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ABSTRACT: Molecular dynamics simulations depend critically
on the accuracy of the underlying force fields in properly
representing biomolecules. Hence, it is crucial to validate the
force-field parameter sets in this respect. In the context of the
GROMOS force field, this is usually achieved by comparing
simulation data to experimental observables for small molecules. In
this study, we develop new amino acid backbone dihedral angle
potential energy parameters based on the widely used 54A7
parameter set by matching to experimental J values and secondary
structure propensity scales. In order to find the most appropriate
backbone parameters, close to 100 000 different combinations of parameters have been screened. However, since the sheer
number of combinations considered prohibits actual molecular dynamics simulations for each of them, we instead predicted the
values for every combination using Hamiltonian reweighting. While the original 54A7 parameter set fails to reproduce the
experimental data, we are able to provide parameters that match significantly better. However, to ensure applicability in the
context of larger peptides and full proteins, further studies have to be undertaken.

■ INTRODUCTION

The functional forms that are the basis of virtually all classical
force fields are very similar. In general, the interactions between
atoms comprising biological macromolecules result from the
electrons, which should be described with quantum mechanics.
In a force field these interactions are approximated by the
assignment to various well-known and simpler equations, for
example, harmonic oscillators to account for covalent bonds.
The parameters that are used in these simplifications, e.g., force
constants and minimum distances, have been subjected to
repeated adjustments. Depending on the computational
resources that are available, the model (i.e., force field) gets
more detailed and accurate but also much more complex.
Moreover, these parameters are connected, and changes in one
might require adaptation of others as well. Furthermore, as
accessible simulation times increase, comparisons to more
extensive experimental data become realistic, potentially
requiring further updates of the force-field parameters. Another
reason for the evolution of force-field parameters over time is
the availability of new experimental data, which allows further
testing and revalidations. In this context, we attempted to test
the protein backbone dihedral angle parameters of the 54A7
parameter set1 of the GROMOS force field against
experimental data and, if necessary, to find better solutions.
In the GROMOS parametrization philosophy, the para-

metrization relies on the reproduction of experimental data
obtained for small molecules such as ethanol, assuming their
principle transferability to moieties in bigger systems such as
proteins. In contrast, the torsion angles in the protein backbone

have been assigned by chemical intuition and subsequent
refinement at the peptide and protein level.1 As experimental
reference values, we chose NMR-derived coupling constants2

(3J(HN,Hα)) and secondary structure propensities from Raman
spectroscopy for all canonical dipeptides.3 The former have
been used in this kind of analysis before,4,5 but especially the
calculation of the J value from the ϕ backbone dihedral angle
using the Karplus equation is rather inaccurate. Furthermore,
the coupling constants bear only very limited information on
the ψ backbone dihedral angle. Thus, the inclusion of the
secondary structure information from the latter is a highly
relevant addition.
As will become clear, the backbone parameters currently in

use are not suited to describe the characteristics of dipeptides,
failing in both dimensions of our target values. In order to find
proper parameters, we screened close to 100 000 parameter
combinations for the 20 amino acids in question, thereby
covering a wide range of possible solutions. It is noteworthy
that we did not bias our search space except by the selection of
the initial parameters. Because of the vast number of
combinations considered, we used Hamiltonian reweighting
to predict the likely outcome of an actual simulation for a given
set of parameters. Provided that the initial simulations using the
54A7 parameters show a sufficient overlap with the (hypo-
thetical) target ones, it is possible to quantitatively predict the
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ensemble averages of structural properties that are to be
matched to the experiments.

■ METHODS
Model Systems. In the current work, we have focused on

the backbone dihedral angles of the blocked amino acids, which
are formed by blocking the termini of a single amino acid
through acetylation of the N-terminus and N-methylation at
the C-terminus. Because this compound now has two dipeptide
bonds, it is commonly called a “dipeptide”. Figure 1 shows the

alanine dipeptide. The blocking of the termini is usually applied
to exclude interactions between the charged ends and the side
chain of the central amino acid, especially in the case of charged
side chains. However, it has been reported6 that blocking with
an acetyl group and an N-methyl group, respectively, does not
significantly change the intrinsic propensities, which in turn
means that the influence of charged ends is negligible.
However, to stay as close to the experiments as possible, we
added an acetyl and N-methyl groups to the amino acids as
well. The protonation states of the amino acids were set to
match these in the respective experiments: histidine, lysine, and
arginine were positively charged while aspartate and glutamate
were negatively charged.
Simulation Setup. The simulations were performed using

the GROMOS simulation package7,8 with the 54A7 parameter
set1 of the GROMOS force field or using the backbone

parameters reported in Table 1 implemented in the 54A7 set.
The force-field parameters for the blocked termini are listed in
Table S1. The compounds were placed in a periodic cubic
water box in the absence of counterions. The water boxes were
initialized with a 1.4 nm minimum distance of the solute to the
box walls. Prior to the production simulations, the systems were
equilibrated from 60 to 300 K in five discrete steps with a
simulation length of 20 ps each. All of the simulations were
carried out at 300 K and a constant pressure of 1 atm unless
explicitly stated differently. A weak thermostat coupling with
two baths for the solute and solvent (τ = 0.1) and a weak
barostat coupling (relaxation time of 0.5 ps and an isothermal
compressibility of 4.575 × 10−4 (kJ·mol−1· nm−3)−1) were
applied.11 The SHAKE algorithm12 was used to maintain the
bond distances at the energy minimum. An integration time
step of 2 fs was used, and the configurations were stored every
picosecond. Interactions within 0.8 nm were calculated at every
time step from a pair list that was updated every five steps.
Intermediate-range interactions up to a distance of 1.4 nm were
calculated at pair list updates and kept constant between
updates. Long-range interactions were approximated with a
reaction field13 contribution to the energies and forces,
accounting for a homogeneous medium with relative dielectric
constant14 of 61 beyond the cutoff of 1.4 nm. The lengths of
the trajectories were 100 ns. In all cases, 100% of the
trajectories were used for analysis. All of the graphs showing the
results were composed using the R packages MDplot (http://
cran.r-project.org/package=MDplot) and RPrometheus.

