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Abstract
Background: Human protein-protein interaction (PPIs) data are the foundation for understanding
molecular signalling networks and the functional roles of biomolecules. Several human PPI
databases have become available; however, comparisons of these datasets have suggested limited
data coverage and poor data quality. Ongoing collection and integration of human PPIs from
different sources, both experimentally and computationally, can enable disease-specific network
biology modelling in translational bioinformatics studies.

Results: We developed a new web-based resource, the Human Annotated and Predicted Protein
Interaction (HAPPI) database, located at http://bio.informatics.iupui.edu/HAPPI/. The HAPPI
database was created by extracting and integrating publicly available protein interaction databases,
including HPRD, BIND, MINT, STRING, and OPHID, using database integration techniques. We
designed a unified entity-relationship data model to resolve semantic level differences of diverse
concepts involved in PPI data integration. We applied a unified scoring model to give each PPI a
measure of its reliability that can place each PPI at one of the five star rank levels from 1 to 5. We
assessed the quality of PPIs contained in the new HAPPI database, using evolutionary conserved co-
expression pairs called "MetaGene" pairs to measure the extent of MetaGene pair and PPI pair
overlaps. While the overall quality of the HAPPI database across all star ranks is comparable to the
overall qualities of HPRD or IntNetDB, the subset of the HAPPI database with star ranks between
3 and 5 has a much higher average quality than all other human PPI databases. As of summer 2008,
the database contains 142,956 non-redundant, medium to high-confidence level human protein
interaction pairs among 10,592 human proteins. The HAPPI database web application also provides
≡” should be “The HAPPI database web application also provides hyperlinked information of genes,
pathways, protein domains, protein structure displays, and sequence feature maps for interactive
exploration of PPI data in the database.
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Conclusion: HAPPI is by far the most comprehensive public compilation of human protein
interaction information. It enables its users to fully explore PPI data with quality measures and
annotated information necessary for emerging network biology studies.

Background
Protein-protein interactions (PPIs) is  an important foun-
dation for understanding how biological processes take
place in cells, how cellular signals are modulated, and
how molecules orchestrate in response to external envi-
ronmental stimuli [1]. High-throughput projects that map
protein-protein interactions in model organisms were first
initiated less than a decade ago, including those for Sac-
charomyces cerevisiae, (resulted in the detection of 957
putative interactions involving 1,004 proteins) [2], Dro-
sophila melanogaster (20,405 interactions from 7048 pro-
teins), Caenorhabditis elegans (~5,500 interactions), and
Mus musculus [3-5]. In 2003, Chen et al. first reported the
generation of 13,656 high-throughput human protein
interactions in homogenized human brain using a ran-
dom yeast two-hybrid platform [6]; in 2005, Stelzl et al.
identified 3,186 mostly novel interactions among 1,705
human proteins [7]; then, Rual et al. reported the map-
ping of ~2,800 proteins in a human protein-protein inter-
action network [8]; in 2007, Ewing et al. reported a large-
scale study of protein-protein interactions in human cells
using a mass spectrometry-based approach, producing a
data set of 6,463 interactions among 2,235 distinct
human proteins [9].

These high-throughput experimental determinations of
PPIs have led to an influx of PPI experimental data. By
early 2008, BioGrid reported a comprehensive collection
of 198,000 protein and genetic interactions from major
organisms, including S. cerevisiae, S. pombe, D. melanogas-
tor, C. elegans, M. musculus, and H. sapiens [10]. However,
the coverage of data directly captured from experimental
platforms in human is still quite poor. In the most recent
release 7 of the Human Protein Reference Database
(HPRD) [11], there are only 38,167 protein interactions
reported – an average of only 1.5 interactions reported for
each of the 25,661 human proteins included in HPRD.

