra of UCNP2, UCNP2-PLGA and UCNP2-PLGA-nanocur, respectively.

3.8. FRET Mechanism between UCNPs and Nanocurcumin for PDT

Based on the literature evidence, the energy transfer mechanism between the UCNP
and nanocurcumin for photodynamic therapy (PDT) applications could be explained [46].
It is well known that curcumin is not only used as a natural drug to treat various diseases,
but it also used as a photosensitizer for PDT [47]. The synthesized nanocurcumin has opti-
cal absorption in the UV (270 and 350 nm) and visible (~400 to 450) spectral range (Figure
S1, discussed in the supplementary section). By exploiting the broad optical absorption
behaviour of curcumin, one can use it as photosensitizer molecule for PDT by blue light
activation [48–50] by blue LED or laser sources. However, weak point is that it does not
have NIR absorption capability, and hence it is not suitable for NIR light induced PDT ap-
plications. When nanocurcumin is functionalized with NaYF4:Yb,Tm nanoparticle, under
the influence of 980 nm diode laser excitation (Figure 6c), the curcumin can be activated
by the upconverted light at 450 to 500 nm by resonant energy transfer from the Thulium
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donor ion of UCNPs to the acceptor nanocurcumin photosensitizer. It has been reported
that the Förster resonant energy transfer between the UCNP and curcumin molecule [51]
could provide dual activation in the UCNP-nanocurcumin nanocomplex, generate reactive
oxygen species (ROS) and kill the cancer cells. Therefore, UCNP-Nanocurcumin could be
served as a potential nanocomplex for PDT compared to the bare nanocurcumin [52].

3.9. In Vitro Cytotoxicity Studies

The in vitro cytotoxicity of the bare drug-free UCNPs and nanocur-loaded UCNPs was
evaluated using rat glioma C6 cells (Figure 7). We used glioma cells since the potential of
curcumin in the glioma and glioblastoma treatment has been demonstrated earlier [53,54].
The blank NaYF4:Yb,Er and NaYF4:Yb,Tm nanoparticles demonstrated dose-dependent
cytotoxicity with slight cell growth inhibition at 0.05 mg/mL and higher; however, even at
0.8 mg/mL cell viability was above 50% that confirmed the suitability of developed UCNPs
for biomedical applications. The NaYF4:Yb,Er-PLGA-nanocur and NaYF4:Yb,Tm-PLGA-
nanocur found to more toxic to cells, and cell viability at 0.8 mg/mL was 24 ± 4% (p < 0.05)
and 19 ± 6% (p < 0.05), respectively. It should be noted, that at lower concentrations the
toxicity of nanocur-loaded and blank UCNPs was similar that could be explained with
prolong drug release and comparatively low nanocurcumin toxicity. The curcumin loaded
porous silica tested in HT-29 and NCM460 cells. The cell viability was reported to be 50% at
a low concentration of 50 µg/mL or 0.05 mg/mL [55], and at this concentration the present
UCNP-PLGA-nanocurcumin showed more than 60% cell viability. The nanocurcumin
loaded UCNP-PLGA nanocomplexes showed moderate cytotoxicity (Figure 7) against
the rat glioma C6 cells compared to drug free UCNPs. It may give good cell viability
with other cancer cell lines, but it has to be investigated in detail. By carefully controlling
the particle size and solubility of nanocurcumin, its physico-chemical properties could
be improved to make it useful for anti-cancer application. In addition to the in vitro cell
viability, in order to utilize the UCNP-Nanocurcumin complexes for PDT applications,
it is important to examine the phototoxicity of UCNP under illumination of NIR light
activation. It is planned to investigate the phototoxicity of present UCNP-Nanocurcumin
complexes and present as an extension of the current work. The Russian researchers
Minorova et al. and Khayduko et al. investigated the phototoxicity effect of specially
designed NaYF4:YbEr and NaYF4:YbTm nanoparticles under the 975 nm NIR diode laser
illumination and demonstrated a new approach on PDT by the UCNP mediated UV and
UV-blue light excitation mechanism to generate ROS for killing the cancer cells [56,57].

3.10. Tumor Spheroids Model

The toxicity of UCNPs was also evaluated in tumour spheroids model. Tumour
spheroids are three-dimensional cell aggregates that mimic some features of tumours
in vivo, including cell–cell and cell–matrix interactions, gradients, and higher drug resis-
tance, so tumour spheroids could be discussed as an advanced in vitro model of in vivo
tumours [58,59].