Comparison to Experimental Data. The first step in
remodeling the energy potentials of the backbone dihedral
angles in amino acids is the sound selection of experimental
data to be used for comparison. In the case of this study, we
chose the J-value measurements of the “dipeptide” (blocked
amino acid) series published by Avbelj and co-workers.2 This
observable represents a time average dependent on the ϕ angle
in the protein backbone. In conjunction, we also included the
propensity scale subsequently published by Grdadolnik and co-
workers3 as our experimental target values (see Table S2).
These two studies form a consistent set, since the J values from
the first study were used to calibrate the Raman spectroscopy
measurements in the latter.
In general, there are two ways to define and distinguish

secondary structure elements in peptides and proteins. First,

Figure 1. Graphical representation of the two backbone dihedral
angles in the model systems. The angles ϕ and ψ are defined by atoms
C−N−Cα−C and N−Cα−C−N, respectively. It should be noted that
in accordance with the experimental studies, the amino acids have
been blocked: an acetyl group at the N-terminus and a methyl moiety
at the C-terminus are used to ensure noncharged ends.

Table 1. Backbone Parameters of the GROMOS Force Field and Those of the Suggested Sets (All Other Combinations
Mentioned in the Text Are Provided in Table S5)

backbone angle potential energy functions

ϕ ψ

combination K [kJ/mol] shift [deg] mult. K [kJ/mol] shift [deg] mult. description

45A3a/53A6a 1.0 180.0 6 1.0 0.0 6 see refs 9 and 10
54A7/54A8 2.8 0.0 3 3.5 180.0 2 see ref 1

0.7 180.0 6 0.4 0.0 6
#81883 1.0 180.0 2 3.0 180.0 2 glycine

3.0 180.0 1 5.0 180.0 1
#12572 5.0 0.0 3 1.0 180.0 2 alanine

5.0 180.0 6 1.0 180.0 3
#5623 3.0 180.0 2 1.0 0.0 1 common amino acids

5.0 0.0 3 1.0 180.0 3
#86516 3.0 0.0 3 5.0 0.0 1 Cβ-branched

5.0 180.0 6 5.0 0.0 2

aFor these parameter sets, only one potential energy term is used to describe the ϕ and ψ backbone dihedral angles.
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the hydrogen-bonding pattern of the backbone is often typical
and is used for classification, for example, by the widely used
Define Secondary Structure of Proteins (DSSP)15 algorithm.
However, this approach requires a minimum fragment length of
at least four amino acids, which is needed in order to recognize,
e.g., an α-helical conformation. For this reason, this approach
cannot be used for the small compounds investigated in this
study. The second possibility is to make use of the dihedral
angles comprising the Ramachandran plots, where certain areas
indicate backbone conformations associated with secondary
structure elements.16 Recently, the DIhedral-based Segment
Identification and CLassification (DISICL)17,18 toolbox has
been developed by our group. DISICL is able to process and
annotate both proteins and nucleic acids in terms of their
secondary structure on the basis of two consecutive pairs of
dihedral angles. Because the current systems investigated are
very small, we simplified the DISICL secondary structure
region definitions (see Table S3). Consequently, in the current
work we made no distinction between different types of helices
(α, 310, and π helices), whose basins in the Ramachandran plot
are next to each other. This simplification allowed comparisons
to the experimental data used as a target. It should be noted
that other secondary structure elements were neglected because
they were not covered by the experimental study used. In
contrast to Hollingsworth’s original definitions,19 we defined
the ϕ angle representing the border between the β and PII
basins to have the value −100°, which is in closer agreement
with the average of the basin centers in the experimental study
of Grdadolnik et al.3 and the observed distributions. Moreover,
this value is a compromise of the values used in the
literature20−23 (ranging from −110° to −90°).
Since the Raman experiments used as a target are based on a

fitting procedure reporting propensities that sum to 100%, we
normalized our results to account for that. This approach
avoids locking our systems in the three basins, where other or
unclassified regions in the Ramachandran plot might also be
visited occasionally, and allows for better comparability.
However, in all cases but glycine, which is further discussed
below, this renormalization did not affect the best set of
parameters, nor did it influence the overall score significantly.
Unclassified regions typically show occupancies below about
5%.
One critical experimental observable in the context of

investigations on small peptide systems is 3J(HN,Hα). This
coupling constant as determined by NMR spectroscopy
represents an ensemble average and is connected to the
HN−N−Cα−Hα dihedral angle. It can be calculated according
to the Karplus equation (eq 1):

ϕ ϕ= − ° − − ° +αJ A B C(HN, H ) cos ( 60 ) cos( 60 )3 2

(1)

However, the results depend strongly on the choice of the three
parameters A, B, and C in this equation. We chose the Pardi
parameters (A = 6.4, B = −1.4, and C = 1.9),24 which have been
used previously for the protein backbone in the context of
simulation studies using the GROMOS force field.25,26 Since
Hα is not represented by an actual atom in the GROMOS force
field, we approximate the HN−N−Cα−Hα dihedral angle by
subtracting 60° from ϕ, making use of the planarity of the
peptide bond and the tetrahedral coordination at Cα. It is
noteworthy that comparisons of J values from experiments to
their equivalents calculated from molecular dynamics simu-

lations are only possible with limited accuracy27 (typically about
0.5 Hz).
In order to compare the experimental results to our predicted

propensities and J values, the deviations of the J values (given in
Hz) and the percentages (given in fractional propensities) are
weighted equally, meaning that the deviations of the J values
and the three secondary structure basins are summed up (see
below).