While it remains an open question how many measurable
human protein interactions there are, the use of PPI data
in building disease-relevant molecular interaction net-
work models has already emerged as a major theme for
"translational bioinformatics", studies that aim to facili-
tate the transformation of bioinformatics discoveries from
"Omics" experiments into biomedical applications via bi-
directional information exchange [12,13]. Recent research
studies have shown that, by building comprehensive dis-
ease-relevant PPI sub-networks, researchers can generate
and validate biological hypothesis that could lead to

novel biomarkers or therapeutic developments for many
complex diseases such as Huntington's disease, Alzhe-
imer's disease, Breast Cancer, Fanconi Anemia, and Ovar-
ian Cancer [14-18]. These studies, however, were
primarily based on available human PPIs in existing PPI
database repositories with limited coverage and/or uncer-
tain qualities. It is expected that new comprehensive data-
base collections of human PPIs, with expanded data
coverage and quantifiable reliability measures, could sig-
nificantly enhance the impact of future network modeling
research.

Several human PPI databases have begun to expand exper-
imental human PPI data coverage that is bottlenecked by
experimental data throughput and cost. There are four
common approaches for PPI data expansions: 1) manual
curation from the biomedical literature by experts; 2)
automated PPI data extraction from biomedical literature
with text mining methods; 3) computational inference
based on interacting protein domains or co-regulation
relationships, often derived from data in model organ-
isms; and 4) data integration from various experimental
or computational sources. Partly due to the difficulty of
evaluating qualities for PPI data, a majority of widely-used
PPI databases, including DIP, BIND, MINT, HPRD, and
IntAct [11,19-22], take a "conservative approach" to PPI
data expansion by adding only manually curated interac-
tions. Therefore, the coverage of the protein interactome
developed using this approach is poor. In the second liter-
ature mining approach, computer software replaces data-
base curators to extract protein interaction (or,
association) data from large volumes of biomedical liter-
ature [23]. Due to the complexity of natural language
processing techniques involved, however, this approach
often generates large amount of false positive protein
"associations" that are not truly biologically significant
"interactions". The advantages of computational infer-
ences are attributable to various biological models that
can be used to expand data coverage. For example, the
HPID database was developed from existing structural
and experimental data by homology searching [24];
OPHID was also constructed by mapping interacting pro-
teins from model organisms to their human protein
orthologs [25]. In an integrative approach, PPI data from
different sources are evaluated and combined, thus pro-
viding maximal likelihood for quality and coverage. For
example, the STRING database (version 7) [26] has now
integrated known and predicted interactions from a vari-
ety of sources, and covers all domains of life (prokaryotes
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to higher eukaryotes). Xia et al. applied a probabilistic
model and integrated 27 heterogeneous genomic, pro-
teomic and functional annotation datasets to predict
human PPI networks [27]. UniHI and IntNetDB are both
based on several major interaction maps derived by com-
putational and experimental methods [27,28]. The chal-
lenge for the integrative approach is how to balance
quality with coverage. In particular, different databases
may contain many redundant PPI information derived
from the same sources, while the overlaps between inde-
pendently derived PPI data sets are quite low [29,30].

In this work, we describe a new PPI web database
resource, Human Annotated Protein-Protein Interactions
(HAPPI), located at http://bio.informatics.iupui.edu/
HAPPI/. As of early 2008, HAPPI (version 1.1) contains
142,956 non-redundant, medium to high-confidence
human protein interaction pairs among 10,592 human
proteins identified by UniProt protein names. The HAPPI
database aims to become the most comprehensive public
compilation of human protein interaction information.
The protein interactions are integrated from multiple data
sources including both experimental and computation-
ally-derived PPI. Each protein interaction in HAPPI is
assigned a PPI confidence grade of 1, 2, 3, 4, or 5 to help
users evaluate the reliability and confidence of reported
interactions. Each interaction is computationally anno-
tated with information including biological pathways,
gene functions, protein families, protein structures,
sequence features, and literature sources. These database
capabilities will enable both biomedical researchers and
network biology users to evaluate the biological signifi-
cance of specific protein interactions, from which they can
build network models for future translational bioinfor-
matics research.