Indeed, C6 cells in spheroids were more resistant to treatment with NaYF4:Yb,Er-
PLGA-nanocur and NaYF4:Yb,Tm-PLGA-nanocur in comparison to monolayer culture
with viability of 70± 6% and 74± 3% at 0.8 mg/mL, respectively (Figure 8). The disruption
of the outer cell layer of spheroids within 48 h treatment in comparison to control intact
spheroid (A) is demonstrated on (B, C) in Figure 9. By using the confocal fluorescent
microscopy, the cell viability in glioma C6 spheroids was visualized with calcein AM (alive
cells) and propidium iodide (dead cells) staining (Figure 10). Propidium iodide staining (in
red) of cell nucleuses confirms partial cell death in spheroids under NaYF4:Yb,Er-PLGA-
nanocur (A) and NaYF4:Yb,Tm-PLGA-nanocur (B) treatment.
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3.11. In Vitro Distribution of UCNPs in Rat Glioma Cells and Imaging Studies

We evaluated the in vitro distribution of UCNPs in rat C6 Glioma cells using anti-
Stokes photoluminescence microscopy and confocal fluorescence microscopy. It was
demonstrated that UCNPs were able to accumulate in cells within 1 h, and this could be
visualized both in anti-Stokes photoluminescence (Figure 11) and fluorescence (Figure 12)
mode. Both approaches provide similar UCNPs distribution in cells, but anti-Stokes pho-
toluminescence provides higher signal-to-noise ratio due to the absence of background
signal. It should be noted that PLGA-coated and PLGA-nanocur-coated UCNPs better
accumulated in cells that could be explained with cell-particles interactions in case of
PLGA modification (Figure 11). This correlates with MTT assay data that were discussed
above. Since the penetration into solid tumours is one of the limitations for nano-based
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formulations, we additionally evaluated the accumulation of UCNPs in tumour spheroids.
We demonstrated the accumulation of UCNPs in spheroids after 48 h incubation, but not
after 2 h (Figure 13). The penetration depth is at least 100 µm.
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3.12. In Vivo Distribution of UCNPs and Small Animal Imaging Studies

We evaluated the biodistribution of UCNPs in vivo using DVS-02 small animals
imaging system. We found that UCNPs accumulated in the liver, lungs, intestines, and
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spleen in 4 h after administration (Figures 14 and 15), which corresponds to the common
biodistribution pattern of nanoparticles after systemic administration. A significant amount
of UCNPs in the intestine confirms their ability to be excreted from the body. Indeed, the
UCNPs signal decreased significantly after 24 h post-injection. It should be noted that
NaYF4:Yb,Tm showed a brighter luminescent signal compared to NaYF4:Yb,Er, which
can be explained by a higher quantum yield. At the same time, a slight decrease of
the signal was found in the NaYF4:Yb,Tm-PLGA-nanocur sample in comparison with
NaYF4:Yb,Tm-PLGA (Figure 15). Lewis lung cancer was used as a mouse tumour model.
We demonstrated that in the case of peritumoral administration, UCNPs were detected
in the tumour site for a long time (at least 24 h), which indicates the ability of UCNPs to
persist in the tumour tissue.
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Figure 15. Bright-field image of the ex vivo organs (left) and epiluminescent image of the mouse
organocomplex (right). Intravenous injection of 0.75 mg UCNPs, 4 h after injection. (Upper
row-NaYF4:Yb,Er-PLGA and NaYF4:Yb,Tm-PLGA, lower row-NaYF4:Yb,Er-PLGA-nanocur and
NaYF4:Yb,Tm-PLGA-nanocur).
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4. Conclusions

In summary, we demonstrated assembling nanocurcumin with UCNPs via intro-
ducing an intermediate stage of UCNP coating with PLGA endowed the as-synthesised
nanocomplexes optical contrast in the near-infrared transparency window. NaYF4:Yb,Er-
PLGA-nanocurcumin and NaYF4:Yb,Tm-PLGA-nanocurmin, respectively, exhibited upcon-
version emission at 520, 540, 660 nm and 480 and 800 nm spectral bands at 980 nm diode
laser excitation. PLGA functionalized NaYF4:Yb,Er/Tm and nanocurcumin drug loaded
PLGA-UCNPs showed 60–80% cell viability at 0.12–0.02 mg/mL in the rat C6 glioma cell
medium. In vitro distribution of UCNPs in rat C6 glioma cells and imaging studies demon-
strated the accumulation of UCNPs in the cancer spheroids. Peritumoral administration of
UCNP-PLGA-nanocur to Lewis lung cancer bearing animal models rendered the tumour
lesion optical contrast, which persisted for at least 24 h. This enabled in vivo and ex vivo
study of UCNP-PLGA-nanocur biodistribution in organs, and showed accumulation in the
liver and lungs. Our studies demonstrated promise of nanocurcumin-loaded upconversion
nanoparticles for theranostics applications.
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Figure S3(b): EDAX spectrum in the range 0 to 3 keV shows strong peaks for the elements F, Y, and Na
ion and less intense peaks from 1.4 and 2 kev related to M-shell X-ray emission energy lines for dopant
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the NaYF4:Yb,Er-PLGA-Nanocur complex; Table S1: Zeta potential values of UCNP-Nanocurcumin
complexes; Figure S5: Zeta potential profiles of the nanocurcumin, UCNP1 (NaYF4:Yb,Er), UCNP1-
PLGA-nanocurcumin, UCNP2 (NaYF4:Yb,Tm) and UCNP2-PLGA-nanocurcumin complex (taken in
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