Hamiltonian Reweighting. As will be seen in the Results
and Discussion, the 54A7 parameter set did not reproduce the
experimentally determined propensities and J values very well.
We therefore attempted a systematic reparametrization of the
backbone dihedral angle parameters.
In order to determine the effect various torsional angle

parameters have on the properties used for calibration, the
simplest approach is to perform multiple molecular dynamics
simulations in a brute-force fashion. However, the potential
number of combinations is vast (roughly 100 000 combina-
tions; see Table 2), and this is beyond reach. Instead, a one-step

perturbation protocol was used to predict the observables of
interest from a single simulation using the current GROMOS
54A7 parameter set. The overall workflow is described in
Figure 2. First, the time series of the experimental observables,
i.e., the J value and the propensities as well as the dihedral
angles ϕ and ψ (see Figure 1), were calculated from simulations
performed for the 20 canonical amino acids using the 54A7
parameter set. Afterward, the time series of the Hamiltonian for
a given parameter set as well as the reference (54A7) values
were calculated on the basis of the backbone dihedral angles as
well. By reweighting the ensemble to the updated Hamiltonian,
we were able to project the ensemble average values for the
individual quantities, Q, according to eq 2:

⟨ ⟩ =
⟨ ⟩
⟨ ⟩

− −

− −Q
Q e

e

H H k T

H H k TA

( )/
R

( )/
R

A R B

A R B (2)

where HA and HR represent the Hamiltonians of parameter set
A and the reference parameters R, respectively, kBT is the
Boltzmann constant multiplied by the absolute temperature,
and the angular brackets indicate ensemble averages obtained
from simulations using the reference Hamiltonian (R) or
predicted for the parameter set (A). The obtained ⟨Q⟩A values
were compared to the target values and ranked by their
experimental match. Equation 2 goes back to the umbrella

Table 2. All Combinations Used for the Reweighting
Workflowa

force constants shifts multiplicities

ϕ {1, 3, 5} {0, 180} {1, 2, 3, 6}
{0, 1, 3, 5} {0, 180} {1, 2, 3, 6}

ψ {1, 3, 5} {0, 180} {1, 2, 3, 6}
{0, 1, 3, 5} {0, 180} {1, 2, 3, 6}

aEvery angle is described by either one or two potential energy
functions. The possible values for the parameters of eq 3 are given in
braces. We accounted for the possibility that one potential energy term
might suffice by adding a force constant of zero to the second potential
energy terms. The total number of unique combinations sums up to
97 344. This number consists of (32·22·42)/2 = 288 combinations with
two potential energy terms and (31·21·41) = 24 combinations with one
potential energy term, which sum to give 312 combinations for each of
the angles. Combining these parameter combinations for both the ϕ
and ψ angles leads to 3122 = 97 344 combinations in our set.
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sampling technique of Torrie and Valleau28 and is widely used
to obtain ensemble averages for Hamiltonians that are slightly
different from the simulated one.
The actual calculation of the Hamiltonians from the dihedral

angle time series (Figure 2) in our case consists of summing
over the four backbone dihedral angle energy potentials (eq 3):

∑

∑

ϕ

ψ

= +

+ +

=

=

H k s m

k s m

[cos( ) cos( ) 1]

[cos( ) cos( ) 1]

i

n

i i i

j

r

j j j

0

0 (3)

in which the variables k, s, and m are the force constants (either
1, 3, or 5 kJ/mol), the shifts (either 0° or 180°), and the
multiplicities, i.e., the number of minima (either 1, 2, 3, or 6),
respectively. Since multiple torsional potential energy terms per
angle are possible, the variables n and r represent the numbers
of individual ϕ and ψ potential energy terms, respectively. Our
set of potential combinations was built by one or two torsional
potentials per angle (see Table 2). For every combination, the
time series of the Hamiltonian was calculated using the
combination’s parameters, and the ensemble average of the
observables Q was calculated using eq 2.

It has been shown that these predictions are quite accurate
(even quantitatively) provided that a significant part of the
sampled configurations are relevant both for the reference and
target ensembles.29 In order to ensure that this approach is
accurate enough, we predicted the J values and propensities for
three randomly chosen force-field parameter sets using our
54A7 trajectories (see Figure S1). It is noteworthy that we are
able to project the values to accuracies within a few percent
even when different J values and secondary structure
preferences are to be predicted. Moreover, we also report the
actual simulated values for the final selected parameter sets for
comparison.

Ranking. The vast number of potential candidates for the
backbone parameters (see Table 2) and the multidimensional
optimization space make the identification of a single best
combination highly unlikely. Thus, we instead aimed for a good
compromise between contrary optimization goals to ensure
applicability in different contexts. Our selection protocol relied
on the prediction of the J value and the propensities for every
combination based on the 54A7 trajectories. This task was
performed by an R library developed for this purpose.
Multidimensional optimization invariably requires a weighting
of the various properties. Here we defined the overall deviation
Δ according to eq 4,

Δ = |Δ | + |Δ | + |Δ | + |Δ |α α β βw J w P w P w PJ P PII II (4)

in which ΔJ, ΔPα, ΔPβ, and ΔPPII are the deviations of the J
value (in Hz) and the α, β, and PII propensities, respectively,
and wJ, wα, wβ, and wPII are the corresponding weights. Unless

stated otherwise, we used wJ = 1 Hz−1 and wα = wβ = wPII = 1.
The candidate combinations of dihedral angle parameters

were subsequently sorted to identify a promising subset of the
best (approximately) 100 results. The mean values of Δ over
multiple amino acids were taken when appropriate. These were
plotted in a scatter plot (exemplified by Figure S2). Usually, an
“arch” is obtained, as no combination perfectly reproduces both
experiments simultaneously. In addition, we tried to find
solutions that optimized all of the amino acids within a
subgroup using bar plots with detailed information. For the
remaining candidates, the potential energy functions were
plotted to identify and exclude those with very high energy
barriers (roughly over 20 kJ/mol). The candidate sets were
further analyzed by predicting a low-resolution Ramachandran
distribution (with 15 × 15 = 225 bins) using eq 2 in order to
visualize any uncommon peaks or very narrow distributions
(Figure S3). In our opinion, low and smooth energy surfaces
and broader distributions are generally preferable for these
backbone parameters because they allow for a certain freedom
compared with those “locking” the backbone very tightly into a
few narrow minima. Therefore, in cases where our other criteria
matched (almost) equally well, we opted for these alternatives.
There are two special amino acids that should be considered

more closely: glycine and proline. For glycine, the experimental
propensities are not necessarily representative of the real
distribution because of its known broad sampling of the
Ramachandran plot.30 Hence, its renormalized propensity
values differ tremendously from the calculated ones. Moreover,
glycine is known to show a strong bias toward the left-helical
region of the Ramachandran plot. In this case, we aimed for a
rather homogeneous distribution of the ϕ and ψ angles, in
agreement with distributions observed in the Protein Data Bank
(PDB) (see ref 30). Since no data were available for proline, we