Methods
Human protein interaction data were collected, extracted,
and integrated from the HPRD [11], BIND [20], MINT
[21], STRING [26], and OPHID [25] databases, using data
warehousing techniques. The primary reason for the
choice of these databases was that these sources are rela-
tively complementary to each other and representative of
PPIs derived from a variety of methods, including high-
throughput experimental PPIs (from HPRD and BIND),
literature-curated PPIs (from BIND), text-mined PPIs
(from STRING), and computational predicted PPIs (from
STRING and OPHID). An overview of the data integration
process that involves several of these existing public-
domain PPIs databases is shown in Figure 1. The data inte-
gration process consists of extracting, transforming, and
loading (ETL) of data from downloadable forms of these
databases, using PERL and the Oracle 10g database server.
To take into account of PPIs derived from different data
sources, we adopted the data source naming standard

from the OPHID database. In particular, for human PPI
data from HPRD, BIND, and MINT, we directly used these
original database names as the data source names. For
data integrated from the STRING database, we used eSTR
to represent the "experimentally derived subset of STRING
interactions", and pSTR to represent the "predicted/com-
putationally-derived subset of STRING interactions".

Data model
We represented the semantic relationships among differ-
ent concepts involved in protein interactions as an Entity-
Relationship (ER) data model shown in Figure 2, using
the Logical Data Structure (LDS) notation as described in
[31]. According to this model, each human protein was
identified by a unique UniProt ID [32], which could be
further linked to other protein/gene identifier systems in
other reference databases such as the Ensembl ID from the
Ensembl database [33], and comprehensive bioinformat-
ics annotation data stored in other existing biological
database resources, such as Pfam [34] that provides infor-
mation on protein families and domains. Each pair of
protein interactions was identified by a pair of protein
Uniprot IDs or gene Ensembl IDs to accommodate pro-
tein interactions inferred from co-expressed genes from
DNA microarrays or co-occurring gene names from text
mining, along with several different types of quality scores
from the source.

Interaction ranking model
We developed a unified scoring scheme to assess the reli-
ability of integrated human protein-protein interactions
from the public domain. First, an interaction scoring sys-
tem for each individual data source is either preserved
(e.g., adoption of the "combined_score" from STRING) or
created (e.g., for OPHID). In the later case, we assigned a
heuristic confidence score Si (between 0 and 1) to each
interaction pair, based on the type of its experimental/

An overview of the data integration process for developing the HAPPI databaseFigure 1
An overview of the data integration process for 
developing the HAPPI database.
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computational derivation method and the database
source. Si provided an estimate of the degree of reliability
of user confidence in the interaction data. Therefore, the
more trustworthy the experimental or computational pro-
tocols were, the higher the confidence score (Si) was. Sec-
ond, to combine the individual confidence scores from
different sources into a final hscore for the interaction, we
used the following formula:

where N represented the count of different data sources
and conditions, for each of which an independent assess-
ment of protein interaction reliability score, Si, exists. The
hscore ranges in value between 0 and 1. Third, to convert
hscore to ranks, we use a ranking method that works in prin-

ciple by clustering the interactions with closely-related
hscore values for all interactions managed in the HAPPI
database (see supplemental material for details). Then, a
five-star ranking model was developed to set the cut-off
threshold at the hscore distribution cluster boundary. The
results are summarized in Table 1. Because the hscore values
for both high-throughput experimental data (default is
0.75) and curated experimental data from BIND, HPRD,
and MINT (default is 0.80) are above 0.75, we therefore
selected a combined score of hscore >= 0.75, or a final star
rank of 4 or 5, as the minimal criteria for reporting inter-
actions and their statistics for HAPPI. A complete initial
scoring scheme to assess the reliability of human protein-
protein interactions is shown in Additional file 1.