Figure 2. Workflow applied for Hamiltonian reweighting. From the
configurations sampled in the simulations, the ensemble averages of
dependent observables were predicted. For the calculations of the J
values and Hamiltonians, see eqs 1 and 3, respectively. The
considerations regarding the ranking of solutions are further described
in Ranking.
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decided to apply the parameters retrieved for the common
amino acids and check the resulting distribution afterward, i.e.,
proline was not included in the optimization procedure.
Furthermore, histidine was excluded from the ranking
procedure because the experimental data were reported to be
rather uncertain.2,3 Including histidine in the ranking only
slightly shifted the overall results (not shown).

■ RESULTS AND DISCUSSION
Our analysis shows that the GROMOS 54A7 force-field
parameter set fails to reproduce the experimental studies in
terms of 3J(HN,Hα) and secondary structure element
propensities in the context of blocked amino acids (see Figure
3A and the lines marked with 54A7 in Tables 3 and 4). The
average deviation in J values amounts to 0.8 Hz, and the
propensities are off by a total of 0.34 (34%). Even when the
relatively high uncertainty in comparisons of experimental and
Karplus-derived J values is considered, the results for 54A7 are
quite poor. Half of the amino acids are close to or more than 1
Hz off the respective target values (see Table 3). From a linear
regression model, the R2 for the correlation between the
experimental data and the data obtained with 54A7 is 0.404,
and removing alanine, the major outlier, improves this only to
0.606 (see Figure S4). The match of secondary structure
propensities is better, and the deviations arise mainly from a
shifted ratio between the strongly populated β and PII basins
and a few cases where artificially high α-helical propensities also
play a significant role (e.g., threonine and cysteine). This
mismatch against the experimental data is hardly surprising

since 54A7 was not parametrized against such data and uses
one set of protein backbone potentials for all of the amino acids
for the sake of simplicity.
As outlined in Methods, we subsequently embarked on a

reparametrization effort. Because of the large number of
potential combinations (Table 2), a predictive method
(Hamiltonian reweighting; see Methods) was used to estimate
the average J values and propensities rather than trying to
simulate all of the dihedral angle potential energy combinations.
The accuracy of this approach was ensured by testing against
data obtained from actual simulations for three different,
randomly chosen combinations (see Figure S1) for the
dialanine peptide and by performing simulations for all of the
finally suggested combinations for all of the amino acids. The
predicted and simulated values are reported in Table 3 and
show a quantitative match in both the J values and the
propensities. As elaborated in Methods, our selection was
biased toward combinations with wide distributions in the
respective basins. For asparagine and glutamine, however, the
predictions may be slightly biased because in 54A7 both amino
acids show no α population at all (experimental estimates
amount to 2% and 8%, respectively). Since no configurations
are available to be reweighted, our prediction is off in this
respect. This shows the general limitation of our approach: if
there is no significant overlap between the ensembles for the
reference and target states, the prediction is naturally very poor.
However, it is noteworthy that the actual simulation of
glutamine using the suggested combination #5623 actually
leads to better agreement with experiment. The other amino

Figure 3. Deviations between simulated and experimental data using (a) the 54A7 parameters and (b) our suggested set. White bars indicate the
deviations of the J values (left axis), and shaded bars indicate deviations in the secondary structure propensities (right axis). Dotted lines indicate the
subgroups used in the optimization.
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Table 3. Detailed Results of the Predicted and Simulated Parameter Combinations: Deviations with Respect to the
Experimental Target Values Are Reported in Parentheses, with Negative (Positive) Values Indicating That the Computed
Values Are Too High (Too Low); The Combinations Given in Italics Indicate the Best Hits When the Amino Acids Were
Optimized Individually and Thus Give the Best Hits Possible with Our Screening Set of Parameters

propensities [%/100] Δa

J value [Hz] Pα Pβ PPII abs. ren.

GLY 54A7b 5.1 (+0.7) 0.014 (+0.646) 0.241 (−0.121) 0.076 (+0.144) 1.651 1.976
#81883 5.8 (+0.0) 0.210 (+0.450) 0.062 (+0.058) 0.032 (+0.188) 0.736 0.270
#81883b 5.9 (+0.0) 0.221 (+0.439) 0.058 (+0.062) 0.030 (+0.190) 0.701 0.256
#5623 4.4 (+1.4) 0.002 (+0.658) 0.202 (−0.082) 0.008 (+0.212) 2.362 3.076

ALA 54A7b 7.9 (−1.8) 0.111 (−0.001) 0.388 (−0.098) 0.444 (+0.156) 2.045 2.048
#12572 6.3 (−0.2) 0.114 (−0.004) 0.259 (+0.031) 0.592 (+0.008) 0.283 0.283
#12572b 6.2 (−0.1) 0.127 (−0.017) 0.239 (+0.051) 0.597 (+0.003) 0.211 0.224
#5623 7.1 (−1.1) 0.039 (+0.071) 0.530 (−0.240) 0.375 (+0.225) 1.616 1.623

ARG 54A7b 7.8 (−0.9) 0.156 (−0.086) 0.291 (+0.099) 0.497 (+0.043) 1.168 1.131
#5623 7.1 (−0.2) 0.067 (+0.003) 0.306 (+0.084) 0.583 (−0.043) 0.370 0.380
#5623b 7.1 (−0.2) 0.080 (−0.010) 0.303 (+0.087) 0.565 (−0.025) 0.362 0.380
#67656 6.9 (+0.0) 0.116 (−0.046) 0.259 (+0.131) 0.392 (+0.148) 0.355 0.192

ASN 54A7b 8.4 (−1.0) 0.000 (+0.020) 0.590 (−0.010) 0.387 (+0.013) 1.003 1.008
#5623 7.8 (−0.3) 0.000 (+0.020) 0.613 (−0.033) 0.346 (+0.054) 0.437 0.448
#5623b 7.8 (−0.3) 0.000 (+0.020) 0.619 (−0.039) 0.341 (+0.059) 0.438 0.450
#96795 7.5 (+0.0) 0.000 (+0.020) 0.600 (−0.020) 0.389 (+0.011) 0.061 0.064

ASPc 54A7b 7.7 (−0.8) 0.093 (−0.043) 0.324 (+0.136) 0.517 (−0.027) 0.996 1.017
#5623 7.0 (−0.1) 0.045 (+0.005) 0.372 (+0.088) 0.533 (−0.043) 0.216 0.222
#5623b 7.0 (+0.0) 0.056 (−0.006) 0.354 (+0.106) 0.533 (−0.043) 0.185 0.199
#31541 7.0 (−0.1) 0.045 (+0.005) 0.383 (+0.077) 0.541 (−0.051) 0.213 0.217

CYS 54A7b 8.0 (−0.7) 0.179 (−0.149) 0.381 (+0.159) 0.393 (+0.037) 1.005 0.976
#5623 7.3 (+0.0) 0.055 (−0.025) 0.488 (+0.052) 0.408 (+0.022) 0.139 0.096
#5623b 7.3 (+0.1) 0.038 (−0.008) 0.488 (+0.052) 0.427 (+0.003) 0.113 0.106
#50989 7.3 (+0.0) 0.029 (+0.001) 0.531 (+0.009) 0.424 (+0.006) 0.026 0.012

GLUc 54A7b 7.6 (−1.0) 0.126 (−0.076) 0.264 (+0.096) 0.559 (+0.031) 1.153 1.116
#5623 6.9 (−0.2) 0.057 (−0.007) 0.263 (+0.097) 0.644 (−0.054) 0.378 0.394
#5623b 6.8 (−0.2) 0.046 (+0.004) 0.269 (+0.091) 0.652 (−0.062) 0.357 0.368
#87099 6.6 (+0.1) 0.091 (−0.041) 0.224 (+0.136) 0.435 (+0.155) 0.382 0.192

GLN 54A7b 8.2 (−1.0) 0.000 (+0.080) 0.489 (−0.009) 0.491 (−0.051) 1.160 1.180
#5623 7.5 (−0.4) 0.000 (+0.080) 0.499 (−0.019) 0.468 (−0.028) 0.507 0.540
#5623b 7.1 (+0.1) 0.064 (+0.016) 0.295 (+0.185) 0.597 (−0.157) 0.448 0.458
#83856 7.1 (+0.0) 0.000 (+0.080) 0.462 (+0.018) 0.535 (−0.095) 0.193 0.194

HISc 54A7b 8.0 (−0.1) 0.211 (−0.171) 0.331 (+0.249) 0.397 (−0.017) 0.567 0.585
#5623 7.4 (+0.5) 0.078 (−0.038) 0.383 (+0.197) 0.470 (−0.090) 0.835 0.848
#5623b 7.4 (+0.5) 0.060 (−0.020) 0.421 (+0.159) 0.446 (−0.066) 0.735 0.742
#89861 7.9 (+0.0) 0.040 (+0.000) 0.250 (+0.330) 0.154 (+0.226) 0.586 0.130

ILE 54A7b 7.5 (−0.2) 0.118 (−0.098) 0.237 (+0.283) 0.603 (−0.143) 0.714 0.735
#86516 7.6 (−0.3) 0.005 (+0.015) 0.502 (+0.018) 0.452 (+0.008) 0.311 0.299
#86516b 7.7 (−0.3) 0.015 (+0.005) 0.509 (+0.011) 0.427 (+0.033) 0.369 0.350
#5623 6.7 (+0.6) 0.042 (−0.022) 0.145 (+0.375) 0.797 (−0.337) 1.374 1.386
#28191 7.3 (+0.0) 0.016 (+0.004) 0.455 (+0.065) 0.504 (−0.044) 0.123 0.124

LEU 54A7b 7.6 (−0.7) 0.174 (−0.074) 0.214 (+0.136) 0.562 (−0.012) 0.902 0.93
#5623 6.9 (+0.0) 0.077 (+0.023) 0.213 (+0.137) 0.667 (−0.117) 0.277 0.294
#5623b 6.9 (+0.0) 0.047 (+0.053) 0.231 (+0.119) 0.683 (−0.133) 0.335 0.352
#9315 6.9 (+0.0) 0.105 (−0.005) 0.321 (+0.029) 0.493 (+0.057) 0.101 0.039

LYSc 54A7b 7.8 (−1.0) 0.153 (−0.113) 0.293 (+0.117) 0.496 (+0.054) 1.254 1.215
#5623 7.1 (−0.3) 0.066 (−0.026) 0.307 (+0.103) 0.579 (−0.029) 0.428 0.445
#5623b 7.1 (−0.3) 0.071 (−0.031) 0.297 (+0.113) 0.554 (−0.004) 0.408 0.436
#80612 6.8 (+0.1) 0.028 (+0.012) 0.328 (+0.082) 0.583 (−0.033) 0.207 0.222

MET 54A7b 7.8 (−0.8) 0.152 (−0.122) 0.288 (+0.182) 0.471 (+0.029) 1.133 1.108
#5623 7.1 (−0.1) 0.059 (−0.029) 0.261 (+0.209) 0.528 (−0.028) 0.346 0.405
#5623b 7.1 (−0.1) 0.044 (−0.014) 0.307 (+0.163) 0.603 (−0.103) 0.370 0.386
#28751 7.1 (−0.1) 0.031 (−0.001) 0.399 (+0.071) 0.433 (+0.067) 0.249 0.126

PHE 54A7b 8.2 (−1.0) 0.133 (−0.073) 0.43 (+0.060) 0.381 (+0.069) 1.232 1.191
#5623 7.5 (−0.3) 0.048 (+0.012) 0.473 (+0.017) 0.433 (+0.017) 0.316 0.290
#5623b 7.4 (−0.3) 0.046 (+0.014) 0.467 (+0.023) 0.441 (+0.009) 0.306 0.284
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Table 3. continued

propensities [%/100] Δa

J value [Hz] Pα Pβ PPII abs. ren.