Data annotation
All interacting proteins in the HAPPI database were anno-
tated with gene function, pathway, protein domain, pro-
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An entity-relationship data model for the HAPPI databaseFigure 2
An entity-relationship data model for the HAPPI database.
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tein structure, and sequence feature map data. The data
were separately imported into the Oracle 10g data ware-
house from UniProt [32], GenBank [35], HUGO Nomen-
clature [36], Ensembl [33], PubMed [37], PDB [38], Pfam
[34], and KEGG [39] databases. Altogether, we organized
inside the data warehouse 70,829 curated human proteins
and their descriptions, of which 13,601 proteins contain
protein interaction information in the HAPPI database.
We kept 361,975 literature abstract IDs where human
gene/protein co-occurrence was detected by the STRING
database, 52,186 protein domains/families from Pfam,
715 pathways from KEGG, 2,282 protein 3-D structures
from PDB, and 76,797 annotated human gene features
from GeneBank. All the information was linked to the
original source databases on the HAPPI web site, so that
HAPPI users can navigate to database sources to deter-
mine the reliability of queried PPIs.

Quality assessment
In this study, we chose to apply evolutionarily conserved
co-expression pairs to the assessment and comparisons of
PPI data qualities for different sources, including the
HAPPI database. High-quality conserved gene co-expres-
sion profiles were used to assess protein interaction qual-
ity. Many protein interaction data sets were cross-
validated with human gene co-expression profiles such as
[40]. While interacting proteins may share highly similar
gene expression profiles, it was often suggested that such
expected correlation between protein interactions and
gene expression is quite weak in human and in transient
protein interactions. Furthermore, comprehensive expres-
sion profiles are difficult to compile for all cellular condi-
tions. To improve the development of a co-expression
based confidence measure for interacting proteins, Tirosh
and Barkai showed that a method using co-expression of
orthologs of interacting partners performed quite well
[41]. Their method was based on the assumption that
conserved co-expression relationship preserved true pro-
tein interactions that required the presence of both inter-
acting proteins through evolution. Therefore, it is more
sensitive overall than using information purely from the
organism, e.g., simple co-expression, cellular co-localiza-
tion, and similarity in gene's gene ontology functional
annotations. In a similar study, Bhardwaj and Lu also ver-
ified that reliable predictions of interactions from hetero-

geneous data sources could be strengthened by
evolutionary conserved gene co-expression measurements
[42].

Our computational method was based on the degree of
overlap between protein interactions and the use of an
evolutionarily conserved co-expressed gene data set called
MetaGene. MetaGene consists of 22,163 evolutionary
conserved co-expression relationships from humans, flies,
worms, and yeast, based on the analysis of over 3182 pub-
lished DNA microarray experiments by Stuart et al [43]. It
is a comprehensive compilation of evolutionary con-
served gene co-expression pairs from a diverse set of DNA
microarray experiments that were obtained from four dif-
ferent organisms: 1,202 DNA microarrays from H. sapiens,
979 from C. elegans,155 from D. melanogastor, and 643
from S. cerevisiae. The relative quality of each PPI data-
base, including HAPPI, OPHID [25], IntNetDB [27],
ProNet [44], UniHI [28], and HPRD [11], was estimated
as the count of overlaps between protein interactions in
the PPI database of interest and MetaGene conserved co-
expressed gene pairs. The human subset of MetaGene data
involves 6,591 human genes and 22,154 MetaGene co-
expression gene pairs. 6,297 of the 22,154 human Meta-
Gene co-expression gene pairs can be found in the union
(U0 set) of all the known human PPI databases, including
HAPPI, OPHID, IntNetDB, ProNet, UniHI, and HPRD;
furthermore, 6,145 of the 6,297 MetaGene pairs form a
large connected MetaGene co-expression association net-
work that showed the scale-free property commonly
observed of most molecular interaction networks. There-
fore, we regarded 6,145 Metagene pairs (M0 Set) to be
most relevant high-quality subset of U0 and could be used
as a gold standard for evaluating unknown PPIs from large
databases. To facilitate comparisons of overlaps for differ-
ent databases with MetaGene, we also developed an artifi-
cially synthesized protein-protein "random interaction"
set (R0 Set) of 37,000 PPIs (comparable to the size of all
PPIs in HPRD), by randomly reconnecting proteins
observed in U0. Therefore, the lower-bound of any protein
interaction data set derived from U0 could be given by
counting the overlap between R0 and M0. To adapt to the
different sizes of PPI databases, we took a random sample
of 1000 PPIs each time from each database in comparison
(including R0), and repeated this random sampling proc-