#25538 7.2 (+0.0) 0.086 (−0.026) 0.390 (+0.100) 0.444 (+0.006) 0.142 0.142
PRO 54A7b 6.6 0.256 0.002 0.729 − −

#5623b 5.0 0.112 0.000 0.857 − −
SER 54A7b 8.0 (−1.0) 0.195 (−0.155) 0.389 (+0.081) 0.370 (+0.120) 1.316 1.288

#5623 7.3 (−0.3) 0.050 (−0.010) 0.545 (−0.075) 0.347 (+0.143) 0.518 0.534
#5623b 7.3 (−0.3) 0.043 (−0.003) 0.564 (−0.094) 0.333 (+0.157) 0.554 0.572
#67652 7.0 (+0.0) 0.036 (+0.004) 0.382 (+0.088) 0.479 (+0.011) 0.103 0.088

THR 54A7b 7.4 (−0.1) 0.407 (−0.377) 0.137 (+0.443) 0.421 (−0.031) 0.891 0.916
#86516 7.3 (+0.0) 0.037 (−0.007) 0.410 (+0.170) 0.464 (−0.074) 0.281 0.290
#86516b 7.3 (+0.0) 0.052 (−0.022) 0.409 (+0.171) 0.434 (−0.044) 0.257 0.266
#5623 6.6 (+0.8) 0.192 (−0.162) 0.110 (+0.470) 0.655 (−0.265) 1.647 1.680
#92991 7.4 (−0.1) 0.021 (+0.009) 0.462 (+0.118) 0.475 (−0.085) 0.262 0.262

TRP 54A7b 8.0 (−1.1) 0.121 (−0.101) 0.401 (+0.039) 0.424 (+0.116) 1.366 1.326
#5623 7.3 (−0.4) 0.051 (−0.031) 0.461 (−0.021) 0.451 (+0.089) 0.521 0.524
#5623b 7.3 (−0.4) 0.041 (−0.021) 0.472 (−0.032) 0.449 (+0.091) 0.504 0.507
#93571 6.9 (+0.0) 0.008 (+0.012) 0.391 (+0.049) 0.572 (−0.032) 0.103 0.108

TYR 54A7b 8.3 (−1.2) 0.114 (−0.044) 0.473 (−0.003) 0.356 (+0.104) 1.351 1.365
#5623 7.6 (−0.5) 0.041 (+0.029) 0.505 (−0.035) 0.411 (+0.049) 0.533 0.536
#5623b 7.5 (−0.4) 0.031 (+0.039) 0.498 (−0.028) 0.429 (+0.031) 0.498 0.500
#6094 7.1 (+0.0) 0.088 (−0.018) 0.399 (+0.071) 0.470 (−0.010) 0.099 0.106

VAL 54A7b 7.5 (−0.2) 0.124 (−0.104) 0.233 (+0.277) 0.601 (−0.131) 0.712 0.733
#86516 7.6 (−0.3) 0.010 (+0.010) 0.499 (+0.011) 0.445 (+0.025) 0.356 0.337
#86516b 7.7 (−0.4) 0.003 (+0.017) 0.527 (−0.017) 0.428 (+0.042) 0.486 0.490
#5623 6.7 (+0.6) 0.052 (−0.032) 0.141 (+0.369) 0.787 (−0.317) 1.328 1.342
#24957 7.3 (+0.0) 0.015 (+0.005) 0.457 (+0.053) 0.509 (−0.039) 0.107 0.108

aThe overall Δ is the sum of the absolute values of the deviation of the J value (in Hz) and the discrepancies in the propensities (in %/100) (see eq
4). The “abs.” column refers to the deviation when the absolute occurrences of the three secondary structure classes were used, while the “ren.”
column refers to the average deviations when the propensities were first renormalized to 100%. bThese values were computed from real simulations
and were not projected. cIn terms of protonation states, we used GROMOS parameters for HISH (+1 charge, doubly protonated), LYSH (+1
charge, protonated), ARG (+1 charge), and the dissociated versions of glutamic acid (GLU) and aspartic acid (ASP).

Table 4. Summary of the Averaged Performance of the Different Sets in Terms of Agreement with Experimental Data: The
Absolute Values of the Individual Deviations Were Averaged and Are Reported Together with Their Standard Deviations; For
the Propensities, the Renormalized Data Are Reported

propensities [%/100] Δa

subset combination description ⟨|ΔJ|⟩ [Hz] ⟨|ΔPα|⟩ ⟨|ΔPβ|⟩ ⟨|ΔPPII|⟩ ⟨abs.⟩ ⟨ren.⟩

glycine 54A7b see ref 1 0.74 ± 0.00 0.646 ± 0.000 0.121 ± 0.000 0.144 ± 0.000 1.651 ± 0.000 1.976 ± 0.000
#81883 suggested 0.04 ± 0.00 0.450 ± 0.000 0.058 ± 0.000 0.188 ± 0.000 0.736 ± 0.000 0.270 ± 0.000
#81883b simulated 0.01 ± 0.00 0.439 ± 0.000 0.062 ± 0.000 0.190 ± 0.000 0.701 ± 0.000 0.256 ± 0.000
#5623 commonc 1.41 ± 0.00 0.658 ± 0.000 0.082 ± 0.000 0.212 ± 0.000 2.362 ± 0.000 3.076 ± 0.000

alanine 54A7b see ref 1 1.79 ± 0.00 0.001 ± 0.000 0.098 ± 0.000 0.156 ± 0.000 2.045 ± 0.000 2.048 ± 0.000
#12572 suggested 0.24 ± 0.00 0.004 ± 0.000 0.031 ± 0.000 0.008 ± 0.000 0.283 ± 0.000 0.283 ± 0.000
#12572b simulated 0.14 ± 0.00 0.017 ± 0.000 0.051 ± 0.000 0.003 ± 0.000 0.211 ± 0.000 0.224 ± 0.000
#5623 commonc 1.08 ± 0.00 0.071 ± 0.000 0.240 ± 0.000 0.225 ± 0.000 1.616 ± 0.000 1.623 ± 0.000

common 54A7b see ref 1 0.87 ± 0.26 0.093 ± 0.045 0.098 ± 0.072 0.052 ± 0.037 1.115 ± 0.212 1.103 ± 0.198
#5623 suggested 0.25 ± 0.15 0.024 ± 0.019 0.083 ± 0.062 0.058 ± 0.038 0.416 ± 0.170 0.425 ± 0.179
#5623b simulated 0.22 ± 0.15 0.018 ± 0.014 0.092 ± 0.053 0.067 ± 0.054 0.401 ± 0.153 0.410 ± 0.156
Table S5 indiviual 0.03 ± 0.04 0.019 ± 0.023 0.087 ± 0.081 0.065 ± 0.068 0.201 ± 0.152 0.131 ± 0.066