Table 1: HAPPI database protein interaction data quality grade and coverage.

Star Grade Quality Description h-score range Interaction Count

1 noisy and uncertain interactions [0, 0.25) 546,136
2 low-confidence interactions [0.25, 0.45) 378,300
3 average-confidence interactions [0.45, 0.75) 142,071
4 decent-confidence interactions [0.75, 0.90) 67,462
5 high-confidence interactions [0.90, 1) 75,494
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ess 1000 times to obtain a distribution of normalized over-
lap counts with M0.

Results
HAPPI was developed as a web-based PPIs database appli-
cation and is freely accessible to the public at http://
bio.informatics.iupui.edu/HAPPI/. In the current release,
HAPPI contains 13,601 proteins and 1,209,463 PPIs inte-
grated from five databases collected with both experimen-
tal and computationally methods as described in the
previous section. Users of the HAPPI web application soft-
ware can search for PPIs using common protein identifi-
ers. Typical web query results display all HAPPI PPIs at a
default quality grade (star rank 3 and above). Users can
drill down to explore annotations of the protein interac-
tion or proteins involved.

Assessing data quality
While there are several methods for validating PPI data,
including those based on interacting domains, gene co-
expression profiles, or gene ontology (GO) annotation
semantic distances [42,45-49], we assessed the quality of
the new HAPPI database by comparing the extent of over-
lap between PPIs and MetaGene pairs, using a new com-
putational approach described earlier in the Method
section.

In Figure 3A and 3B, we show the sample count frequency
distribution of overlaps between human PPIs from several
databases of interest and MetaGene gene pairs. The x-axis
represents the count of PPI database and MetaGene over-
laps, ranging from 0 to 1000 (total PPIs in each sample is
1000). The y-axis represents the total sample frequency for
a specific overlap count value, also ranging from 0 to 1000
but mostly within 200. The cumulative count frequency
for each PPI database, including the "Random Set" (see
Methods for details), should sum to 1000 (1000 random
samplings were performed for each database). As we
described in the Methods, we can assess the overall PPI
database quality based on the overlap of its PPIs with
high-quality MetaGene gene pairs.

Figure 3A shows that the 4-star quality grade HAPPI data-
base subset has the highest MetaGene overlap at approxi-
mately 72 out of 1000, among all databases compared
(including UniHI, at approximately 8 overlaps, data not
shown). The overall quality of the HAPPI database (at all
star grades) is comparable to that of the recently pub-
lished IntNetDB or HPRD (at approximately 13–15 over-
laps overall), still better than that of the ProNet [50]
database (manually curated data set initially made public
as the first database for human protein interactions; at
approximately 8 overlaps overall). The overall quality of
HAPPI database at all star grades is not as good as the
BioGrid (at approximately 19 overlaps) or the OPHID

database (at approximately 27 overlaps but with a wide
spread), primarily because HAPPI database at one-star
quality grade contains many literature mining based co-
citation data that do not physically interact. The result
also suggests that the overall quality of OPHID database
exceeds that of the reference curated HPRD database. We
believe that this is primarily due to the challenge in iden-
tifying false positive interactions inherent in many exper-