Cβ-branched 54A7b see ref 1 0.14 ± 0.09 0.193 ± 0.159 0.334 ± 0.094 0.102 ± 0.061 0.772 ± 0.103 0.795 ± 0.105
#86516 suggested 0.20 ± 0.15 0.011 ± 0.004 0.066 ± 0.090 0.036 ± 0.034 0.316 ± 0.038 0.309 ± 0.025
#86516b simulated 0.25 ± 0.20 0.015 ± 0.009 0.066 ± 0.091 0.040 ± 0.006 0.371 ± 0.115 0.369 ± 0.113
#5623 commonc 0.67 ± 0.07 0.072 ± 0.078 0.405 ± 0.057 0.306 ± 0.037 1.450 ± 0.172 1.469 ± 0.184
Table S5 individual 0.02 ± 0.02 0.006 ± 0.003 0.079 ± 0.035 0.056 ± 0.025 0.164 ± 0.085 0.165 ± 0.085

aThe overall Δ is the sum of the absolute values of the deviation of the J value (in Hz) and the discrepancies in the propensities (in %/100) (see eq
4). The ⟨abs.⟩ column refers to the deviation when the absolute occurrences of the three secondary structure classes were used, while the ⟨ren.⟩
column refers to the average deviations when the propensities were first renormalized to 100%. bThese values were computed from the respective
actual simulations and were not predicted by reweighting. cFor comparison, the values projected for the common set are reported for the other
subgroups as well. It is clear that #5623 does not perform well for the other groups.
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acids in this subgroup are sufficient to drive the conformational
ensemble of glutamine toward the α population. In Figure S3
the prediction of serine using a coarse 15 × 15 bin resolution
for several combinations is shown as an example. As long as the
number of configurations is large enough, it is clearly possible
to predict the sampling of the backbone angles with a higher
resolution than just three secondary structure basins.
It appeared difficult to identify a single combination of

dihedral angle parameters that could uniformly satisfy the
experimental data for all amino acids. This suggests that
different potential energy terms may be required for different
amino acids. In our opinion this is hardly surprising, as the size,
shape, and polarity of the side chain will most likely have an
effect on the torsional potential of the backbone and thus need
to be taken into account. On the other hand, while it is
theoretically possible to optimize the amino acids individually,
that approach leads to a complex and potentially overfitted

result. Instead, we chose a somewhat intermediate solution: we
identified subgroups based on the differences in the
experimental data and the possibilities of reproducing these
subgroups with common potential energy functions. The
subgroups nicely appeared to correspond to the substitution
pattern at the Cβ side-chain atom. Concretely, the identified
commonalities between outliers led to the separate optimiza-
tion of glycine, alanine, the “common” amino acids, and a
subgroup with a CH group at Cβ (the Cβ-branched amino acids
valine, isoleucine, and threonine). Proline, for which the
backbone degrees of freedom are much restricted, was excluded
from the optimizations.
The rationale for this subdivision of the amino acids is likely

to be found in their respective side-chain characteristics.
Glycine does not have a real side chain, and this lack of certain
steric hindrances allows a broad sampling of angles (see Figure
4 and ref 30). Alanine is the only amino acid that has no

Figure 4. Ramachandran plots for glycine and proline with different parameters. As shown in (a), 54A7 fails to reproduce a distribution that is in
agreement with the literature (see ref 30), while the distribution for #81883 in (b) seems to be in better agreement. Moreover, proline in 54A7
shows an unexpected peak at ϕ and ψ of approximately −107° and −65°, respectively (c). For our combination #5623, which is suggested for the
common amino acids, we observe (d) a significant shift toward the PII conformation, leaving only a minor fraction in the helical basin.
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extension on Cβ. The common amino acids have one non-
hydrogen extension at Cβ, and the β-branching in valine,
isoleucine, and threonine leads to special rotational profiles. In
order to illustrate that, we report the values predicted using
combination #5623 (the suggested solution for the common
amino acids) in Table 3 for alanine, glycine, and the Cβ-
branched amino acids. Given the experimental data at which we
aimed and the vast set of possibilities that we screened, it might
be expected that a solution adequate for all amino acids
simultaneously would have been found if it were possible.
Instead, we were not able to optimize all of the canonical amino
acids together. Glycine is described best by low potentials,
granting it its natural extraordinary freedom in sampling the
Ramachandran space. The score obtained for alanine using the
“common” parameters (#5623) shows a deviation of 1 Hz in
the J value and a strong bias toward the α-helical basin. The
three β-branched amino acids also do not perform well with
this set, and in all three cases the summed deviation is much

worse than even 54A7, arising from both the J value and the
propensities. For threonine, valine, and isoleucine alike, the
common parameters lead to an extreme overemphasis of the PII
basin at the cost of β conformations. Accordingly, the
optimized torsional energy profiles are quite different for
both ϕ and ψ.
The optimal set of parameters for the four subgroups are

given in Table 1, and a graphical comparison of the potential
energy contributions is given in Figure 5. It should be noted
that these figures are somewhat misleading because the main
contribution to the potential energy landscape is determined by
the intramolecular nonbonded interactions. This is exemplified
by Figure 6, which shows the nonbonded energy of the alanine
dipeptide resulting from a systematic scan of ϕ and ψ starting
from a minimized conformation in vacuum. The torsional
dihedral angle profiles in Figure 5 merely modulate the intrinsic
potential energy surface, leading to the appropriate shifts in J
value and secondary structure propensities. It is not surprising