Degree of overlaps between randomly selected protein interaction pairs in selected protein interaction databases and MetaGene pairsFigure 3
Degree of overlaps between randomly selected pro-
tein interaction pairs in selected protein interaction 
databases and MetaGene pairs. We randomly selected 
1,000 protein-protein interactions, and counted the numbers 
of protein interaction pairs overlapped with conserved co-
expression pairs in the MetaGene database. This sampling 
and MetaGene overlapping process was repeated 1000 times 
for each protein interaction database (including the random 
database). The resulting distributions of overlaps are show as 
profiles on the graph. 3A. Comparisons of Metagene over-
laps for major human PPI databases, including: HAPPI, 
OPHID, ProNet, BioGrid, and IntNetDB, and HAPPI 4-star 
subset. 3B. Comparisons of Metagene overlap for different 
quality grade subsets of the HAPPI database, including: HAPPI 
(all), HAPPI 2-star, HAPPI 3-star, HAPPI 4-star, and HAPPI 5-
star subsets. There are 6145 co-expression pairs in 
MetaGene database in total. And there are 22154 
PPIs in HAPPI, HPRD etc. The x-axis represents the 
number of overlap protein pairs in HAPPI and Meta-
Gene when we random selected 1000 PPIs. The scale 
of x-axis is calculated as 1/((6145/22154)*1000).
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imentally-derived high-throughput PPI data, which
HPRD also included with minimal additional validations.
The OPHID database incorporated functionally conserved
sequence and structure information such as conserved
interacting domain pairs (as in the case of OPHID), for
developing and filtering human PPI data collected from
different organisms, and may have therefore enriched its
database with these computationally-derived plausible
PPIs.

In Figure 3B, we show a sample frequency distribution of
MetaGene overlaps among different quality grades of the
HAPPI database subsets. The figure shows that while the
overall data quality for the entire HAPPI database of 1.2
million PPIs may be relatively un-impressive (at an aver-
age MetaGene overlap of 14 out of 1000 in each sample),
the remaining 650,000+ HAPPI database PPIs at star qual-
ity grades of 2 and above have an overall quality better
than that of any of the existing public databases in the
comparison, including the OPHID database. The average
count of MetaGene overlaps also improves as the quality
grade improves, at approximately 31 for 378,300 2-star
PPIs, 47 for 142,071 3-star PPIs, 75 for 67,462 4-star PPIs,
and 87 for 75,494 5-star PPIs. While the community
knowledge of what constitutes "true protein interactions"
in all cellular conditions remain poor, it is still challeng-
ing to validate the rest of PPIs that MetaGene data do not
cover. However, our results show that the HAPPI data-
base, particularly for star grades of 3, 4, and 5, clearly con-
tains much higher true positive PPI interactions than all
other known human PPI databases. For that reason, we
only report HAPPI database results with star grades of 3
and above in our database's web user interface.

We also analyzed PPI overlaps between HAPPI database
subsets of different quality grades and two reference PPI
databases. In Figure 4A, we show that an average of
approximately 410 out of 1,000 (41%) randomly selected
HAPPI 5-star PPIs overlap with the HPRD database. This
high-degree of overlap drops to approximately 8% for
HAPPI 4-star PPIs, and almost nothing for HAPPI 3-star,
2-star, and 1-star subsets. In Figure 4B, we show that an
average of nearly 500 out of 1,000 (50%) randomly
selected HAPPI 5-star PPIs can be overlapped with the
OPHID database. This high-degree of overlap drops to
approximately 17% for HAPPI 4-star PPIs, 4% for HAPPI
3-star PPIs, 5% for HAPPI 2-star PPI, and eventually to
nothing to HAPPI 1-star subsets. Recall that Fig 3 sug-
gested that OPHID has a slightly higher overall PPI data
quality level than HPRD, and that HAPPI 4-star or HAPPI
5-star subsets are two of the best PPI data sources com-
pared. It is therefore not surprising that OPHID and
HAPPI 4-star or 5-star subsets are more consistent with
each other. The low degree of overlaps with the reference
databases at lower HAPPI quality grades are expected,

because of the much higher coverage of PPIs and lower
confidence in data quality in HAPPI 3-star, 2-star, and 1-
star subsets.

Querying the database
HAPPI enables users to retrieve human PPI data through
multiple types of protein identifiers, such as UniProt IDs,
Swiss-Prot accession numbers, RefSeq IDs, or IPI acces-
sion numbers, at its query home page. Query results that
contain protein interaction data and quality rank are
shown in a single web page as a data table. The query
result is available for download either in a Molecular
Interaction (MI) format recommended by the Proteomics
Standard Initiatives (PSI) or in a Graph Markup Language
(GML) format recommended by the International Molec-
ular Exchange Consortium. Additional annotation details
of the protein or protein interaction can be queried and
retrieved online by selecting the hyperlinks in the protein
interaction result page.

Viewing and exploration of results
HAPPI users can retrieve a list of protein interactions
showing the following fields in a table: the query protein,
a relationship symbol (currently implemented as bi-direc-
tional binding, represented as "<=>"), the data source of
the interaction, and a confidence rating of 1 to 5 stars. Fig-
ure 5 shows an example (in a partial view) of protein
interaction results retrieved with the query INS_HUMAN,
insulin precursor protein. Note that we relaxed the inter-
action criteria here to allow the display of every interac-
tion having a 3-star or higher confidence score rating.

Count of PPI overlaps between HAPPI database subsets of different quality ratings and the HPRD/OPHID databaseFigure 4
Count of PPI overlaps between HAPPI database sub-
sets of different quality ratings and the HPRD/
OPHID database. We randomly selected 1,000 PPIs each 
from HAPPI database 5-, 4-, 3-, 2-, and 1-star subsets and 
counted each of its overlap with protein interactions with 
the HPRD database or the OPHID database separately. We 
repeated this process 100 times for each overlap. The aver-
age and 95% confidence interval (CI) on the count of over-
laps are shown in the HPRD database (Panel A) and the 
OPHID database (Panel B).
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Second, the user can navigate to the protein information
page to learn about additional annotation details of the
interacting protein, and to link out to a wide variety of
protein annotation databases. Third, the user can also
navigate to the protein interaction pair details page to fur-
ther examine biological relationship evidence that may
exist between interacting proteins. For example, knowing
previously that INS_HUMAN interacts with
INSR_HUMAN (insulin receptor precursor protein) with
high confidence (at the 5-star level), users can learn from
these protein descriptions that it is the processed forms,
not the precursor forms, of both insulin and insulin recep-
tor dimers, that actually bind to each other. In addition,
the user can learn that this interaction is involved in sev-
eral biological processes together, because the interacting
proteins have several pathways such as insulin signalling,
type II diabetes, and DLPRA in common. Various other
types of annotation information are also available for the
interacting proteins within the same web page for users to
take advantage of. These types of annotation information
are: top gene/protein in literature co-occurrence refer-
ences, which may help users find evidence for protein
interactions; protein family/domain annotation, which
may help users to identify interacting domains; side-by-
side display of the 3-D structures of interacting proteins,
which may help structural biologists recognize matching
protein domains or surfaces for interactions; and head-to-
head gene sequence feature alignment, which may help
users hypothesize whether a plausible interaction is sup-
ported by sequence and its features.