Figure 5. Potential energy terms of Table 1. The top row represents the suggested parameters for glycine, the second row those for alanine, the third
row those for the common amino acids subset, and the last row those for the Cβ-branched amino acids, respectively. The left column shows the ϕ
angle and the right column the ψ angle.
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that there are many alternative combinations that could lead to
similar shifts in the conformational preference. To ensure that
the seemingly high barriers in Figure 5 do not lead to artificial
locking of molecules in local minima, we computed the mean
residence times in particular basins for one representative
amino acid in each subgroup (Table S4). Compared with those
for 54A7, the residence times in the helical conformation seem
to be reduced while those in β and PII are slightly increased,
with the most extreme increment observed for the PII

conformation of alanine from 2.1 to 13.7 ps. With currently
available simulation times, we do not consider this a significant
reduction of the dynamic behavior of the molecule.
In general, it appears that matching of the J value alone is not

sufficient to ensure a representative distribution. For example,
the J value for threonine in 54A7 matches perfectly, but in
terms of propensities, the agreement with the experimental
values is rather poor; reweighting combinations #33268 and
#75480 for glycine share the J value but differ 11% in
propensities (data not shown). The concomitant optimization
of both the J value and the secondary structure propensities
reduces the number of combinations to be considered:
although the J values were used for calibration of the Raman

spectroscopy experiments, the latter hold additional informa-
tion.
Performing the stepwise selection of potential candidates

(see Methods), we were able to provide a set of suggested
parameters (Table 4) that performs significantly better than the
GROMOS 54A7 parameters in terms of agreement with
experimentally determined J values and propensities (Figures 3
and S4). In addition to these values, we also sought out the best
parameter set for every amino acid individually. Table S5 shows
the individually optimized combinations. In general, these
perform significantly better than the ones optimized for the
subgroups (see Tables 3 and 4), suggesting that our set of
parameters contains enough variety to account for the special
features of all 20 canonical amino acids.
Of the four subgroups, the β-branched one is the most likely

to be further improved. For a group of only three members, the
deviation is still quite high for our suggested set of parameters.
It appears from the results shown in Figure 3 that all three
amino acids contribute to the same extent to this deviation.
Their best individual hits share the ϕ potential, but it is
threonine that is significantly different in ψ (Table S5) and
prohibits a further subgroup-wise optimization. Indeed, for

Figure 6. Backbone energy surface for Ac-A-NHMe (using parameter combination #12572) obtained by varying the ϕ and ψ angles. In (a) and (b),
the energy surface arising from the nonbonded interactions only is shown in 3D and 2D representations, respectively. It is clear that the addition of
the dihedral angle potential energy terms contributes only a limited but still crucial amount, as shown in (c) and (d). This modulation of the energy
landscape particularly leads to a PII/β separation and forms a small α-helical basin, which is 12.7% populated (estimated by simulation).
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many of the best parameter sets of this subgroup, we identified
threonine to contribute most to the deviations.
Among the 20 canonical amino acids in this study, there are

two that require special consideration: glycine and proline.
Since the propensity values for glycine are most likely only
comparable when the crucial effect of the normalization in this
case is taken into account, we propose a parameter set for this
special amino acid that samples wide areas of the Ramachan-
dran plot, as also observed in the PDB structures.30 Figure 4
shows the obtained distribution for 54A7 and the selected
parameter set (#81883). For proline, no experimental values
were available, so we adopted the “common” parameters (set
#5623) for this amino acid, leading to a more pronounced
sampling of the PII basin and the removal of a surprising
(artificial) peak at ϕ ≈ −107° and ψ ≈ −76° (see Figure 4).
Further tests could include other small compound series

(e.g., it has been reported in an earlier study31 that 3J(HN,Hα)
increases for alanine inserted in the XAO peptide; see studies
mentioned before as well). As a preliminary test of the
parameters in a protein environment, we performed four
independent 50 ns simulations of hen egg-white lysozyme
(HEWL) (initial structure taken from PDB entry 4B0D32)
using both the GROMOS 54A8 parameter set and a parameter
set based on 54A8 with the suggested backbone dihedral
parameters. The overall structure seems to be equally well
maintained in terms of both root-mean-square deviation
(Figure 7) and the persistence of secondary structure elements.

While the simulations with 54A8 show helical conformations
of 36.6 ± 1.1% (averaged over sequence, time, and individual
simulations), this amounts to 37.6 ± 2.8% for the simulations
with the modified backbone dihedral angle parameters. It
should be noted that this is merely a preliminary confirmation
that the updated set of parameters does not disrupt the protein
structure. Future analyses will involve detailed comparisons to

NMR observables (nuclear Overhauser effect distance
restraints, J values) and a more extensive set of proteins. It is
not unlikely that further refinements will be necessary at the
protein level. It can be expected that this kind of analysis will
have to be performed for every major iteration of the force
field’s (nonbonded) parameter set because of the interdepend-
ence of parameters mentioned before.

■ CONCLUSION

In this work, we focused on finding optimized parameters for
the backbone dihedral angles of amino acids. Screening of a vast
library of potential combinations using Hamiltonian reweight-
ing provided a set of parameters that optimizes the
experimental target data. We have proven that Hamiltonian
reweighting is a useful tool in the parametrization process for
molecular dynamics force fields and demonstrated its general
accuracy for small to medium changes in the Hamiltonian. Our
optimization procedure might serve as a useful basis for further
optimizations of other force fields, especially in the range from
very small to medium-sized peptides and intrinsically
unstructured regions in proteins. Sets of parameters have
been suggested for four subsets of amino acids that differ in the
substitution at Cβ, but various other potential parameter sets
are available for further evaluation. Future studies will
concentrate on the reproduction of experimental data for
other small systems, the performance of the selected parameter
sets in proteins, and the agreement against, e.g., NMR data for
such simulations.
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