We created two interactive components in the protein
interaction details page: one to explore interacting protein
3D structures and the other to explore interaction protein
feature alignments. In Figure 6A and 6B, we show an

example of these two components. Two protein PDB
structures, one for INS_HUMAN and the other for
INSR_HUMAN, are displayed side by side using two
JMOL [51] Java Applet Plugins of the web browser (Figure
6A). Once the applet control is activated by a mouse click,
the user can adjust the structure viewer's properties for the
two proteins side-by-side. Similarly, the user can use
mouse-over actions to browse tooltips associated with
each sequence feature aligned on top of each of the two
protein-coding genes in the Safmap Java Applet viewer
(Figure 6B). After extensive interaction with these
dynamic components of the HAPPI application, the user
may recognize the INSR_HUMAN N-terminus as a signal
peptide (confirmed on the SafMap) forming an α-helix
sticking out from the Cys-rich ligand binding domain of
the insulin receptor. The Tyr kinase domain of the insulin
receptor is, however, tucked right on the same side
beneath the ligand binding domain of the receptor but
away from the α-helix rich body of the molecule. With
this exploration under way, it is not difficult to confirm
that the INSR dimerization creates a good binding pocket
for the small INS peptide, which upon binding further
activates the nearby Tyr kinase autophosphorylation,
therefore triggering a cascade of signalling events in cells
[52].

Conclusion
HAPPI is by far the most comprehensive public compila-
tion of human protein interaction data that come with a
unified framework of interaction data reliability scores. In
its current release, the HAPPI database contains 13,601
proteins and 1,209,463 PPIs integrated from several data-
bases derived either experimentally or computationally.
By comparing the degree of overlap between PPIs of vary-
ing quality grades and evolutionarily conserved co-

The user interface (partial) that lists protein interactions retrieved by searching HAPPI with the query protein INS_HUMAN (insulin precursor protein)Figure 5
The user interface (partial) that lists protein interactions retrieved by searching HAPPI with the query protein 
INS_HUMAN (insulin precursor protein). Both interactions shown here are derived from multiple data sources and have 
5-star confidence ratings.
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A partial view of annotated protein interaction features in the HAPPI databaseFigure 6
A partial view of annotated protein interaction features in the HAPPI database. A) The PDB structure of Insulin 
precursor protein (1A7F, on the left) is displayed in HAPPI side-by-side with the structure of Insulin receptor precursor pro-
tein (1GAG, on the right, in monomer form). B) The gene feature alignments for both the Insulin precursor protein 
(INS_HUMAN) and the Insulin receptor precursor protein (INSR_HUMAN) are created in real time in HAPPI. A tooltip that 
labels the top right highlighted sequence feature of Tyr Kinase domain of INSR_Human is also shown.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1A7F
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1GAG
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expressed gene pairs, we assessed the quality of HAPPI.
While the overall quality of HAPPI is comparable to that
of the HPRD database, HAPPI PPIs with 3-5 star rank lev-
els have a higher average quality than all other human PPI
databases considered in this study, which include ProNet,
UniHI, IntNetDB, OPHID, HPRD, and BioGrid.

For future HAPPI database releases, we have three plans.
First, we wish to continue integrating and linking valuable
annotation data into the HAPPI database. Protein interac-
tion data from high-precision text mining projects could
be used to improve the validation of high-quality protein
interactions as "re-discovered" compared to the findings
reported in past literature. Gene co-expression and Gene
Ontology data are also candidates for data import next,
since they both can help define common functional con-
text in which protein interactions may take place. Second,
we plan on applying database customization techniques
to improve the user querying experience with HAPPI. For
example, we will add control buttons for users to custom-
ize interaction data quality filter thresholds, and to select
a subset of retrieved protein interactions for downloading
into spreadsheet programs. Third, we wish to improve
existing PPI data investigation features. For example, we
hope to run molecular docking programs and show com-
putationally predicted protein binding constants and
binding sites between two proteins. We also plan to
improve the interplay between JMOL and Safmap Java
Applets so that a highlight of sequence segments in one
program may also be highlighted in the other program.
With these improvements, we expect the database to play
essential roles for biomedical researchers to retrieve trust-
worthy information on plausible human protein interac-
tion data and for bioinformatics scientists to conduct
network biology modeling studies.
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